Envelope: Localization for the Spectrum of a Matrix

Michael Tsatsomeros Washington State University

Based on joint work with Maria Adam, Panos Psarrakos, Katerina Aretaki

$$
\text { July 5, } 2017
$$

Bendixson

Hermitian part of $A \in \mathbb{C}^{n \times n}$:

$$
H(A)=\frac{A+A^{*}}{2}
$$

Eigenvalues of $H(A)$:

$$
\delta_{1}(A) \geq \delta_{2}(A) \geq \cdots \geq \delta_{n}(A)
$$

For every eigenvalue $\lambda \in \sigma(A)$,

$$
\delta_{n}(A) \leq \operatorname{Re} \lambda \leq \delta_{1}(A)
$$

Numerical range

- Thus $\sigma(A)$ lies in

$$
\left\{(s+\mathrm{i} t): s, t \in \mathbb{R} \text { with } s \leq \delta_{1}(A)\right\}
$$

Numerical range

- Thus $\sigma(A)$ lies in

$$
\left\{e^{-\mathrm{i} 0}(s+\mathrm{i} t): s, t \in \mathbb{R} \text { with } s \leq \delta_{1}\left(e^{\mathrm{i} 0} A\right)\right\}
$$

Numerical range

- Thus $\sigma(A)$ lies in $(\forall \theta \in[0,2 \pi))$

$$
\left\{e^{-\mathrm{i} \theta}(s+\mathrm{i} t): s, t \in \mathbb{R} \text { with } s \leq \delta_{1}\left(\mathrm{e}^{\mathrm{i} \theta} A\right)\right\}
$$

Numerical range

- Thus $\sigma(A)$ lies in the intersection of all these half-planes:

$$
\bigcap_{\theta \in[0,2 \pi]}\left\{e^{-\mathrm{i} \theta}(s+\mathrm{i} t): s, t \in \mathbb{R} \text { with } s \leq \delta_{1}\left(e^{\mathrm{i} \theta} A\right)\right\}
$$

Numerical range

- Thus $\sigma(A)$ lies in the intersection of all these half-planes:

$$
\bigcap_{\theta \in[0,2 \pi]}\left\{e^{-\mathrm{i} \theta}(s+\mathrm{i} t): s, t \in \mathbb{R} \text { with } s \leq \delta_{1}\left(e^{\mathrm{i} \theta} A\right)\right\}
$$

- This infinite intersection of half-planes coincides with the numerical range (field of values) of A :

$$
F(A)=\left\{v^{*} A v \in \mathbb{C}: v \in \mathbb{C}^{n} \text { with } v^{*} v=1\right\}
$$

Numerical range

- Thus $\sigma(A)$ lies in the intersection of all these half-planes:

$$
\bigcap_{\theta \in[0,2 \pi]}\left\{e^{-\mathrm{i} \theta}(s+\mathrm{i} t): s, t \in \mathbb{R} \text { with } s \leq \delta_{1}\left(e^{\mathrm{i} \theta} A\right)\right\}
$$

- This infinite intersection of half-planes coincides with the numerical range (field of values) of A :

$$
F(A)=\left\{v^{*} A v \in \mathbb{C}: v \in \mathbb{C}^{n} \text { with } v^{*} v=1\right\}
$$

- In fact, this is Johnson's algorithm for computing and plotting the boundary points of $F(A)$.

The numerical range of a 4×4 Toeplitz matrix.

Michael Tsatsomeros Washington State University
Envelope: Localization for the Spectrum of a Matrix

Preview

- Improve upon the above spectrum localizations results.

Preview

- Improve upon the above spectrum localizations results.
- Replace the tangent lines by cubic curves.

Preview

- Improve upon the above spectrum localizations results.
- Replace the tangent lines by cubic curves.
- The cubic curves are obtained by an inequality that all eigenvalues of A must satisfy.

Preview

- Improve upon the above spectrum localizations results.
- Replace the tangent lines by cubic curves.
- The cubic curves are obtained by an inequality that all eigenvalues of A must satisfy.
- Replace infinite intersection of half-planes by an infinite intersection of regions in the complex plane (defined by the above cubic curves).

Preview

- Improve upon the above spectrum localizations results.
- Replace the tangent lines by cubic curves.
- The cubic curves are obtained by an inequality that all eigenvalues of A must satisfy.
- Replace infinite intersection of half-planes by an infinite intersection of regions in the complex plane (defined by the above cubic curves).
- The outcome is a localization region for the spectrum called the envelope of A.

Preview

- Improve upon the above spectrum localizations results.
- Replace the tangent lines by cubic curves.
- The cubic curves are obtained by an inequality that all eigenvalues of A must satisfy.
- Replace infinite intersection of half-planes by an infinite intersection of regions in the complex plane (defined by the above cubic curves).
- The outcome is a localization region for the spectrum called the envelope of A.
- The envelope is contained in the numerical range and can be quite smaller.

The cubic curve that bounds the spectrum of $A \in \mathbb{C}^{n \times n}$

- $y_{1} \in \mathbb{C}^{n}$ is a unit eigenvector of $H(A)$ corresponding to $\delta_{1}(A)$.

The cubic curve that bounds the spectrum of $A \in \mathbb{C}^{n \times n}$

- $y_{1} \in \mathbb{C}^{n}$ is a unit eigenvector of $H(A)$ corresponding to $\delta_{1}(A)$.
- Skew-hermitian part of $A: S(A)=\frac{A-A^{*}}{2}$

The cubic curve that bounds the spectrum of $A \in \mathbb{C}^{n \times n}$

- $y_{1} \in \mathbb{C}^{n}$ is a unit eigenvector of $H(A)$ corresponding to $\delta_{1}(A)$.
- Skew-hermitian part of $A: S(A)=\frac{A-A^{*}}{2}$
- Define two quantities:

$$
\mathrm{v}(A)=\left\|S(A) y_{1}\right\|_{2}^{2}, \quad \mathrm{u}(A)=\operatorname{Im}\left(y_{1}^{*} S(A) y_{1}\right)
$$

The cubic curve that bounds the spectrum of $A \in \mathbb{C}^{n \times n}$

- $y_{1} \in \mathbb{C}^{n}$ is a unit eigenvector of $H(A)$ corresponding to $\delta_{1}(A)$.
- Skew-hermitian part of $A: S(A)=\frac{A-A^{*}}{2}$
- Define two quantities:

$$
\mathrm{v}(A)=\left\|S(A) y_{1}\right\|_{2}^{2}, \quad \mathrm{u}(A)=\operatorname{Im}\left(y_{1}^{*} S(A) y_{1}\right)
$$

- $0 \leq \mathrm{v}(A)-\mathrm{u}(A)^{2}$ is a measure of how close $\delta_{1}(A)+\mathrm{iu}(A)$ is to being a normal eigenvalue of A.

The inequality

Theorem [Adam and T.]
Every eigenvalue λ of $A \in \mathbb{C}^{n \times n}$ satisfies

$$
\begin{aligned}
& \left(\operatorname{Re} \lambda-\delta_{2}(A)\right)(\operatorname{Im} \lambda-\mathrm{u}(A))^{2} \leq \\
& \quad\left(\delta_{1}(A)-\operatorname{Re} \lambda\right)\left[\mathrm{v}(A)-\mathrm{u}(A)^{2}+\left(\operatorname{Re} \lambda-\delta_{2}(A)\right)\left(\operatorname{Re} \lambda-\delta_{1}(A)\right)\right]
\end{aligned}
$$

In and Out Regions

- Theorem gives rise to a cubic algebraic curve $\Gamma(A)$:

$$
\begin{gathered}
\left\{s+\mathrm{i} t: s, t \in \mathbb{R}, \delta_{2}(A)-s+\frac{\left(\delta_{1}(A)-s\right)\left(\mathrm{v}(A)-\mathrm{u}(A)^{2}\right)}{\left(\delta_{1}(A)-s\right)^{2}+(\mathrm{u}(A)-t)^{2}}=0\right\} \\
\cup\left\{\delta_{1}(A)+\mathrm{iu}(A)\right\}
\end{gathered}
$$

In and Out Regions

- Theorem gives rise to a cubic algebraic curve $\Gamma(A)$:

$$
\begin{gathered}
\left\{s+\mathrm{i} t: s, t \in \mathbb{R}, \delta_{2}(A)-s+\frac{\left(\delta_{1}(A)-s\right)\left(\mathrm{v}(A)-\mathrm{u}(A)^{2}\right)}{\left(\delta_{1}(A)-s\right)^{2}+(\mathrm{u}(A)-t)^{2}}=0\right\} \\
\cup\left\{\delta_{1}(A)+\mathrm{iu}(A)\right\}
\end{gathered}
$$

- $\Gamma(A)$ separates the complex plane in two regions:

In and Out Regions

- Theorem gives rise to a cubic algebraic curve $\Gamma(A)$:

$$
\begin{gathered}
\left\{s+\mathrm{i} t: s, t \in \mathbb{R}, \delta_{2}(A)-s+\frac{\left(\delta_{1}(A)-s\right)\left(\mathrm{v}(A)-\mathrm{u}(A)^{2}\right)}{\left(\delta_{1}(A)-s\right)^{2}+(\mathrm{u}(A)-t)^{2}}=0\right\} \\
\cup\left\{\delta_{1}(A)+\mathrm{iu}(A)\right\}
\end{gathered}
$$

- $\Gamma(A)$ separates the complex plane in two regions:
- $\Gamma_{i n}(A)=$

$$
\begin{aligned}
& \left\{s+\mathrm{i} t: s, t \in \mathbb{R},\left(\delta_{2}(A)-s\right)\left[\left(\delta_{1}(A)-s\right)^{2}+(\mathrm{u}(A)-t)^{2}\right]\right. \\
& \\
& \left.\quad+\left(\delta_{1}(A)-s\right)\left(\mathrm{v}(A)-\mathrm{u}(A)^{2}\right) \geq 0\right\}
\end{aligned}
$$

In and Out Regions

- Theorem gives rise to a cubic algebraic curve $\Gamma(A)$:

$$
\begin{gathered}
\left\{s+\mathrm{i} t: s, t \in \mathbb{R}, \delta_{2}(A)-s+\frac{\left(\delta_{1}(A)-s\right)\left(\mathrm{v}(A)-\mathrm{u}(A)^{2}\right)}{\left(\delta_{1}(A)-s\right)^{2}+(\mathrm{u}(A)-t)^{2}}=0\right\} \\
\cup\left\{\delta_{1}(A)+\mathrm{iu}(A)\right\}
\end{gathered}
$$

- $\Gamma(A)$ separates the complex plane in two regions:
- $\Gamma_{\text {in }}(A)=$

$$
\begin{aligned}
& \left\{s+\mathrm{i} t: s, t \in \mathbb{R},\left(\delta_{2}(A)-s\right)\left[\left(\delta_{1}(A)-s\right)^{2}+(\mathrm{u}(A)-t)^{2}\right]\right. \\
& \left.\quad+\left(\delta_{1}(A)-s\right)\left(\mathrm{v}(A)-\mathrm{u}(A)^{2}\right) \geq 0\right\}
\end{aligned}
$$

- $\Gamma_{\text {out }}(A)=$

$$
\begin{aligned}
& \left\{s+\mathrm{i} t: s, t \in \mathbb{R},\left(\delta_{2}(A)-s\right)\left[\left(\delta_{1}(A)-s\right)^{2}+(\mathrm{u}(A)-t)^{2}\right]\right. \\
& \left.\quad+\left(\delta_{1}(A)-s\right)\left(\mathrm{v}(A)-\mathrm{u}(A)^{2}\right)<0\right\}
\end{aligned}
$$

Possible configurations of $\Gamma(A)$

Properties of $\Gamma(A)$

- Spectrum of A is contained in $\Gamma_{i n}(A)$.

Properties of $\Gamma(A)$

- Spectrum of A is contained in $\Gamma_{i n}(A)$.
- Configuration of $\Gamma(A)$ depends on

$$
\Delta=\left(\delta_{1}(A)-\delta_{2}(A)\right)^{2}-4\left(\mathrm{v}(A)-\mathrm{u}(A)^{2}\right)
$$

Properties of $\Gamma(A)$

- Spectrum of A is contained in $\Gamma_{i n}(A)$.
- Configuration of $\Gamma(A)$ depends on

$$
\Delta=\left(\delta_{1}(A)-\delta_{2}(A)\right)^{2}-4\left(\mathrm{v}(A)-\mathrm{u}(A)^{2}\right)
$$

- $\Gamma(A)$ lies in the vertical zone $\left\{z \in \mathbb{C}: \delta_{2}(A) \leq \operatorname{Re} z \leq \delta_{1}(A)\right\}$

Properties of $\Gamma(A)$

- Spectrum of A is contained in $\Gamma_{i n}(A)$.
- Configuration of $\Gamma(A)$ depends on

$$
\Delta=\left(\delta_{1}(A)-\delta_{2}(A)\right)^{2}-4\left(\mathrm{v}(A)-\mathrm{u}(A)^{2}\right)
$$

- $\Gamma(A)$ lies in the vertical zone $\left\{z \in \mathbb{C}: \delta_{2}(A) \leq \operatorname{Re} z \leq \delta_{1}(A)\right\}$
- $\Gamma(A)$ is symmetric with respect to the horizontal line

$$
\mathcal{L}=\{z \in \mathbb{C}: \operatorname{Im} z=u(A)\}
$$

Properties of $\Gamma(A)$

- Spectrum of A is contained in $\Gamma_{i n}(A)$.
- Configuration of $\Gamma(A)$ depends on

$$
\Delta=\left(\delta_{1}(A)-\delta_{2}(A)\right)^{2}-4\left(\mathrm{v}(A)-\mathrm{u}(A)^{2}\right)
$$

- $\Gamma(A)$ lies in the vertical zone $\left\{z \in \mathbb{C}: \delta_{2}(A) \leq \operatorname{Re} z \leq \delta_{1}(A)\right\}$
- $\Gamma(A)$ is symmetric with respect to the horizontal line

$$
\mathcal{L}=\{z \in \mathbb{C}: \operatorname{Im} z=u(A)\}
$$

- $\Gamma(A)$ intercepts \mathcal{L} at $\delta_{1}(A)+\mathrm{iu}(A)$

Properties of $\Gamma(A)$

- Spectrum of A is contained in $\Gamma_{i n}(A)$.
- Configuration of $\Gamma(A)$ depends on

$$
\Delta=\left(\delta_{1}(A)-\delta_{2}(A)\right)^{2}-4\left(\mathrm{v}(A)-\mathrm{u}(A)^{2}\right)
$$

- $\Gamma(A)$ lies in the vertical zone $\left\{z \in \mathbb{C}: \delta_{2}(A) \leq \operatorname{Re} z \leq \delta_{1}(A)\right\}$
- $\Gamma(A)$ is symmetric with respect to the horizontal line

$$
\mathcal{L}=\{z \in \mathbb{C}: \operatorname{Im} z=u(A)\}
$$

- $\Gamma(A)$ intercepts \mathcal{L} at $\delta_{1}(A)+\mathrm{iu}(A)$
- $\Gamma(A)$ is asymptotic to the vertical line $\left\{z \in \mathbb{C}: \operatorname{Re} z=\delta_{2}(A)\right\}$

Properties of $\Gamma(A)$

- Spectrum of A is contained in $\Gamma_{i n}(A)$.
- Configuration of $\Gamma(A)$ depends on

$$
\Delta=\left(\delta_{1}(A)-\delta_{2}(A)\right)^{2}-4\left(v(A)-\mathrm{u}(A)^{2}\right)
$$

- $\Gamma(A)$ lies in the vertical zone $\left\{z \in \mathbb{C}: \delta_{2}(A) \leq \operatorname{Re} z \leq \delta_{1}(A)\right\}$
- $\Gamma(A)$ is symmetric with respect to the horizontal line

$$
\mathcal{L}=\{z \in \mathbb{C}: \operatorname{Im} z=u(A)\}
$$

- $\Gamma(A)$ intercepts \mathcal{L} at $\delta_{1}(A)+\mathrm{iu}(A)$
- $\Gamma(A)$ is asymptotic to the vertical line $\left\{z \in \mathbb{C}: \operatorname{Re} z=\delta_{2}(A)\right\}$
- $\delta_{1}(A)+\mathrm{iu}(A)$ is a right most point of the numerical range.

See properties of $\Gamma(A)$

The envelope of A

Play the spinning game again: The envelope of A is

$$
\mathcal{E}(A)=\bigcap_{\theta \in[0,2 \pi]} e^{-\mathrm{i} \theta} \Gamma_{i n}\left(e^{\mathrm{i} \theta} A\right)
$$

Theorem [Psarrakos and T.] For any matrix $A \in \mathbb{C}^{n \times n}$,

$$
\sigma(A) \subseteq \mathcal{E}(A) \subseteq F(A)
$$

Proof

$$
\begin{gathered}
\mathcal{H}_{i n}\left(e^{\mathrm{i} \theta} A\right)=\left\{e^{-\mathrm{i} \theta}(s+\mathrm{i} t): s, t \in \mathbb{R} \text { with } s \leq \delta_{1}\left(e^{\mathrm{i} \theta} A\right)\right\}, \\
F(A)=\bigcap_{\theta \in[0,2 \pi]} \mathcal{H}_{\text {in }}\left(e^{\mathrm{i} \theta} A\right) \\
\sigma(A)=e^{-\mathrm{i} \theta} \sigma\left(e^{\mathrm{i} \theta} A\right) \subseteq e^{-\mathrm{i} \theta} \Gamma_{\text {in }}\left(e^{\mathrm{i} \theta} A\right) \subseteq \mathcal{H}_{\text {in }}\left(e^{\mathrm{i} \theta} A\right)
\end{gathered}
$$

Hence

$$
\sigma(A) \subseteq \mathcal{E}(A)=\bigcap_{\theta \in[0,2 \pi]} e^{-\mathrm{i} \theta} \Gamma_{i n}\left(e^{\mathrm{i} \theta} A\right) \subseteq F(A)
$$

Numerical range and Envelope of a Toeplitz matrix

A complex matrix (and a better drawing method)

$$
A=\left[\begin{array}{cccc}
14+\mathrm{i} 19 & -4-\mathrm{i} & -55-\mathrm{i} 13 & -32+\mathrm{i} 13 \\
27+\mathrm{i} 2 & 14-\mathrm{i} 25 & 64 & 72 \\
54+\mathrm{i} & 47-\mathrm{i} 3 & 14+\mathrm{i} 44 & -32-\mathrm{i} 42 \\
76 & 73 & 4-\mathrm{i} 2 & -11+\mathrm{i} 24
\end{array}\right]
$$

Properties of the curve and envelope

- $\mathcal{E}(A)$ is compact (closed subset of $F(A)$), but not necessarily convex or connected.

Properties of the curve and envelope

- $\mathcal{E}(A)$ is compact (closed subset of $F(A)$), but not necessarily convex or connected.
- $\Gamma\left(A^{T}\right)=\Gamma(A)$ and $\mathcal{E}\left(A^{T}\right)=\mathcal{E}(A)$

Properties of the curve and envelope

- $\mathcal{E}(A)$ is compact (closed subset of $F(A)$), but not necessarily convex or connected.
- $\Gamma\left(A^{T}\right)=\Gamma(A)$ and $\mathcal{E}\left(A^{T}\right)=\mathcal{E}(A)$
- $\Gamma\left(A^{*}\right)=\Gamma(\bar{A})=\overline{\Gamma(A)}$

Properties of the curve and envelope

- $\mathcal{E}(A)$ is compact (closed subset of $F(A)$), but not necessarily convex or connected.
- $\Gamma\left(A^{T}\right)=\Gamma(A)$ and $\mathcal{E}\left(A^{T}\right)=\mathcal{E}(A)$
- $\Gamma\left(A^{*}\right)=\Gamma(\bar{A})=\overline{\Gamma(A)}$
- $\mathcal{E}\left(A^{*}\right)=\mathcal{E}(\bar{A})=\overline{\mathcal{E}(A)}$

Properties of the curve and envelope

- $\mathcal{E}(A)$ is compact (closed subset of $F(A)$), but not necessarily convex or connected.
- $\Gamma\left(A^{T}\right)=\Gamma(A)$ and $\mathcal{E}\left(A^{T}\right)=\mathcal{E}(A)$
- $\Gamma\left(A^{*}\right)=\Gamma(\bar{A})=\overline{\Gamma(A)}$
- $\mathcal{E}\left(A^{*}\right)=\mathcal{E}(\bar{A})=\overline{\mathcal{E}(A)}$
- When $A \in \mathbb{R}^{n \times n}$, then $\Gamma(A)$ and $\mathcal{E}(A)$ are symmetric with respect to the real axis.

Properties of the curve and envelope

- $\mathcal{E}(A)$ is compact (closed subset of $F(A)$), but not necessarily convex or connected.
- $\Gamma\left(A^{T}\right)=\Gamma(A)$ and $\mathcal{E}\left(A^{T}\right)=\mathcal{E}(A)$
- $\Gamma\left(A^{*}\right)=\Gamma(\bar{A})=\overline{\Gamma(A)}$
- $\mathcal{E}\left(A^{*}\right)=\mathcal{E}(\bar{A})=\overline{\mathcal{E}(A)}$
- When $A \in \mathbb{R}^{n \times n}$, then $\Gamma(A)$ and $\mathcal{E}(A)$ are symmetric with respect to the real axis.
- For every unitary matrix $U \in \mathbb{C}^{n \times n}, \Gamma\left(U^{*} A U\right)=\Gamma(A)$ and $\mathcal{E}\left(U^{*} A U\right)=\mathcal{E}(A)$

Properties of the curve and envelope

- $\mathcal{E}(A)$ is compact (closed subset of $F(A)$), but not necessarily convex or connected.
- $\Gamma\left(A^{T}\right)=\Gamma(A)$ and $\mathcal{E}\left(A^{T}\right)=\mathcal{E}(A)$
- $\Gamma\left(A^{*}\right)=\Gamma(\bar{A})=\overline{\Gamma(A)}$
- $\mathcal{E}\left(A^{*}\right)=\mathcal{E}(\bar{A})=\overline{\mathcal{E}(A)}$
- When $A \in \mathbb{R}^{n \times n}$, then $\Gamma(A)$ and $\mathcal{E}(A)$ are symmetric with respect to the real axis.
- For every unitary matrix $U \in \mathbb{C}^{n \times n}, \Gamma\left(U^{*} A U\right)=\Gamma(A)$ and $\mathcal{E}\left(U^{*} A U\right)=\mathcal{E}(A)$
- For any $b \in \mathbb{C}, \Gamma\left(A+b l_{n}\right)=\Gamma(A)+b$ and $\mathcal{E}\left(A+b I_{n}\right)=\mathcal{E}(A)+b$

Properties of the curve and envelope

- $\mathcal{E}(A)$ is compact (closed subset of $F(A)$), but not necessarily convex or connected.
- $\Gamma\left(A^{T}\right)=\Gamma(A)$ and $\mathcal{E}\left(A^{T}\right)=\mathcal{E}(A)$
- $\Gamma\left(A^{*}\right)=\Gamma(\bar{A})=\overline{\Gamma(A)}$
- $\mathcal{E}\left(A^{*}\right)=\mathcal{E}(\bar{A})=\overline{\mathcal{E}(A)}$
- When $A \in \mathbb{R}^{n \times n}$, then $\Gamma(A)$ and $\mathcal{E}(A)$ are symmetric with respect to the real axis.
- For every unitary matrix $U \in \mathbb{C}^{n \times n}, \Gamma\left(U^{*} A U\right)=\Gamma(A)$ and $\mathcal{E}\left(U^{*} A U\right)=\mathcal{E}(A)$
- For any $b \in \mathbb{C}, \Gamma\left(A+b l_{n}\right)=\Gamma(A)+b$ and $\mathcal{E}\left(A+b I_{n}\right)=\mathcal{E}(A)+b$
- For every real $r>0$ and $a \in \mathbb{C}, \Gamma(r A)=r \Gamma(A)$ and $\mathcal{E}(a A)=a \mathcal{E}(A)$

Interesting cases/behavior

Proposition Let λ_{0} be a simple eigenvalue of A on the boundary of $F(A)$. If λ_{0} does not lie on a flat portion of $\partial F(A)$, or if it is a non-differentiable point of $\partial F(A)$, then λ_{0} is an isolated point of the envelope $\mathcal{E}(A)$.

Normal matrices

$D_{1}=\operatorname{diag}\{i 3,5,2+\mathrm{i} 3,1-\mathrm{i} 2,-3\}$, $D_{2}=\operatorname{diag}\{i 3, i 3,5,2+i 3,1-\mathrm{i} 2,3\}$ $\mathcal{E}\left(D_{1}\right)$ and $\mathcal{E}\left(D_{2}\right)$ are the shaded regions union the isolated points.

Envelope of a normal matrix

- $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ the simple extremal eigenvalues of normal A (i.e., vertices of $\operatorname{Co}(\sigma(A))$ which must be isolated points of $\mathcal{E}(A))$
- $\mathcal{C}(A):=\mathcal{E}(A) \backslash\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right\}$

Proposition

(i) If all the eigenvalues of A are simple and extremal, then $\mathcal{E}(A)=\sigma(A)$.
(ii) If all the extremal eigenvalues of A are multiple, then $\mathcal{E}(A)=\mathcal{C}(A)=\operatorname{Co}(\sigma(A))=F(A)$.
(iii) If $n=2$ or 3 , then $\mathcal{E}(A)=\sigma(A)$.
(iv) Let $n=4$. If all the eigenvalues of A are extremal, and A does not have two double eigenvalues (for the case of two double eigenvalues, see (ii) above), then $\mathcal{E}(A)=\sigma(A)$.

Envelope of a hermitian matrix

Corollary Let $A \in \mathbb{C}^{n \times n}$ be a hermitian matrix with eigenvalues $\delta_{1}(A) \geq \delta_{2}(A) \geq \cdots \geq \delta_{n}(A)$. Then, $\mathcal{E}(A)=\left\{\delta_{n}(A)\right\} \cup\left[\delta_{n-1}(A), \delta_{2}(A)\right] \cup\left\{\delta_{1}(A)\right\} \subseteq\left[\delta_{n}(A), \delta_{1}(A)\right]=F(A)$

Tridiagonal Toeplitz matrices

$$
T_{n}(c, a, b)=\left[\begin{array}{cccc}
a & b & \cdots & 0 \\
c & a & \ddots & \vdots \\
\vdots & \ddots & \ddots & b \\
0 & \cdots & c & a
\end{array}\right] \in \mathbb{C}^{n \times n}, \quad b c \neq 0 .
$$

- Numerical range of $T_{n}(c, a, b)$ is an elliptical disc.
- Envelope of $T_{n}(c, a, b), b c \neq 0$, is symmetric with respect to a.
- Envelope of $T_{n}(c, a, b), b c \neq 0$, is symmetric with respect to the line

$$
\left\{a+\gamma e^{\mathrm{i} \frac{\arg (b)+\arg (c)}{2}}: \gamma \in \mathbb{R}\right\} .
$$

Envelopes of a tridiagonal Toeplitz matrices

Figure: $\mathcal{E}\left(T_{5}(2+3 \mathrm{i}, 0,-1-\mathrm{i})\right)$ (left) and $\mathcal{E}\left(T_{5}(2+3 \mathrm{i}, 0,0.8-\mathrm{i})\right)$ (right).

Block-shift matrices

$$
A=\left[\begin{array}{ccccc}
0 & A_{1} & 0 & \cdots & 0 \\
0 & 0 & A_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & A_{m} \\
0 & 0 & \cdots & 0 & 0
\end{array}\right] \in \mathbb{C}^{n \times n},
$$

with $m>1$ and square zero blocks along the main diagonal.
Theorem $\mathcal{E}(A)$ coincides with the circular disc $\mathcal{D}(0, R)$ centered at the origin, with radius

$$
R=\left(\delta_{1}^{2}(A)-\left(\sqrt{2 \delta_{1}(A)\left(\delta_{1}(A)-\delta_{2}(A)\right)}-\sqrt{\mathrm{v}(A)}\right)^{2}\right)^{1 / 2}
$$

Envelope of a Block-shift matrix

The numerical range of a block-shift matrix is also a circular disc. The numerical radius of a block-shift matrix A is $r(A)=\delta_{1}(A)$. Thus

$$
r(A)^{2}-R^{2}=\left(\sqrt{2 r(A)\left(r(A)-\delta_{2}(A)\right)}-\sqrt{v(A)}\right)^{2}
$$

2×2 matrices

Theorem Let A be a 2×2 complex matrix. Then $\mathcal{E}(A)=\sigma(A)$.

Similarities

Well-known result of Givens for the numerical range:

$$
\bigcap\left\{F\left(R^{-1} A R\right): R \in \mathbb{C}^{n \times n}, \operatorname{det}(R) \neq 0\right\}=\operatorname{conv}\{\sigma(A)\}
$$

An analogous result holds for the envelope (long proof if A is not diagonalizable):

$$
\bigcap\left\{\mathcal{E}\left(R^{-1} A R\right): R \in \mathbb{C}^{n \times n}, \operatorname{det}(R) \neq 0\right\} \subseteq \mathcal{E}(D(A))
$$

where $D(A)$ is the diagonal matrix whose diagonal entries are the eigenvalues of A.

Connection to k -rank Numerical Range

$$
\begin{aligned}
\Lambda_{k}(A) & =\left\{\mu \in \mathbb{C}: P A P=\mu P \text { for some rank-k orthog. proj. } P \in \mathbb{C}^{n \times n}\right\} \\
& =\left\{\mu \in \mathbb{C}: X^{*} A X=\mu I_{k} \text { for some } X \in \mathbb{C}^{n \times k} \text { such that } X^{*} X=I_{k}\right\}
\end{aligned}
$$

- Connected to the construction of quantum error correction codes for noisy quantum channels...
- Does not necessarily contain all of the eigenvalues of A.

Theorem $\Lambda_{n-1}(A) \subseteq \ldots \subseteq \Lambda_{2}(A) \subseteq \mathcal{E}(A) \subseteq F(A)=\Lambda_{1}(A)$

Effort exerted and Improvement achieved

- To draw the bounding curve $\Gamma(A)$, the additional computational effort required is for $\delta_{2}(A)$ and the quantities $\mathrm{v}(A)$ and $\mathrm{u}(A)$ which depend on y_{1}.

Effort exerted and Improvement achieved

- To draw the bounding curve $\Gamma(A)$, the additional computational effort required is for $\delta_{2}(A)$ and the quantities $\mathrm{v}(A)$ and $\mathrm{u}(A)$ which depend on y_{1}.
- $\mathcal{E}(A)$ can represent a dramatic improvement over $F(A)$ in localizing the eigenvalues of A.

Effort exerted and Improvement achieved

- To draw the bounding curve $\Gamma(A)$, the additional computational effort required is for $\delta_{2}(A)$ and the quantities $v(A)$ and $u(A)$ which depend on y_{1}.
- $\mathcal{E}(A)$ can represent a dramatic improvement over $F(A)$ in localizing the eigenvalues of A.
- The improvement expected depends on the geometry of the eigenvalues.

Effort exerted and Improvement achieved

- To draw the bounding curve $\Gamma(A)$, the additional computational effort required is for $\delta_{2}(A)$ and the quantities $v(A)$ and $u(A)$ which depend on y_{1}.
- $\mathcal{E}(A)$ can represent a dramatic improvement over $F(A)$ in localizing the eigenvalues of A.
- The improvement expected depends on the geometry of the eigenvalues.
- Technique can potentially be generalized to utilize more eigenvalues of $H(A)$.

One last example

The envelope of a Frank matrix (11×11 highly ill-conditioned)

M. Adam and M. Tsatsomeros, An eigenvalue inequality and spectrum localization for complex matrices, Electronic Journal of Linear Algebra, 15 (2006), 239-250.
P. P.J. Psarrakos and M.J. Tsatsomeros, An envelope for the spectrum of a matrix, Central European Journal of Mathematics, 10 (2012), 292-302.
P.J. Psarrakos and M.J. Tsatsomeros, On the spectrum envelope of a matrix, Applied Mathematics and Computation, 244 (2014), 132-141.
A. Aretaki, P.J. Psarrakos and M.J. Tsatsomeros, The envelope of tridiagonal Toeplitz matrices and block shift matrices. To appear in Linear Algebra and Its Applications.

