Numerical range and dilation

Chi-Kwong Li
(Ferguson Professor) College of William and Mary, Virginia, (Affiliate member) Institute for Quantum Computing, Waterloo

Introduction

Basic notation and definitions

- Let $B(H)$ be the algebra of bounded linear operators acting on the Hilbert space H equipped with the inner product (x, y).

Introduction

Basic notation and definitions

- Let $B(H)$ be the algebra of bounded linear operators acting on the Hilbert space H equipped with the inner product (x, y).
- If H has dimension n, we identify $B(H)$ with M_{n}, the algebra of $n \times n$ matrices with inner product $(x, y)=y^{*} x$.

Introduction

Basic notation and definitions

- Let $B(H)$ be the algebra of bounded linear operators acting on the Hilbert space H equipped with the inner product (x, y).
- If H has dimension n, we identify $B(H)$ with M_{n}, the algebra of $n \times n$ matrices with inner product $(x, y)=y^{*} x$.
- The numerical range of $T \in B(H)$ is the set

$$
W(T)=\{(T x, x): x \in B(H),(x, x)=1\}
$$

Introduction

Basic notation and definitions

- Let $B(H)$ be the algebra of bounded linear operators acting on the Hilbert space H equipped with the inner product (x, y).
- If H has dimension n, we identify $B(H)$ with M_{n}, the algebra of $n \times n$ matrices with inner product $(x, y)=y^{*} x$.
- The numerical range of $T \in B(H)$ is the set

$$
W(T)=\{(T x, x): x \in B(H),(x, x)=1\}
$$

- We say that $T \in B(H)$ has a dilation $A \in B(K)$ with $H \subseteq K$ if A has operator matrix $\left(\begin{array}{ll}T & * \\ * & *\end{array}\right)$ with respect to some orthonormal basis.

Introduction

Basic notation and definitions

- Let $B(H)$ be the algebra of bounded linear operators acting on the Hilbert space H equipped with the inner product (x, y).
- If H has dimension n, we identify $B(H)$ with M_{n}, the algebra of $n \times n$ matrices with inner product $(x, y)=y^{*} x$.
- The numerical range of $T \in B(H)$ is the set

$$
W(T)=\{(T x, x): x \in B(H),(x, x)=1\}
$$

- We say that $T \in B(H)$ has a dilation $A \in B(K)$ with $H \subseteq K$ if A has operator matrix $\left(\begin{array}{cc}T & * \\ * & *\end{array}\right)$ with respect to some orthonormal basis.
- Alternatively, there is $X: H \rightarrow K$ such that

$$
X^{*} X=I_{H} \quad \text { and } \quad X^{*} A X=T
$$

Basic problem

- For a given $T \in B(H)$ find a dilation with nice properties.

Basic problem

- For a given $T \in B(H)$ find a dilation with nice properties.
- For example, every contraction $T \in B(H)$ admits a unitary dilation

$$
\left(\begin{array}{cc}
T & \sqrt{I-T T^{*}} \\
\sqrt{I-T^{*} T} & -T^{*}
\end{array}\right)
$$

Basic problem

- For a given $T \in B(H)$ find a dilation with nice properties.
- For example, every contraction $T \in B(H)$ admits a unitary dilation

$$
\left(\begin{array}{cc}
T & \sqrt{I-T T^{*}} \\
\sqrt{I-T^{*} T} & -T^{*}
\end{array}\right)
$$

- If T has dilation A, i.e., $A=\left(\begin{array}{ll}T & * \\ * & *\end{array}\right)$, then $W(T) \subseteq W(A)$.

Basic problem

- For a given $T \in B(H)$ find a dilation with nice properties.
- For example, every contraction $T \in B(H)$ admits a unitary dilation

$$
\left(\begin{array}{cc}
T & \sqrt{I-T T^{*}} \\
\sqrt{I-T^{*} T} & -T^{*}
\end{array}\right)
$$

- If T has dilation A, i.e., $A=\left(\begin{array}{ll}T & * \\ * & *\end{array}\right)$, then $W(T) \subseteq W(A)$.
- If $W(T) \subseteq W(A)$, can we say that A is a dilation of T ?

Basic problem

- For a given $T \in B(H)$ find a dilation with nice properties.
- For example, every contraction $T \in B(H)$ admits a unitary dilation

$$
\left(\begin{array}{cc}
T & \sqrt{I-T T^{*}} \\
\sqrt{I-T^{*} T} & -T^{*}
\end{array}\right)
$$

- If T has dilation A, i.e., $A=\left(\begin{array}{ll}T & * \\ * & *\end{array}\right)$, then $W(T) \subseteq W(A)$.
- If $W(T) \subseteq W(A)$, can we say that A is a dilation of T ?
- Obviously not. The size of A may be too small, say, $A=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right) \in M_{2}$ and $T=0_{3} \in M_{3}$.

Basic problem

- For a given $T \in B(H)$ find a dilation with nice properties.
- For example, every contraction $T \in B(H)$ admits a unitary dilation

$$
\left(\begin{array}{cc}
T & \sqrt{I-T T^{*}} \\
\sqrt{I-T^{*} T} & -T^{*}
\end{array}\right)
$$

- If T has dilation A, i.e., $A=\left(\begin{array}{ll}T & * \\ * & *\end{array}\right)$, then $W(T) \subseteq W(A)$.
- If $W(T) \subseteq W(A)$, can we say that A is a dilation of T ?
- Obviously not. The size of A may be too small, say, $A=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right) \in M_{2}$ and $T=0_{3} \in M_{3}$.
- It is known that $W(I \otimes A)=W\left(\begin{array}{lll}A & & \\ & \ddots & \\ & & A\end{array}\right)=W(A)$.

Basic problem

- For a given $T \in B(H)$ find a dilation with nice properties.
- For example, every contraction $T \in B(H)$ admits a unitary dilation

$$
\left(\begin{array}{cc}
T & \sqrt{I-T T^{*}} \\
\sqrt{I-T^{*} T} & -T^{*}
\end{array}\right)
$$

- If T has dilation A, i.e., $A=\left(\begin{array}{ll}T & * \\ * & *\end{array}\right)$, then $W(T) \subseteq W(A)$.
- If $W(T) \subseteq W(A)$, can we say that A is a dilation of T ?
- Obviously not. The size of A may be too small, say, $A=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right) \in M_{2}$ and $T=0_{3} \in M_{3}$.
- It is known that $W(I \otimes A)=W\left(\begin{array}{lll}A & & \\ & \ddots & \\ & & A\end{array}\right)=W(A)$.

A better question

Identify "good" matrices or operators A such that
$W(T) \subseteq W(A)$ ensures that $T \in B(H)$ has a dilation of the form $I \otimes A$.

Some Dilation Results

Theorem [Ando, 1973; Arveson, 1972]
Let $A=\left(\begin{array}{ll}0 & 2 \\ 0 & 0\end{array}\right)$.

Some Dilation Results

$$
\begin{aligned}
& \text { Theorem [Ando, 1973; Arveson, 1972] } \\
& \text { Let } A=\left(\begin{array}{ll}
0 & 2 \\
0 & 0
\end{array}\right) . \text { Then } T \in B(H) \text { satisfies } \\
& \qquad W(T) \subseteq W(A)=\{z \in \mathbb{C}:|z| \leq 1\}
\end{aligned}
$$

if and only if T has a dilation of the form $I \otimes A$.

Some Dilation Results

Theorem [Ando, 1973; Arveson, 1972]
Let $A=\left(\begin{array}{ll}0 & 2 \\ 0 & 0\end{array}\right)$. Then $T \in B(H)$ satisfies

$$
W(T) \subseteq W(A)=\{z \in \mathbb{C}:|z| \leq 1\}
$$

if and only if T has a dilation of the form $I \otimes A$.

Theorem [Mirman, 1968]

Let A be a normal matrix with eigenvalues a_{1}, a_{2}, a_{3}.

Some Dilation Results

Theorem [Ando, 1973; Arveson, 1972]
Let $A=\left(\begin{array}{ll}0 & 2 \\ 0 & 0\end{array}\right)$. Then $T \in B(H)$ satisfies

$$
W(T) \subseteq W(A)=\{z \in \mathbb{C}:|z| \leq 1\}
$$

if and only if T has a dilation of the form $I \otimes A$.

Theorem [Mirman, 1968]

Let A be a normal matrix with eigenvalues a_{1}, a_{2}, a_{3}. Then $T \in B(H)$ satisfies

$$
W(T) \subseteq W(A)=\operatorname{conv}\left\{a_{1}, a_{2}, a_{3}\right\}
$$

if and only if T has a dilation of the form $I \otimes A$.

More results

Theorem [Choi \& Li, 2000]

Let $A \in M_{2}$ so that $W(A)$ is the elliptical disk with the eigenvalues a_{1}, a_{2} as foci and minor axis of length $\sqrt{\operatorname{tr} A^{*} A-\left|a_{1}\right|^{2}-\left|a_{2}\right|^{2}}$.

More results

Theorem [Choi \& Li, 2000]

Let $A \in M_{2}$ so that $W(A)$ is the elliptical disk with the eigenvalues a_{1}, a_{2} as foci and minor axis of length $\sqrt{\operatorname{tr} A^{*} A-\left|a_{1}\right|^{2}-\left|a_{2}\right|^{2}}$.
Then $T \in B(H)$ satisfies $W(T) \subseteq W(A)$ if and only if T has a dilation of the form $I \otimes A$.

More results

Theorem [Choi \& Li, 2000]

Let $A \in M_{2}$ so that $W(A)$ is the elliptical disk with the eigenvalues a_{1}, a_{2} as foci and minor axis of length $\sqrt{\operatorname{tr} A^{*} A-\left|a_{1}\right|^{2}-\left|a_{2}\right|^{2}}$.
Then $T \in B(H)$ satisfies $W(T) \subseteq W(A)$ if and only if T has a dilation of the form $I \otimes A$.

Theorem [Choi \& Li, 2001]

Let $A \in M_{3}$ have a reducing eigenvalue so that A is unitarily similar to $[\alpha] \oplus A_{1}$ with $A_{1} \in M_{2}$,

More results

Theorem [Choi \& Li, 2000]

Let $A \in M_{2}$ so that $W(A)$ is the elliptical disk with the eigenvalues a_{1}, a_{2} as foci and minor axis of length $\sqrt{\operatorname{tr} A^{*} A-\left|a_{1}\right|^{2}-\left|a_{2}\right|^{2}}$.
Then $T \in B(H)$ satisfies $W(T) \subseteq W(A)$ if and only if T has a dilation of the form $I \otimes A$.

Theorem [Choi \& Li, 2001]

Let $A \in M_{3}$ have a reducing eigenvalue so that A is unitarily similar to $[\alpha] \oplus A_{1}$ with $A_{1} \in M_{2}$, and hence $W(A)$ is the convex hull of α and the elliptical disk $W\left(A_{1}\right)$.

More results

Theorem [Choi \& Li, 2000]

Let $A \in M_{2}$ so that $W(A)$ is the elliptical disk with the eigenvalues a_{1}, a_{2} as foci and minor axis of length $\sqrt{\operatorname{tr} A^{*} A-\left|a_{1}\right|^{2}-\left|a_{2}\right|^{2}}$.
Then $T \in B(H)$ satisfies $W(T) \subseteq W(A)$ if and only if T has a dilation of the form $I \otimes A$.

Theorem [Choi \& Li, 2001]

Let $A \in M_{3}$ have a reducing eigenvalue so that A is unitarily similar to $[\alpha] \oplus A_{1}$ with $A_{1} \in M_{2}$, and hence $W(A)$ is the convex hull of α and the elliptical disk $W\left(A_{1}\right)$.
Then $T \in B(H)$ satisfies $W(T) \subseteq W(A)$ if and only if T has a dilation of the form $I \otimes A$.

General case

- The result may fail for general $A \in M_{3}$ or normal $A \in M_{4}$.

General case

- The result may fail for general $A \in M_{3}$ or normal $A \in M_{4}$.
- Let $A=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ and $T=\left(\begin{array}{cc}0 & \sqrt{2} \\ 0 & 0\end{array}\right)$. Then

General case

- The result may fail for general $A \in M_{3}$ or normal $A \in M_{4}$.
- Let $A=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ and $T=\left(\begin{array}{cc}0 & \sqrt{2} \\ 0 & 0\end{array}\right)$. Then

$$
W(A)=W(T)=\{\mu \in \mathbb{C}:|\mu| \leq 1 / \sqrt{2}\} .
$$

General case

- The result may fail for general $A \in M_{3}$ or normal $A \in M_{4}$.
- Let $A=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ and $T=\left(\begin{array}{cc}0 & \sqrt{2} \\ 0 & 0\end{array}\right)$. Then

$$
W(A)=W(T)=\{\mu \in \mathbb{C}:|\mu| \leq 1 / \sqrt{2}\} .
$$

But $\|T\|=\sqrt{2}>1=\|A\|$ so that T has no dilation of the form $I \otimes A$.

General case

- The result may fail for general $A \in M_{3}$ or normal $A \in M_{4}$.
- Let $A=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ and $T=\left(\begin{array}{cc}0 & \sqrt{2} \\ 0 & 0\end{array}\right)$. Then

$$
W(A)=W(T)=\{\mu \in \mathbb{C}:|\mu| \leq 1 / \sqrt{2}\} .
$$

But $\|T\|=\sqrt{2}>1=\|A\|$ so that T has no dilation of the form $I \otimes A$.

- Let $A=\operatorname{diag}(1, i,-1,-i)$ and $T=\left(\begin{array}{cc}0 & \sqrt{2} \\ 0 & 0\end{array}\right)$. Then

General case

- The result may fail for general $A \in M_{3}$ or normal $A \in M_{4}$.
- Let $A=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ and $T=\left(\begin{array}{cc}0 & \sqrt{2} \\ 0 & 0\end{array}\right)$. Then

$$
W(A)=W(T)=\{\mu \in \mathbb{C}:|\mu| \leq 1 / \sqrt{2}\} .
$$

But $\|T\|=\sqrt{2}>1=\|A\|$ so that T has no dilation of the form $I \otimes A$.

- Let $A=\operatorname{diag}(1, i,-1,-i)$ and $T=\left(\begin{array}{cc}0 & \sqrt{2} \\ 0 & 0\end{array}\right)$. Then

$$
W(T)=\{\mu \in \mathbb{C}:|\mu| \leq 1 / \sqrt{2}\} \subseteq \operatorname{conv}\{1, i,-1,-i\}=W(A) .
$$

General case

- The result may fail for general $A \in M_{3}$ or normal $A \in M_{4}$.
- Let $A=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ and $T=\left(\begin{array}{cc}0 & \sqrt{2} \\ 0 & 0\end{array}\right)$. Then

$$
W(A)=W(T)=\{\mu \in \mathbb{C}:|\mu| \leq 1 / \sqrt{2}\} .
$$

But $\|T\|=\sqrt{2}>1=\|A\|$ so that T has no dilation of the form $I \otimes A$.

- Let $A=\operatorname{diag}(1, i,-1,-i)$ and $T=\left(\begin{array}{cc}0 & \sqrt{2} \\ 0 & 0\end{array}\right)$. Then

$$
W(T)=\{\mu \in \mathbb{C}:|\mu| \leq 1 / \sqrt{2}\} \subseteq \operatorname{conv}\{1, i,-1,-i\}=W(A) .
$$

But $\|T\|=\sqrt{2}>1=\|A\|$ so that T has no dilation of the form $I \otimes A$.

Constrained dilation

The proof of [Choi \& Li, 2001] depends on the following result and the duality techniques in completely positive linear maps.

Constrained dilation

The proof of [Choi \& Li, 2001] depends on the following result and the duality techniques in completely positive linear maps.

Theorem

Suppose $T \in B(H)$ is a contraction with

$$
W(T) \subseteq S=\{\mu:|\mu| \leq 1, \mu+\bar{\mu} \leq r\}
$$

Then T has a unitary $A \in B(H \oplus H)$ with $W(A) \subseteq S$.

Constrained dilation

The proof of [Choi \& Li, 2001] depends on the following result and the duality techniques in completely positive linear maps.

Theorem

Suppose $T \in B(H)$ is a contraction with

$$
W(T) \subseteq S=\{\mu:|\mu| \leq 1, \mu+\bar{\mu} \leq r\}
$$

Then T has a unitary $A \in B(H \oplus H)$ with $W(A) \subseteq S$.

The result led to the confirmation of a conjecture of Halmos in 1964.

Constrained dilation

The proof of [Choi \& Li, 2001] depends on the following result and the duality techniques in completely positive linear maps.

Theorem

Suppose $T \in B(H)$ is a contraction with

$$
W(T) \subseteq S=\{\mu:|\mu| \leq 1, \mu+\bar{\mu} \leq r\}
$$

Then T has a unitary $A \in B(H \oplus H)$ with $W(A) \subseteq S$.

The result led to the confirmation of a conjecture of Halmos in 1964.

Corollary

Let $T \in B(H)$ be a contraction. Then

$$
\overline{W(T)}=\cap\{\overline{W(U)}: U \in B(H \oplus H) \text { is a unitary dilation of } T\}
$$

Extension of the result of Mirman

- Let $T_{1}, \ldots, T_{k} \in B(H)$ be self-adjoint operators. Define their joint numerical range by

$$
W\left(T_{1}, \ldots, T_{k}\right)=\left\{\left(\left(T_{1} x, x\right) \ldots,\left(T_{k} x, x\right)\right): x \in H,(x, x)=1\right\}
$$

Extension of the result of Mirman

- Let $T_{1}, \ldots, T_{k} \in B(H)$ be self-adjoint operators. Define their joint numerical range by

$$
W\left(T_{1}, \ldots, T_{k}\right)=\left\{\left(\left(T_{1} x, x\right) \ldots,\left(T_{k} x, x\right)\right): x \in H,(x, x)=1\right\}
$$

Note that $W\left(T_{1}+i T_{2}\right)=W\left(T_{1}, T_{2}\right)$ if one identifies \mathbb{C} with \mathbb{R}^{2}.

Extension of the result of Mirman

- Let $T_{1}, \ldots, T_{k} \in B(H)$ be self-adjoint operators. Define their joint numerical range by

$$
W\left(T_{1}, \ldots, T_{k}\right)=\left\{\left(\left(T_{1} x, x\right) \ldots,\left(T_{k} x, x\right)\right): x \in H,(x, x)=1\right\}
$$

Note that $W\left(T_{1}+i T_{2}\right)=W\left(T_{1}, T_{2}\right)$ if one identifies \mathbb{C} with \mathbb{R}^{2}.

- It may not be convex if $k \geq 4$. It is always convex if $k=3 \& \operatorname{dim} H \geq 3$.

Extension of the result of Mirman

- Let $T_{1}, \ldots, T_{k} \in B(H)$ be self-adjoint operators. Define their joint numerical range by

$$
W\left(T_{1}, \ldots, T_{k}\right)=\left\{\left(\left(T_{1} x, x\right) \ldots,\left(T_{k} x, x\right)\right): x \in H,(x, x)=1\right\}
$$

Note that $W\left(T_{1}+i T_{2}\right)=W\left(T_{1}, T_{2}\right)$ if one identifies \mathbb{C} with \mathbb{R}^{2}.

- It may not be convex if $k \geq 4$. It is always convex if $k=3 \& \operatorname{dim} H \geq 3$.
- Suppose $W\left(T_{1}, T_{2}, T_{3}\right)$ has no interior and lies inside the convex hull of

$$
v_{1}=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right), v_{2}=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right), v_{3}=\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right), v_{4}=\left(\begin{array}{l}
d_{1} \\
d_{2} \\
d_{3}
\end{array}\right) .
$$

Extension of the result of Mirman

- Let $T_{1}, \ldots, T_{k} \in B(H)$ be self-adjoint operators. Define their joint numerical range by

$$
W\left(T_{1}, \ldots, T_{k}\right)=\left\{\left(\left(T_{1} x, x\right) \ldots,\left(T_{k} x, x\right)\right): x \in H,(x, x)=1\right\}
$$

Note that $W\left(T_{1}+i T_{2}\right)=W\left(T_{1}, T_{2}\right)$ if one identifies \mathbb{C} with \mathbb{R}^{2}.

- It may not be convex if $k \geq 4$. It is always convex if $k=3 \& \operatorname{dim} H \geq 3$.
- Suppose $W\left(T_{1}, T_{2}, T_{3}\right)$ has no interior and lies inside the convex hull of

$$
v_{1}=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right), v_{2}=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right), v_{3}=\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right), v_{4}=\left(\begin{array}{l}
d_{1} \\
d_{2} \\
d_{3}
\end{array}\right) .
$$

Then $\left(T_{1}, T_{2}, T_{3}\right)$ has a joint dilation $\left(D_{1}, D_{2}, D_{3}\right)$ with

$$
D_{j}=I \otimes \operatorname{diag}\left(a_{j}, b_{j}, c_{j}, d_{j}\right) \text { for } j=1,2,3
$$

Extension of the result of Mirman

- Let $T_{1}, \ldots, T_{k} \in B(H)$ be self-adjoint operators. Define their joint numerical range by

$$
W\left(T_{1}, \ldots, T_{k}\right)=\left\{\left(\left(T_{1} x, x\right) \ldots,\left(T_{k} x, x\right)\right): x \in H,(x, x)=1\right\}
$$

Note that $W\left(T_{1}+i T_{2}\right)=W\left(T_{1}, T_{2}\right)$ if one identifies \mathbb{C} with \mathbb{R}^{2}.

- It may not be convex if $k \geq 4$. It is always convex if $k=3 \& \operatorname{dim} H \geq 3$.
- Suppose $W\left(T_{1}, T_{2}, T_{3}\right)$ has no interior and lies inside the convex hull of

$$
v_{1}=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right), v_{2}=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right), v_{3}=\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right), v_{4}=\left(\begin{array}{l}
d_{1} \\
d_{2} \\
d_{3}
\end{array}\right) .
$$

Then $\left(T_{1}, T_{2}, T_{3}\right)$ has a joint dilation $\left(D_{1}, D_{2}, D_{3}\right)$ with

$$
D_{j}=I \otimes \operatorname{diag}\left(a_{j}, b_{j}, c_{j}, d_{j}\right) \text { for } j=1,2,3
$$

- That is, there is a unitary U such that

$$
U^{*} D_{j} U=\left(\begin{array}{cc}
T_{j} & * \\
* & *
\end{array}\right) \text { for } j=1,2,3
$$

- Let $T_{1}, \ldots, T_{k} \in B(H)$ be self-adjoint operators. Define their joint numerical range by

$$
W\left(T_{1}, \ldots, T_{k}\right)=\left\{\left(\left(T_{1} x, x\right) \ldots,\left(T_{k} x, x\right)\right): x \in H,(x, x)=1\right\}
$$

Note that $W\left(T_{1}+i T_{2}\right)=W\left(T_{1}, T_{2}\right)$ if one identifies \mathbb{C} with \mathbb{R}^{2}.

- It may not be convex if $k \geq 4$. It is always convex if $k=3 \& \operatorname{dim} H \geq 3$.
- Suppose $W\left(T_{1}, T_{2}, T_{3}\right)$ has no interior and lies inside the convex hull of

$$
v_{1}=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right), v_{2}=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right), v_{3}=\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right), v_{4}=\left(\begin{array}{l}
d_{1} \\
d_{2} \\
d_{3}
\end{array}\right) .
$$

Then $\left(T_{1}, T_{2}, T_{3}\right)$ has a joint dilation $\left(D_{1}, D_{2}, D_{3}\right)$ with

$$
D_{j}=I \otimes \operatorname{diag}\left(a_{j}, b_{j}, c_{j}, d_{j}\right) \text { for } j=1,2,3
$$

- That is, there is a unitary U such that

$$
U^{*} D_{j} U=\left(\begin{array}{cc}
T_{j} & * \\
* & *
\end{array}\right) \text { for } j=1,2,3
$$

- Note that one can choose any $v_{1}, v_{2}, v_{3}, v_{4} \in \mathbb{R}^{3}$ as long as

$$
W\left(T_{1}, T_{2}, T_{3}\right) \subseteq \operatorname{conv}\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}
$$

Joint dilation

Theorem [Binding,Farenick,Li,1995]

Let $T_{1}, \ldots, T_{m} \in B(H)$ be self-adjoint such that $W\left(T_{1}, \ldots, T_{m}\right)$ has non-empty interior in \mathbb{R}^{m}.

Joint dilation

Theorem [Binding,Farenick,Li,1995]

Let $T_{1}, \ldots, T_{m} \in B(H)$ be self-adjoint such that $W\left(T_{1}, \ldots, T_{m}\right)$ has non-empty interior in \mathbb{R}^{m}. That is, $\left\{I, T_{1}, \ldots, T_{m}\right\}$ is linearly independent.

Joint dilation

Theorem [Binding,Farenick,Li,1995]

Let $T_{1}, \ldots, T_{m} \in B(H)$ be self-adjoint such that $W\left(T_{1}, \ldots, T_{m}\right)$ has non-empty interior in \mathbb{R}^{m}. That is, $\left\{I, T_{1}, \ldots, T_{m}\right\}$ is linearly independent. Suppose $S \subseteq \mathbb{R}^{m}$ is a simplex with vertices

$$
v_{1}=\left(\begin{array}{c}
v_{11} \\
\vdots \\
v_{1 m}
\end{array}\right), \cdots, v_{m+1}=\left(\begin{array}{c}
v_{m+1,1} \\
\vdots \\
v_{m+1, m}
\end{array}\right) \in \mathbb{R}^{m}
$$

Joint dilation

Theorem [Binding,Farenick,Li,1995]

Let $T_{1}, \ldots, T_{m} \in B(H)$ be self-adjoint such that $W\left(T_{1}, \ldots, T_{m}\right)$ has non-empty interior in \mathbb{R}^{m}. That is, $\left\{I, T_{1}, \ldots, T_{m}\right\}$ is linearly independent.
Suppose $S \subseteq \mathbb{R}^{m}$ is a simplex with vertices

$$
v_{1}=\left(\begin{array}{c}
v_{11} \\
\vdots \\
v_{1 m}
\end{array}\right), \cdots, v_{m+1}=\left(\begin{array}{c}
v_{m+1,1} \\
\vdots \\
v_{m+1, m}
\end{array}\right) \in \mathbb{R}^{m} .
$$

Then $W\left(T_{1}, \ldots, T_{m}\right) \subseteq S$ if and only if

Joint dilation

Theorem [Binding,Farenick,Li,1995]

Let $T_{1}, \ldots, T_{m} \in B(H)$ be self-adjoint such that $W\left(T_{1}, \ldots, T_{m}\right)$ has non-empty interior in \mathbb{R}^{m}. That is, $\left\{I, T_{1}, \ldots, T_{m}\right\}$ is linearly independent.
Suppose $S \subseteq \mathbb{R}^{m}$ is a simplex with vertices

$$
v_{1}=\left(\begin{array}{c}
v_{11} \\
\vdots \\
v_{1 m}
\end{array}\right), \cdots, v_{m+1}=\left(\begin{array}{c}
v_{m+1,1} \\
\vdots \\
v_{m+1, m}
\end{array}\right) \in \mathbb{R}^{m} .
$$

Then $W\left(T_{1}, \ldots, T_{m}\right) \subseteq S$ if and only if T_{1}, \ldots, T_{m} has a joint dilation to the diagonal operators

$$
I_{N} \otimes A_{j} \quad \text { with } \quad A_{j}=\left(\begin{array}{ccc}
v_{1 j} & & \\
& \ddots & \\
& & v_{m+1, j}
\end{array}\right) \in M_{m+1}, \quad j=1, \ldots, m .
$$

Joint dilation

Theorem [Binding,Farenick,Li,1995]

Let $T_{1}, \ldots, T_{m} \in B(H)$ be self-adjoint such that $W\left(T_{1}, \ldots, T_{m}\right)$ has non-empty interior in \mathbb{R}^{m}. That is, $\left\{I, T_{1}, \ldots, T_{m}\right\}$ is linearly independent.
Suppose $S \subseteq \mathbb{R}^{m}$ is a simplex with vertices

$$
v_{1}=\left(\begin{array}{c}
v_{11} \\
\vdots \\
v_{1 m}
\end{array}\right), \cdots, v_{m+1}=\left(\begin{array}{c}
v_{m+1,1} \\
\vdots \\
v_{m+1, m}
\end{array}\right) \in \mathbb{R}^{m} .
$$

Then $W\left(T_{1}, \ldots, T_{m}\right) \subseteq S$ if and only if T_{1}, \ldots, T_{m} has a joint dilation to the diagonal operators

$$
I_{N} \otimes A_{j} \quad \text { with } \quad A_{j}=\left(\begin{array}{ccc}
v_{1 j} & & \\
& \ddots & \\
& & v_{m+1, j}
\end{array}\right) \in M_{m+1}, \quad j=1, \ldots, m .
$$

That is, there is a unitary U such that

$$
U^{*}\left(I_{N} \otimes A_{j}\right) U=\left(\begin{array}{cc}
T_{j} & * \\
* & *
\end{array}\right), \quad j=1, \ldots, m .
$$

Positive maps and completely positive maps

Proposition [Choi and Li, 2000]

Let $T_{1}, \ldots, T_{m} \in B(H)$ and $A_{1}, \ldots A_{m} \in M_{n}$ be self-adjoint operators.

Positive maps and completely positive maps

Proposition [Choi and Li, 2000]

Let $T_{1}, \ldots, T_{m} \in B(H)$ and $A_{1}, \ldots A_{m} \in M_{n}$ be self-adjoint operators.
Consider the map

$$
\phi\left(\mu_{0} I+\mu_{1} A_{1}+\cdots+\mu_{m} A_{m}\right)=\mu_{0} I+\mu_{1} T_{1}+\cdots+\mu_{m} T_{m}
$$

on $\operatorname{span}\left\{I, A_{1}, \ldots, A_{m}\right\}$.

Positive maps and completely positive maps

Proposition [Choi and Li, 2000]

Let $T_{1}, \ldots, T_{m} \in B(H)$ and $A_{1}, \ldots A_{m} \in M_{n}$ be self-adjoint operators.
Consider the map

$$
\phi\left(\mu_{0} I+\mu_{1} A_{1}+\cdots+\mu_{m} A_{m}\right)=\mu_{0} I+\mu_{1} T_{1}+\cdots+\mu_{m} T_{m}
$$

on $\operatorname{span}\left\{I, A_{1}, \ldots, A_{m}\right\}$.

- The map ϕ is a positive linear map if and only if

$$
W\left(T_{1}, \ldots, T_{m}\right) \subseteq \operatorname{conv} W\left(A_{1}, \ldots, A_{m}\right)
$$

Positive maps and completely positive maps

Proposition [Choi and Li, 2000]

Let $T_{1}, \ldots, T_{m} \in B(H)$ and $A_{1}, \ldots A_{m} \in M_{n}$ be self-adjoint operators.
Consider the map

$$
\phi\left(\mu_{0} I+\mu_{1} A_{1}+\cdots+\mu_{m} A_{m}\right)=\mu_{0} I+\mu_{1} T_{1}+\cdots+\mu_{m} T_{m}
$$

on $\operatorname{span}\left\{I, A_{1}, \ldots, A_{m}\right\}$.

- The map ϕ is a positive linear map if and only if

$$
W\left(T_{1}, \ldots, T_{m}\right) \subseteq \operatorname{conv} W\left(A_{1}, \ldots, A_{m}\right)
$$

- The map ϕ is completely positive (linear) map if and only if

$$
\left(T_{1}, \ldots, T_{m}\right) \text { has a joint dilation }\left(I \otimes A_{1}, \ldots, I \otimes A_{m}\right)
$$

Connection to quantum mechanics

- Mathematically, quantum states are density matrices in M_{n}, i.e., positive semidefinite matrices with trace one.

Connection to quantum mechanics

- Mathematically, quantum states are density matrices in M_{n}, i.e., positive semidefinite matrices with trace one.
- (Choi, 1975) Quantum channels/operations are trace preserving completely positive linear maps $\Phi: M_{n} \rightarrow M_{m}$ admitting the operator sum representation

$$
\Phi(X)=\sum_{j=1}^{r} F_{j} X F_{j}^{*} \text { for some } F_{1}, \ldots, F_{r} \text { satisfying } \sum_{j=1}^{r} F_{j}^{*} F_{j}=I_{n}
$$

Connection to quantum mechanics

- Mathematically, quantum states are density matrices in M_{n}, i.e., positive semidefinite matrices with trace one.
- (Choi, 1975) Quantum channels/operations are trace preserving completely positive linear maps $\Phi: M_{n} \rightarrow M_{m}$ admitting the operator sum representation

$$
\Phi(X)=\sum_{j=1}^{r} F_{j} X F_{j}^{*} \text { for some } F_{1}, \ldots, F_{r} \text { satisfying } \sum_{j=1}^{r} F_{j}^{*} F_{j}=I_{n}
$$

- The dual map Φ^{*} of Φ is the unital completely positive maps

$$
\Phi^{*}(Y)=\sum_{j=1}^{r} F_{j}^{*} Y F_{j}
$$

Connection to quantum mechanics

- Mathematically, quantum states are density matrices in M_{n}, i.e., positive semidefinite matrices with trace one.
- (Choi, 1975) Quantum channels/operations are trace preserving completely positive linear maps $\Phi: M_{n} \rightarrow M_{m}$ admitting the operator sum representation

$$
\Phi(X)=\sum_{j=1}^{r} F_{j} X F_{j}^{*} \text { for some } F_{1}, \ldots, F_{r} \text { satisfying } \sum_{j=1}^{r} F_{j}^{*} F_{j}=I_{n}
$$

- The dual map Φ^{*} of Φ is the unital completely positive maps

$$
\Phi^{*}(Y)=\sum_{j=1}^{r} F_{j}^{*} Y F_{j}
$$

- Our study is related to the study of quantum channels, whose dual map has some special properties.

Connection to quantum mechanics

- Mathematically, quantum states are density matrices in M_{n}, i.e., positive semidefinite matrices with trace one.
- (Choi, 1975) Quantum channels/operations are trace preserving completely positive linear maps $\Phi: M_{n} \rightarrow M_{m}$ admitting the operator sum representation

$$
\Phi(X)=\sum_{j=1}^{r} F_{j} X F_{j}^{*} \text { for some } F_{1}, \ldots, F_{r} \text { satisfying } \sum_{j=1}^{r} F_{j}^{*} F_{j}=I_{n}
$$

- The dual map Φ^{*} of Φ is the unital completely positive maps

$$
\Phi^{*}(Y)=\sum_{j=1}^{r} F_{j}^{*} Y F_{j}
$$

- Our study is related to the study of quantum channels, whose dual map has some special properties.
- It also allow us to develop techniques in construction unital completely positive maps with some desired properties.

Some recent results [Li \& Poon, 2017]

- A direct (constructive) proof is given for the (ellipse-point) result that

Let $A \in M_{2}$ or $A=[\alpha] \oplus A_{2}$ with $A_{2} \in M_{2}$.
If $W(T) \subseteq W(A), T$ has a dilation of the form $I \otimes A$.

Some recent results [Li \& Poon, 2017]

- A direct (constructive) proof is given for the (ellipse-point) result that

Let $A \in M_{2}$ or $A=[\alpha] \oplus A_{2}$ with $A_{2} \in M_{2}$.
If $W(T) \subseteq W(A), T$ has a dilation of the form $I \otimes A$.

- Suppose $A \in M_{3}$ has no reducing eigenvalues, and if A is not unitarily similar to A^{t}. Then for $T=A^{t}$ we have
$W(T) \subseteq W(A)$ and T has no dilation of the form $I \otimes A$.

Some recent results [Li \& Poon, 2017]

- A direct (constructive) proof is given for the (ellipse-point) result that

Let $A \in M_{2}$ or $A=[\alpha] \oplus A_{2}$ with $A_{2} \in M_{2}$.
If $W(T) \subseteq W(A), T$ has a dilation of the form $I \otimes A$.

- Suppose $A \in M_{3}$ has no reducing eigenvalues, and if A is not unitarily similar to A^{t}. Then for $T=A^{t}$ we have

$$
W(T) \subseteq W(A) \text { and } T \text { has no dilation of the form } I \otimes A
$$

- There is $A=A^{t} \in M_{3}$ and $T \in M_{2}$ such that the map

$$
\Phi\left(a I+b A+c A^{*}\right)=a I+b T+c T^{*}
$$

on span $\left\{I, A, A^{*}\right\}$ is positive and not completely positive (so that it is not co-positive).

Some recent results [Li \& Poon, 2017]

- A direct (constructive) proof is given for the (ellipse-point) result that Let $A \in M_{2}$ or $A=[\alpha] \oplus A_{2}$ with $A_{2} \in M_{2}$. If $W(T) \subseteq W(A), T$ has a dilation of the form $I \otimes A$.
- Suppose $A \in M_{3}$ has no reducing eigenvalues, and if A is not unitarily similar to A^{t}. Then for $T=A^{t}$ we have

$$
W(T) \subseteq W(A) \text { and } T \text { has no dilation of the form } I \otimes A
$$

- There is $A=A^{t} \in M_{3}$ and $T \in M_{2}$ such that the map

$$
\Phi\left(a I+b A+c A^{*}\right)=a I+b T+c T^{*}
$$

on span $\left\{I, A, A^{*}\right\}$ is positive and not completely positive (so that it is not co-positive).

- This is in contrast to the fact that a positive map from M_{3} to M_{2} is always co-positive.

Some questions

- Can we use the dilation result on $A \in M_{3}$ with reducing eigenvalue to deduce the constrained unitary dilation result?

Some questions

- Can we use the dilation result on $A \in M_{3}$ with reducing eigenvalue to deduce the constrained unitary dilation result?
- Conjecture 1. If $A \in M_{3}$ has no reducing eigenvalue, then there is $T \in B(H)$ such that $W(T) \subseteq W(A)$ and T has no dilation of the form $I \otimes A$.

Some questions

- Can we use the dilation result on $A \in M_{3}$ with reducing eigenvalue to deduce the constrained unitary dilation result?
- Conjecture 1. If $A \in M_{3}$ has no reducing eigenvalue, then there is $T \in B(H)$ such that $W(T) \subseteq W(A)$ and T has no dilation of the form $I \otimes A$.
- Just need to check $A=\left(\begin{array}{ccc}0 & 0 & a \\ 1 & 0 & 0 \\ 0 & -a & z\end{array}\right)$ such that $a \geq 0, z \in \mathbb{C}$ and $\|A\|=1$.

Some questions

- Can we use the dilation result on $A \in M_{3}$ with reducing eigenvalue to deduce the constrained unitary dilation result?
- Conjecture 1. If $A \in M_{3}$ has no reducing eigenvalue, then there is $T \in B(H)$ such that $W(T) \subseteq W(A)$ and T has no dilation of the form $I \otimes A$.
- Just need to check $A=\left(\begin{array}{ccc}0 & 0 & a \\ 1 & 0 & 0 \\ 0 & -a & z\end{array}\right)$ such that $a \geq 0, z \in \mathbb{C}$ and $\|A\|=1$.
Conjecture 1.5 There is T (probably in M_{2}) such that $W(T) \subseteq W(A)$ but T does not admit a dilation of the form $I \otimes A$.

Some questions

- Can we use the dilation result on $A \in M_{3}$ with reducing eigenvalue to deduce the constrained unitary dilation result?
- Conjecture 1. If $A \in M_{3}$ has no reducing eigenvalue, then there is $T \in B(H)$ such that $W(T) \subseteq W(A)$ and T has no dilation of the form $I \otimes A$.
- Just need to check $A=\left(\begin{array}{ccc}0 & 0 & a \\ 1 & 0 & 0 \\ 0 & -a & z\end{array}\right)$ such that $a \geq 0, z \in \mathbb{C}$ and $\|A\|=1$.
Conjecture 1.5 There is T (probably in M_{2}) such that $W(T) \subseteq W(A)$ but T does not admit a dilation of the form $I \otimes A$.
- Conjecture 2. If $A \in M_{n}$ satisfies (\dagger), then $A=A_{1} \oplus A_{2}$ such that $W(A)=W\left(A_{1}\right)$, where $A \in M_{2}$ or $A \in M_{3}$ with an reducing eigenvalue.

Thank you for your attention!

Hope that you will solve our problems!

