Numerical range and dilation

Chi-Kwong Li (Ferguson Professor) College of William and Mary, Virginia, (Affiliate member) Institute for Quantum Computing, Waterloo

Chi-Kwong Li, College of William & Mary Numerical range and dilation

• Let B(H) be the algebra of bounded linear operators acting on the Hilbert space H equipped with the inner product (x, y).

イロト イヨト イヨト イヨト

- Let B(H) be the algebra of bounded linear operators acting on the Hilbert space H equipped with the inner product (x, y).
- If H has dimension n, we identify B(H) with M_n , the algebra of $n \times n$ matrices with inner product $(x, y) = y^* x$.

イロト イヨト イヨト イヨト

- Let B(H) be the algebra of bounded linear operators acting on the Hilbert space H equipped with the inner product (x, y).
- If H has dimension n, we identify B(H) with M_n , the algebra of $n \times n$ matrices with inner product $(x, y) = y^* x$.
- The numerical range of $T \in B(H)$ is the set

$$W(T) = \{(Tx, x) : x \in B(H), (x, x) = 1\}.$$

イロト イポト イヨト イヨト

- Let B(H) be the algebra of bounded linear operators acting on the Hilbert space H equipped with the inner product (x, y).
- If H has dimension n, we identify B(H) with M_n , the algebra of $n \times n$ matrices with inner product $(x, y) = y^* x$.
- The numerical range of $T \in B(H)$ is the set

$$W(T) = \{(Tx, x) : x \in B(H), (x, x) = 1\}.$$

イロト 不同 とうほう 不同 とう

• We say that $T \in B(H)$ has a dilation $A \in B(K)$ with $H \subseteq K$ if A has operator matrix $\begin{pmatrix} T & * \\ * & * \end{pmatrix}$ with respect to some orthonormal basis.

- Let B(H) be the algebra of bounded linear operators acting on the Hilbert space H equipped with the inner product (x, y).
- If H has dimension n, we identify B(H) with M_n , the algebra of $n \times n$ matrices with inner product $(x, y) = y^* x$.
- The numerical range of $T \in B(H)$ is the set

$$W(T) = \{(Tx, x) : x \in B(H), (x, x) = 1\}.$$

- We say that $T \in B(H)$ has a dilation $A \in B(K)$ with $H \subseteq K$ if A has operator matrix $\begin{pmatrix} T & * \\ * & * \end{pmatrix}$ with respect to some orthonormal basis.
- $\bullet~$ Alternatively, there is $X:H\rightarrow K$ such that

$$X^*X = I_H$$
 and $X^*AX = T$.

イロト イヨト イヨト イヨト

• For a given $T \in B(H)$ find a dilation with nice properties.

・ロト ・回ト ・ヨト ・ヨト

- For a given $T \in B(H)$ find a dilation with nice properties.
- For example, every contraction $T \in B(H)$ admits a unitary dilation

$$\begin{pmatrix} T & \sqrt{I - TT^*} \\ \sqrt{I - T^*T} & -T^* \end{pmatrix}$$

・ロト ・回ト ・ヨト ・ヨト

- For a given $T \in B(H)$ find a dilation with nice properties.
- For example, every contraction $T \in B(H)$ admits a unitary dilation

• If T has dilation A, i.e.,
$$A = \begin{pmatrix} T & \sqrt{I - TT^*} \\ \sqrt{I - T^*T} & -T^* \end{pmatrix}$$
, then $W(T) \subseteq W(A)$.

イロト イヨト イヨト イヨト

- For a given $T \in B(H)$ find a dilation with nice properties.
- For example, every contraction $T \in B(H)$ admits a unitary dilation

$$\begin{pmatrix} T & \sqrt{I - TT^*} \\ \sqrt{I - T^*T} & -T^* \end{pmatrix}$$

• If T has dilation A, i.e., $A = \begin{pmatrix} T & * \\ * & * \end{pmatrix}$, then $W(T) \subseteq W(A)$.

• If $W(T) \subseteq W(A)$, can we say that A is a dilation of T?

イロト イヨト イヨト イヨト

- For a given $T \in B(H)$ find a dilation with nice properties.
- For example, every contraction $T \in B(H)$ admits a unitary dilation

$$\begin{pmatrix} T & \sqrt{I - TT^*} \\ \sqrt{I - T^*T} & -T^* \end{pmatrix}$$

- If T has dilation A, i.e., $A = \begin{pmatrix} T & * \\ * & * \end{pmatrix}$, then $W(T) \subseteq W(A)$.
- If $W(T) \subseteq W(A)$, can we say that A is a dilation of T?
- Obviously not. The size of A may be too small, say, $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \in M_2$ and $T = 0_3 \in M_3$.

イロン 不同 とうほどう ほどう

- For a given $T \in B(H)$ find a dilation with nice properties.
- For example, every contraction $T \in B(H)$ admits a unitary dilation

$$\begin{pmatrix} T & \sqrt{I - TT^*} \\ \sqrt{I - T^*T} & -T^* \end{pmatrix}$$

- If T has dilation A, i.e., $A = \begin{pmatrix} T & * \\ * & * \end{pmatrix}$, then $W(T) \subseteq W(A)$.
- If $W(T) \subseteq W(A)$, can we say that A is a dilation of T?
- Obviously not. The size of A may be too small, say, $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \in M_2$ and $T = 0_3 \in M_3$.

イロン 不同 とうほどう ほどう

• It is known that
$$W(I \otimes A) = W \begin{pmatrix} A & & \\ & \ddots & \\ & & A \end{pmatrix} = W(A).$$

- For a given $T \in B(H)$ find a dilation with nice properties.
- For example, every contraction $T \in B(H)$ admits a unitary dilation

$$\begin{pmatrix} T & \sqrt{I - TT^*} \\ \sqrt{I - T^*T} & -T^* \end{pmatrix}$$

- If T has dilation A, i.e., $A = \begin{pmatrix} T & * \\ * & * \end{pmatrix}$, then $W(T) \subseteq W(A)$.
- If $W(T) \subseteq W(A)$, can we say that A is a dilation of T?
- Obviously not. The size of A may be too small, say, $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \in M_2$ and $T = 0_3 \in M_3$.

• It is known that
$$W(I \otimes A) = W\begin{pmatrix} A & & \\ & \ddots & \\ & & A \end{pmatrix} = W(A).$$

A better question

Identify "good" matrices or operators A such that $W(T) \subseteq W(A)$ ensures that $T \in B(H)$ has a dilation of the form $I \otimes A$.

Theorem [Ando, 1973; Arveson, 1972]

Let
$$A = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}$$

Chi-Kwong Li, College of William & Mary Numerical range and dilation

イロン 不同 とうほどう ほどう

Э

Theorem [Ando, 1973; Arveson, 1972]

Let
$$A = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}$$
. Then $T \in B(H)$ satisfies
 $W(T) \subseteq W(A) = \{z \in \mathbb{C} : |z| \leq 0\}$

if and only if T has a dilation of the form $I \otimes A$.

1

イロン 不同 とうほどう ほどう

Theorem [Ando, 1973; Arveson, 1972]

Let
$$A = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}$$
. Then $T \in B(H)$ satisfies
 $W(T) \subseteq W(A) = \{z \in \mathbb{C} : |z| \le 1\}$

if and only if T has a dilation of the form $I\otimes A.$

Theorem [Mirman, 1968]

Let A be a normal matrix with eigenvalues a_1, a_2, a_3 .

イロト イヨト イヨト イヨト

Theorem [Ando, 1973; Arveson, 1972]

Let
$$A = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}$$
. Then $T \in B(H)$ satisfies
$$W(T) \subseteq W(A) = \{z \in \mathbb{C} : |z| \le 1\}$$

if and only if T has a dilation of the form $I\otimes A.$

Theorem [Mirman, 1968]

Let A be a normal matrix with eigenvalues a_1, a_2, a_3 . Then $T \in B(H)$ satisfies

$$W(T) \subseteq W(A) = \operatorname{conv} \{a_1, a_2, a_3\}$$

if and only if T has a dilation of the form $I\otimes A.$

Let $A \in M_2$ so that W(A) is the elliptical disk with the eigenvalues a_1, a_2 as foci and minor axis of length $\sqrt{\operatorname{tr} A^*A - |a_1|^2 - |a_2|^2}$.

イロン 不同 とうほどう ほどう

Let $A \in M_2$ so that W(A) is the elliptical disk with the eigenvalues a_1, a_2 as foci and minor axis of length $\sqrt{\operatorname{tr} A^* A - |a_1|^2 - |a_2|^2}$. Then $T \in B(H)$ satisfies $W(T) \subseteq W(A)$ if and only if T has a dilation of the

form $I \otimes A$.

イロト イヨト イヨト イヨト

Let $A \in M_2$ so that W(A) is the elliptical disk with the eigenvalues a_1, a_2 as foci and minor axis of length $\sqrt{\operatorname{tr} A^* A - |a_1|^2 - |a_2|^2}$. Then $T \in B(H)$ satisfies $W(T) \subseteq W(A)$ if and only if T has a dilation of the form $I \otimes A$.

Theorem [Choi & Li, 2001]

Let $A\in M_3$ have a reducing eigenvalue so that A is unitarily similar to $[\alpha]\oplus A_1$ with $A_1\in M_2$,

イロト 不同 とうほう 不同 とう

Let $A \in M_2$ so that W(A) is the elliptical disk with the eigenvalues a_1, a_2 as foci and minor axis of length $\sqrt{\operatorname{tr} A^* A - |a_1|^2 - |a_2|^2}$. Then $T \in B(H)$ satisfies $W(T) \subseteq W(A)$ if and only if T has a dilation of the form $I \otimes A$.

Theorem [Choi & Li, 2001]

Let $A \in M_3$ have a reducing eigenvalue so that A is unitarily similar to $[\alpha] \oplus A_1$ with $A_1 \in M_2$, and hence W(A) is the convex hull of α and the elliptical disk $W(A_1)$.

イロト 不同 とうほう 不同 とう

Let $A \in M_2$ so that W(A) is the elliptical disk with the eigenvalues a_1, a_2 as foci and minor axis of length $\sqrt{\operatorname{tr} A^* A - |a_1|^2 - |a_2|^2}$. Then $T \in B(H)$ satisfies $W(T) \subseteq W(A)$ if and only if T has a dilation of the

form $I \otimes A$.

Theorem [Choi & Li, 2001]

Let $A \in M_3$ have a reducing eigenvalue so that A is unitarily similar to $[\alpha] \oplus A_1$ with $A_1 \in M_2$, and hence W(A) is the convex hull of α and the elliptical disk $W(A_1)$.

Then $T \in B(H)$ satisfies $W(T) \subseteq W(A)$ if and only if T has a dilation of the form $I \otimes A$.

• The result may fail for general $A \in M_3$ or normal $A \in M_4$.

▲ロ > ▲圖 > ▲ 臣 > ▲ 臣 > -

• The result may fail for general $A \in M_3$ or normal $A \in M_4$.

• Let
$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
 and $T = \begin{pmatrix} 0 & \sqrt{2} \\ 0 & 0 \end{pmatrix}$. Then

▲ロ > ▲圖 > ▲ 臣 > ▲ 臣 > -

• The result may fail for general $A \in M_3$ or normal $A \in M_4$.

• Let
$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
 and $T = \begin{pmatrix} 0 & \sqrt{2} \\ 0 & 0 \end{pmatrix}$. Then
$$W(A) = W(T) = \{\mu \in \mathbb{C} : |\mu| \le 1/\sqrt{2}\}.$$

▲ロ > ▲圖 > ▲ 臣 > ▲ 臣 > -

• The result may fail for general $A \in M_3$ or normal $A \in M_4$.

• Let
$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
 and $T = \begin{pmatrix} 0 & \sqrt{2} \\ 0 & 0 \end{pmatrix}$. Then
$$W(A) = W(T) = \{ \mu \in \mathbb{C} : |\mu| \le 1/\sqrt{2} \}.$$

But $||T|| = \sqrt{2} > 1 = ||A||$ so that T has no dilation of the form $I \otimes A$.

イロト イヨト イヨト イヨト

• The result may fail for general $A \in M_3$ or normal $A \in M_4$.

• Let
$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
 and $T = \begin{pmatrix} 0 & \sqrt{2} \\ 0 & 0 \end{pmatrix}$. Then
$$W(A) = W(T) = \{ \mu \in \mathbb{C} : |\mu| \le 1/\sqrt{2} \}.$$

But $||T|| = \sqrt{2} > 1 = ||A||$ so that T has no dilation of the form $I \otimes A$.

イロト イヨト イヨト イヨト

• Let
$$A = \operatorname{diag}(1, i, -1, -i)$$
 and $T = \begin{pmatrix} 0 & \sqrt{2} \\ 0 & 0 \end{pmatrix}$. Then

• The result may fail for general $A \in M_3$ or normal $A \in M_4$.

• Let
$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
 and $T = \begin{pmatrix} 0 & \sqrt{2} \\ 0 & 0 \end{pmatrix}$. Then
$$W(A) = W(T) = \{ \mu \in \mathbb{C} : |\mu| \le 1/\sqrt{2} \}.$$

But $||T|| = \sqrt{2} > 1 = ||A||$ so that T has no dilation of the form $I \otimes A$.

• Let $A = \operatorname{diag}(1, i, -1, -i)$ and $T = \begin{pmatrix} 0 & \sqrt{2} \\ 0 & 0 \end{pmatrix}$. Then

 $W(T) = \{ \mu \in \mathbb{C} : |\mu| \le 1/\sqrt{2} \} \subseteq \operatorname{conv} \{ 1, i, -1, -i \} = W(A).$

イロン 不同 とうほどう ほどう

• The result may fail for general $A \in M_3$ or normal $A \in M_4$.

• Let
$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
 and $T = \begin{pmatrix} 0 & \sqrt{2} \\ 0 & 0 \end{pmatrix}$. Then
$$W(A) = W(T) = \{ \mu \in \mathbb{C} : |\mu| \le 1/\sqrt{2} \}.$$

But $||T|| = \sqrt{2} > 1 = ||A||$ so that T has no dilation of the form $I \otimes A$.

• Let $A = \operatorname{diag}(1, i, -1, -i)$ and $T = \begin{pmatrix} 0 & \sqrt{2} \\ 0 & 0 \end{pmatrix}$. Then

$$W(T) = \{ \mu \in \mathbb{C} : |\mu| \le 1/\sqrt{2} \} \subseteq \operatorname{conv} \{ 1, i, -1, -i \} = W(A).$$

But $||T|| = \sqrt{2} > 1 = ||A||$ so that T has no dilation of the form $I \otimes A$.

イロト イロト イヨト イヨト 三日

The proof of [Choi & Li, 2001] depends on the following result and the duality techniques in completely positive linear maps.

 $\langle \Box \rangle \langle \Box \rangle$

→ E → < E →</p>

The proof of [Choi & Li, 2001] depends on the following result and the duality techniques in completely positive linear maps.

イロト イポト イヨト イヨト

The proof of [Choi & Li, 2001] depends on the following result and the duality techniques in completely positive linear maps.

The result led to the confirmation of a conjecture of Halmos in 1964.

イロト イポト イヨト イヨト

The proof of [Choi & Li, 2001] depends on the following result and the duality techniques in completely positive linear maps.

Theorem Suppose $T \in B(H)$ is a contraction with $W(T) \subseteq S = \{\mu : |\mu| \le 1, \mu + \overline{\mu} \le r\}.$ Then T has a unitary $A \in B(H \oplus H)$ with $W(A) \subseteq S.$

The result led to the confirmation of a conjecture of Halmos in 1964.

Corollary

Let $T \in B(H)$ be a contraction. Then

 $\overline{W(T)} = \cap \{ \overline{W(U)} : U \in B(H \oplus H) \text{ is a unitary dilation of } T \}.$

イロト イヨト イヨト イヨト

• Let $T_1, \ldots, T_k \in B(H)$ be self-adjoint operators. Define their joint numerical range by

 $W(T_1,\ldots,T_k) = \{((T_1x,x)\ldots,(T_kx,x)) : x \in H, (x,x) = 1\}.$

イロト 人間 トイヨト イヨト

• Let $T_1, \ldots, T_k \in B(H)$ be self-adjoint operators. Define their joint numerical range by

$$W(T_1,\ldots,T_k) = \{((T_1x,x)\ldots,(T_kx,x)) : x \in H, (x,x) = 1\}.$$

Note that $W(T_1 + iT_2) = W(T_1, T_2)$ if one identifies \mathbb{C} with \mathbb{R}^2 .

イロト 人間 トイヨト イヨト

E

• Let $T_1, \ldots, T_k \in B(H)$ be self-adjoint operators. Define their joint numerical range by

$$W(T_1,\ldots,T_k) = \{((T_1x,x)\ldots,(T_kx,x)) : x \in H, (x,x) = 1\}.$$

Note that $W(T_1 + iT_2) = W(T_1, T_2)$ if one identifies \mathbb{C} with \mathbb{R}^2 .

• It may not be convex if $k \ge 4$. It is always convex if k = 3 & dim $H \ge 3$.

イロト イポト イヨト イヨト

• Let $T_1, \ldots, T_k \in B(H)$ be self-adjoint operators. Define their joint numerical range by

$$W(T_1,\ldots,T_k) = \{((T_1x,x)\ldots,(T_kx,x)) : x \in H, (x,x) = 1\}.$$

Note that $W(T_1 + iT_2) = W(T_1, T_2)$ if one identifies \mathbb{C} with \mathbb{R}^2 .

- It may not be convex if $k \ge 4$. It is always convex if k = 3 & dim $H \ge 3$.
- Suppose $W(T_1, T_2, T_3)$ has no interior and lies inside the convex hull of

$$v_1 = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}, v_2 = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}, v_3 = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}, v_4 = \begin{pmatrix} d_1 \\ d_2 \\ d_3 \end{pmatrix}.$$

イロト イポト イヨト イヨト

• Let $T_1, \ldots, T_k \in B(H)$ be self-adjoint operators. Define their joint numerical range by

$$W(T_1, \ldots, T_k) = \{ ((T_1x, x) \ldots, (T_kx, x)) : x \in H, (x, x) = 1 \}.$$

Note that $W(T_1 + iT_2) = W(T_1, T_2)$ if one identifies \mathbb{C} with \mathbb{R}^2 .

- It may not be convex if $k \ge 4$. It is always convex if k = 3 & dim $H \ge 3$.
- Suppose $W(T_1, T_2, T_3)$ has no interior and lies inside the convex hull of

$$v_1 = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}, v_2 = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}, v_3 = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}, v_4 = \begin{pmatrix} d_1 \\ d_2 \\ d_3 \end{pmatrix}.$$

イロト イボト イヨト イヨト

Then (T_1, T_2, T_3) has a joint dilation (D_1, D_2, D_3) with

$$D_j = I \otimes \operatorname{diag}(a_j, b_j, c_j, d_j)$$
 for $j = 1, 2, 3$.

• Let $T_1, \ldots, T_k \in B(H)$ be self-adjoint operators. Define their joint numerical range by

$$W(T_1, \ldots, T_k) = \{ ((T_1x, x) \ldots, (T_kx, x)) : x \in H, (x, x) = 1 \}.$$

Note that $W(T_1 + iT_2) = W(T_1, T_2)$ if one identifies \mathbb{C} with \mathbb{R}^2 .

- It may not be convex if $k \ge 4$. It is always convex if k = 3 & dim $H \ge 3$.
- Suppose $W(T_1, T_2, T_3)$ has no interior and lies inside the convex hull of

$$v_1 = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}, v_2 = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}, v_3 = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}, v_4 = \begin{pmatrix} d_1 \\ d_2 \\ d_3 \end{pmatrix}.$$

Then (T_1, T_2, T_3) has a joint dilation (D_1, D_2, D_3) with

$$D_j = I \otimes \operatorname{diag}(a_j, b_j, c_j, d_j)$$
 for $j = 1, 2, 3$.

• That is, there is a unitary U such that

$$U^*D_jU = \begin{pmatrix} T_j & * \\ * & * \end{pmatrix}$$
 for $j = 1, 2, 3$.

イロト イボト イヨト イヨト

• Let $T_1, \ldots, T_k \in B(H)$ be self-adjoint operators. Define their joint numerical range by

$$W(T_1,\ldots,T_k) = \{((T_1x,x)\ldots,(T_kx,x)) : x \in H, (x,x) = 1\}.$$

Note that $W(T_1 + iT_2) = W(T_1, T_2)$ if one identifies \mathbb{C} with \mathbb{R}^2 .

- It may not be convex if $k \ge 4$. It is always convex if k = 3 & dim $H \ge 3$.
- Suppose $W(T_1, T_2, T_3)$ has no interior and lies inside the convex hull of

$$v_1 = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}, v_2 = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}, v_3 = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}, v_4 = \begin{pmatrix} d_1 \\ d_2 \\ d_3 \end{pmatrix}.$$

Then (T_1, T_2, T_3) has a joint dilation (D_1, D_2, D_3) with

$$D_j = I \otimes \operatorname{diag}(a_j, b_j, c_j, d_j)$$
 for $j = 1, 2, 3$.

• That is, there is a unitary U such that

$$U^*D_jU = \begin{pmatrix} T_j & * \\ * & * \end{pmatrix}$$
 for $j = 1, 2, 3$.

• Note that one can choose any $v_1, v_2, v_3, v_4 \in \mathbb{R}^3$ as long as

 $W(T_1, T_2, T_3) \subseteq \operatorname{conv} \{v_1, v_2, v_3, v_4\}.$

Theorem [Binding, Farenick, Li, 1995]

Let $T_1, \ldots, T_m \in B(H)$ be self-adjoint such that $W(T_1, \ldots, T_m)$ has

non-empty interior in \mathbb{R}^m .

Theorem [Binding, Farenick, Li, 1995]

Let $T_1, \ldots, T_m \in B(H)$ be self-adjoint such that $W(T_1, \ldots, T_m)$ has non-empty interior in \mathbb{R}^m . That is, $\{I, T_1, \ldots, T_m\}$ is linearly independent.

Theorem [Binding, Farenick, Li, 1995]

Let $T_1, \ldots, T_m \in B(H)$ be self-adjoint such that $W(T_1, \ldots, T_m)$ has non-empty interior in \mathbb{R}^m . That is, $\{I, T_1, \ldots, T_m\}$ is linearly independent.

Suppose $S\subseteq \mathbb{R}^m$ is a simplex with vertices

$$v_1 = \begin{pmatrix} v_{11} \\ \vdots \\ v_{1m} \end{pmatrix}, \cdots, v_{m+1} = \begin{pmatrix} v_{m+1,1} \\ \vdots \\ v_{m+1,m} \end{pmatrix} \in \mathbb{R}^m.$$

Theorem [Binding, Farenick, Li, 1995]

Let $T_1, \ldots, T_m \in B(H)$ be self-adjoint such that $W(T_1, \ldots, T_m)$ has non-empty interior in \mathbb{R}^m . That is, $\{I, T_1, \ldots, T_m\}$ is linearly independent.

Suppose $S\subseteq \mathbb{R}^m$ is a simplex with vertices

$$v_1 = \begin{pmatrix} v_{11} \\ \vdots \\ v_{1m} \end{pmatrix}, \cdots, v_{m+1} = \begin{pmatrix} v_{m+1,1} \\ \vdots \\ v_{m+1,m} \end{pmatrix} \in \mathbb{R}^m.$$

Then $W(T_1, \ldots, T_m) \subseteq S$ if and only if

Theorem [Binding, Farenick, Li, 1995]

Let $T_1, \ldots, T_m \in B(H)$ be self-adjoint such that $W(T_1, \ldots, T_m)$ has non-empty interior in \mathbb{R}^m . That is, $\{I, T_1, \ldots, T_m\}$ is linearly independent.

Suppose $S \subseteq \mathbb{R}^m$ is a simplex with vertices

$$v_1 = \begin{pmatrix} v_{11} \\ \vdots \\ v_{1m} \end{pmatrix}, \cdots, v_{m+1} = \begin{pmatrix} v_{m+1,1} \\ \vdots \\ v_{m+1,m} \end{pmatrix} \in \mathbb{R}^m.$$

Then $W(T_1,\ldots,T_m)\subseteq S$ if and only if T_1,\ldots,T_m has a joint dilation to the diagonal operators

$$I_N \otimes A_j$$
 with $A_j = \begin{pmatrix} v_{1j} & & \\ & \ddots & \\ & & v_{m+1,j} \end{pmatrix} \in M_{m+1}, \quad j = 1, \dots, m.$

Theorem [Binding, Farenick, Li, 1995]

Let $T_1, \ldots, T_m \in B(H)$ be self-adjoint such that $W(T_1, \ldots, T_m)$ has non-empty interior in \mathbb{R}^m . That is, $\{I, T_1, \ldots, T_m\}$ is linearly independent.

Suppose $S\subseteq \mathbb{R}^m$ is a simplex with vertices

$$v_1 = \begin{pmatrix} v_{11} \\ \vdots \\ v_{1m} \end{pmatrix}, \cdots, v_{m+1} = \begin{pmatrix} v_{m+1,1} \\ \vdots \\ v_{m+1,m} \end{pmatrix} \in \mathbb{R}^m.$$

Then $W(T_1,\ldots,T_m)\subseteq S$ if and only if T_1,\ldots,T_m has a joint dilation to the diagonal operators

$$I_N \otimes A_j$$
 with $A_j = \begin{pmatrix} v_{1j} & & \\ & \ddots & \\ & & v_{m+1,j} \end{pmatrix} \in M_{m+1}, \quad j = 1, \dots, m.$

That is, there is a unitary \boldsymbol{U} such that

$$U^*(I_N \otimes A_j)U = \begin{pmatrix} T_j & * \\ * & * \end{pmatrix}, \quad j = 1, \dots, m.$$

Let $T_1, \ldots, T_m \in B(H)$ and $A_1, \ldots, A_m \in M_n$ be self-adjoint operators.

Chi-Kwong Li, College of William & Mary Numerical range and dilation

イロト 人間 トイヨト イヨト

Let $T_1,\ldots,T_m\in B(H)$ and $A_1,\ldots,A_m\in M_n$ be self-adjoint operators. Consider the map

$$\phi(\mu_0 I + \mu_1 A_1 + \dots + \mu_m A_m) = \mu_0 I + \mu_1 T_1 + \dots + \mu_m T_m$$

on span $\{I, A_1, \ldots, A_m\}$.

イロト イヨト イヨト イヨト

Let $T_1,\ldots,T_m\in B(H)$ and $A_1,\ldots A_m\in M_n$ be self-adjoint operators. Consider the map

$$\phi(\mu_0 I + \mu_1 A_1 + \dots + \mu_m A_m) = \mu_0 I + \mu_1 T_1 + \dots + \mu_m T_m$$

on span $\{I, A_1, \ldots, A_m\}$.

• The map ϕ is a positive linear map if and only if

 $W(T_1,\ldots,T_m)\subseteq \operatorname{conv} W(A_1,\ldots,A_m).$

イロト 人間 トイヨト イヨト

Let $T_1, \ldots, T_m \in B(H)$ and $A_1, \ldots, A_m \in M_n$ be self-adjoint operators. Consider the map

$$\phi(\mu_0 I + \mu_1 A_1 + \dots + \mu_m A_m) = \mu_0 I + \mu_1 T_1 + \dots + \mu_m T_m$$

on span $\{I, A_1, \ldots, A_m\}$.

• The map ϕ is a positive linear map if and only if

 $W(T_1,\ldots,T_m) \subseteq \operatorname{conv} W(A_1,\ldots,A_m).$

イロン 不同 とうほどう ほどう

• The map ϕ is completely positive (linear) map if and only if

 (T_1,\ldots,T_m) has a joint dilation $(I\otimes A_1,\ldots,I\otimes A_m)$.

• Mathematically, quantum states are density matrices in M_n , i.e., positive semidefinite matrices with trace one.

A D > A D >

< 注 → < 注 →

- Mathematically, quantum states are density matrices in M_n , i.e., positive semidefinite matrices with trace one.
- (Choi, 1975) Quantum channels/operations are trace preserving completely positive linear maps $\Phi: M_n \to M_m$ admitting the operator sum representation

$$\Phi(X) = \sum_{j=1}^{r} F_j X F_j^* \text{ for some } F_1, \dots, F_r \text{ satisfying } \sum_{j=1}^{r} F_j^* F_j = I_n.$$

イロト イポト イヨト イヨト

- Mathematically, quantum states are density matrices in M_n , i.e., positive semidefinite matrices with trace one.
- (Choi, 1975) Quantum channels/operations are trace preserving completely positive linear maps $\Phi: M_n \to M_m$ admitting the operator sum representation

$$\Phi(X) = \sum_{j=1}^{r} F_j X F_j^* \text{ for some } F_1, \dots, F_r \text{ satisfying } \sum_{j=1}^{r} F_j^* F_j = I_n.$$

 $\bullet~$ The dual map Φ^* of Φ is the unital completely positive maps

$$\Phi^*(Y) = \sum_{j=1}^r F_j^* Y F_j.$$

イロト イポト イヨト イヨト

- Mathematically, quantum states are density matrices in M_n , i.e., positive semidefinite matrices with trace one.
- (Choi, 1975) Quantum channels/operations are trace preserving completely positive linear maps $\Phi: M_n \to M_m$ admitting the operator sum representation

$$\Phi(X) = \sum_{j=1}^{r} F_j X F_j^* \text{ for some } F_1, \dots, F_r \text{ satisfying } \sum_{j=1}^{r} F_j^* F_j = I_n.$$

 $\bullet~$ The dual map Φ^* of Φ is the unital completely positive maps

$$\Phi^*(Y) = \sum_{j=1}^r F_j^* Y F_j.$$

• Our study is related to the study of quantum channels, whose dual map has some special properties.

イロト イボト イヨト イヨト

- Mathematically, quantum states are density matrices in M_n , i.e., positive semidefinite matrices with trace one.
- (Choi, 1975) Quantum channels/operations are trace preserving completely positive linear maps $\Phi: M_n \to M_m$ admitting the operator sum representation

$$\Phi(X) = \sum_{j=1}^{r} F_j X F_j^* \text{ for some } F_1, \dots, F_r \text{ satisfying } \sum_{j=1}^{r} F_j^* F_j = I_n.$$

 $\bullet~$ The dual map Φ^* of Φ is the unital completely positive maps

$$\Phi^*(Y) = \sum_{j=1}^r F_j^* Y F_j.$$

- Our study is related to the study of quantum channels, whose dual map has some special properties.
- It also allow us to develop techniques in construction unital completely positive maps with some desired properties.

イロト イボト イラト イラト

 A direct (constructive) proof is given for the (ellipse-point) result that Let A ∈ M₂ or A = [α] ⊕ A₂ with A₂ ∈ M₂. If W(T) ⊆ W(A), T has a dilation of the form I ⊗ A.

- A direct (constructive) proof is given for the (ellipse-point) result that Let A ∈ M₂ or A = [α] ⊕ A₂ with A₂ ∈ M₂. If W(T) ⊆ W(A), T has a dilation of the form I ⊗ A.
- Suppose $A \in M_3$ has no reducing eigenvalues, and if A is not unitarily similar to A^t . Then for $T = A^t$ we have

 $W(T) \subseteq W(A)$ and T has no dilation of the form $I \otimes A$.

- 4 回 ト 4 ヨ ト 4 ヨ ト

- A direct (constructive) proof is given for the (ellipse-point) result that Let A ∈ M₂ or A = [α] ⊕ A₂ with A₂ ∈ M₂. If W(T) ⊆ W(A), T has a dilation of the form I ⊗ A.
- Suppose $A \in M_3$ has no reducing eigenvalues, and if A is not unitarily similar to A^t . Then for $T = A^t$ we have

 $W(T) \subseteq W(A)$ and T has no dilation of the form $I \otimes A$.

• There is $A = A^t \in M_3$ and $T \in M_2$ such that the map

$$\Phi(aI + bA + cA^*) = aI + bT + cT^*$$

on span $\{I, A, A^*\}$ is positive and not completely positive (so that it is not co-positive).

・ロト ・日ト ・ヨト ・ヨト

- A direct (constructive) proof is given for the (ellipse-point) result that Let A ∈ M₂ or A = [α] ⊕ A₂ with A₂ ∈ M₂. If W(T) ⊆ W(A), T has a dilation of the form I ⊗ A.
- Suppose $A \in M_3$ has no reducing eigenvalues, and if A is not unitarily similar to A^t . Then for $T = A^t$ we have

 $W(T) \subseteq W(A)$ and T has no dilation of the form $I \otimes A$.

• There is $A = A^t \in M_3$ and $T \in M_2$ such that the map

$$\Phi(aI + bA + cA^*) = aI + bT + cT^*$$

on span $\{I, A, A^*\}$ is positive and not completely positive (so that it is not co-positive).

イロン スロン スロン スロン

• This is in contrast to the fact that a positive map from M_3 to M_2 is always co-positive.

• Can we use the dilation result on $A \in M_3$ with reducing eigenvalue to deduce the constrained unitary dilation result?

・ロト ・回ト ・ヨト ・ヨト

- Can we use the dilation result on $A \in M_3$ with reducing eigenvalue to deduce the constrained unitary dilation result?
- Conjecture 1. If $A \in M_3$ has no reducing eigenvalue, then there is $T \in B(H)$ such that $W(T) \subseteq W(A)$ and T has no dilation of the form $I \otimes A$.

イロト イポト イヨト イヨト

- Can we use the dilation result on $A \in M_3$ with reducing eigenvalue to deduce the constrained unitary dilation result?
- Conjecture 1. If $A \in M_3$ has no reducing eigenvalue, then there is $T \in B(H)$ such that $W(T) \subseteq W(A)$ and T has no dilation of the form $I \otimes A$.

• Just need to check
$$A = \begin{pmatrix} 0 & 0 & a \\ 1 & 0 & 0 \\ 0 & -a & z \end{pmatrix}$$
 such that $a \ge 0, z \in \mathbb{C}$ and $||A|| = 1$.

イロト イポト イヨト イヨト

- Can we use the dilation result on $A \in M_3$ with reducing eigenvalue to deduce the constrained unitary dilation result?
- Conjecture 1. If $A \in M_3$ has no reducing eigenvalue, then there is $T \in B(H)$ such that $W(T) \subseteq W(A)$ and T has no dilation of the form $I \otimes A$.

• Just need to check
$$A = \begin{pmatrix} 0 & 0 & a \\ 1 & 0 & 0 \\ 0 & -a & z \end{pmatrix}$$
 such that $a \ge 0$, $z \in \mathbb{C}$ and $||A|| = 1$.

Conjecture 1.5 There is T (probably in M_2) such that $W(T) \subseteq W(A)$ but T does not admit a dilation of the form $I \otimes A$.

イロト イヨト イヨト イヨト

- Can we use the dilation result on $A \in M_3$ with reducing eigenvalue to deduce the constrained unitary dilation result?
- Conjecture 1. If $A \in M_3$ has no reducing eigenvalue, then there is $T \in B(H)$ such that $W(T) \subseteq W(A)$ and T has no dilation of the form $I \otimes A$.

• Just need to check
$$A = \begin{pmatrix} 0 & 0 & a \\ 1 & 0 & 0 \\ 0 & -a & z \end{pmatrix}$$
 such that $a \ge 0, z \in \mathbb{C}$ and $||A|| = 1$.

Conjecture 1.5 There is T (probably in M_2) such that $W(T) \subseteq W(A)$ but T does not admit a dilation of the form $I \otimes A$.

• Conjecture 2. If $A \in M_n$ satisfies (†), then $A = A_1 \oplus A_2$ such that $W(A) = W(A_1)$, where $A \in M_2$ or $A \in M_3$ with an reducing eigenvalue.

イロト 人間 トイヨト イヨト

Thank you for your attention! Hope that you will solve our problems!

化压压 化压压

3