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Background Motivation

Research Questions

1 How do nonlinear dynamics drive genetic patterns of population
spread?

I Connect ecological concepts with mathematical tools.

2 How does growth/dispersal alter the genetic diversity of an expanding
population?

I Thin-tailed versus fat-tailed dispersal kernels.
I Allee effects.
I Overcompensation.

3 Applications to a biological system?
I Range expansion of mountain pine beetle
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Background Motivation

Adaptive versus neutral genetic diversity1

I Adaptive genetic diversity
I Helps organisms cope with current environmental variability.
I A diverse array of genotypes are especially important in disease

resistance.
I Diversity within populations reduces potentially negative effects of

breeding among close relatives.

I Neutral genetic diversity
I Gene variants do not have any direct effect on fitness.
I Useful for investigating processes as gene flow, migration, or dispersal.

1Holderegger, Rolf, Urs Kamm, and Felix Gugerli. “Adaptive vs. neutral genetic
diversity: implications for landscape genetics." Landscape Ecology 21.6 (2006): 797-807.
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Background Motivation

Ecology concepts

I Founder effect: The establishment of a new population by a few
original founders which carry only a fraction of the total genetic
variation.2

I Range expansions → loss of genetic diversity due to founder effect.

2Mayr, Ernst. Systematics and the origin of species, from the viewpoint of a
zoologist. Harvard University Press, 1942.
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Background Inside dynamics

What are inside dynamics?

I Many mathematical studies focus on
the spread of an entire populations, but
ignore the genetic consequences of the
expansion.

I The term “inside dynamics” refers to
studying the underlying structure of the
population.

I From a mathematical standpoint we
classify the inside dynamics of traveling
wave solutions as pulled or pushed
fronts.
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Background Inside dynamics

Previous work
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Background Inside dynamics

Fundamental Concepts

Definition 1 (Traveling wave solution)
An integrodifference equation is said to have a traveling wave solution
provided that there exists a function, U(x − ct), that satisfies

U(x − c) =
∫ ∞
−∞

k(x − y)g(U(y))U(y) dy

Definition 2 (Asymptotic spreading speed)
The rightward asymptotic spreading speed, c∗, satisfies the following
properties: for any positive ε,

lim
t→∞

sup
x≥t(c∗+ε)

ut(x) = 0 and lim
t→∞

sup
x≤t(c∗−ε)

[K − ut(x)] = 0
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Background Inside dynamics

Pulled and pushed fronts

I Pulled front: A traveling wave solution where the speed of
propagation is determined by the growth rate at the leading edge of
the front.

I There exist traveling wave solutions for c ≥ c∗.3
I Initial conditions with fast decay spread at c∗.

I Convergence to c∗?

I Pushed front: A traveling wave solution where the speed of
propagation is determined by the population growth at intermediates
densities, i.e., behind the front.

I Strong Allee effect, formula for c∗ unknown.

3Weinberger, H. F. “Long-time behavior of a class of biological models." SIAM
journal on mathematical analysis 13.3 (1982): 353-396.
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Background Mathematical Model

System of integrodifference equations

I To analyze the inside dynamics we separate the population into
separate neutral fractions v i

t (x).

I Assuming individuals in each fraction grow and disperse in the same
manner and only differ by position and label. Then,

v i
t+1(x) =

∫ ∞
−∞

k(x − y)︸ ︷︷ ︸
dispersal kernel

g(ut(y))︸ ︷︷ ︸
per capita growth

v i
t (y)︸ ︷︷ ︸

neutral fraction

dy . (1)

I Linear in v i → sum is the equation for the entire population density
→ existence of traveling wave solutions.
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Results Dispersal and growth functions

Dispersal and growth functions
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Figure: Plots of the dispersal kernels and growth functions used in the numerical
simulations.
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Results Thin-tailed kernel & maximal per capita growth at zero

Founder effect: Beverton-Holt

k(x − y)︸ ︷︷ ︸
dispersal kernel

= 1√
2πσ2

e−
(x−y)2

2σ2︸ ︷︷ ︸
Gaussian

and g(ut(y))︸ ︷︷ ︸
per capita growth

= R
1 + R−1

K ut(y)︸ ︷︷ ︸
Beverton-Holt
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Figure: Numerical simulation using the parameter values R = 2.5, K = 1, and
σ2 = 0.002.
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Results Thin-tailed kernel & maximal per capita growth at zero

Founder effect: Ricker
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Figure: Numerical simulation using the parameter values R = 4, K = 1, and
σ2 = 0.002.
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Results Thin-tailed kernel & maximal per capita growth at zero

Thin-tailed kernel with per capita growth maximal at zero

Theorem 3
Let k is thin-tailed and g is maximal at zero. If the initial density v i

0(x) of
neutral fraction i converges to 0 faster than the traveling wave solution U
as x →∞, then, for any A ∈ R, the density of neutral fraction i, v i

t (x),
converges to 0 uniformly as t →∞ in the moving half-line [A + ct,∞).

I Pulled front.
I Theorem applies to functions with overcompensation.
I The neutral fraction at the leading edge dominates as time progresses.
I All other fractions approach zero at the front of the invasion wave.
I If v i

0(x) has compact support then v i
t (x)→ 0 uniformly as t →∞ in

the moving frame.
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Results Strong Allee effect

Strong Allee effect
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Figure: Numerical simulation using the parameter values R = 4,K = 1, δ = 2,
and σ2 = 0.002.
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Results Strong Allee effect

Normal kernel with Allee type growth

Theorem 4
If k ∼ N(µ, σ2) and g has a strong Allee effect, then for any A ∈ R, the
density of neutral fraction i, v i

t (x), converges to a proportion pi [v i
0] of the

total population ,U, uniformly as t →∞ in the moving half-line
[A + ct,∞). Moreover, the proportion pi [v i

0] can be computed explicitly:

pi [v i
0] =

∫∞
−∞ v i

0(x)U(x)e
c−µ
σ2/2

x dx∫∞
−∞ U2(x)e

c−µ
σ2/2

x dx
. (2)

I Pushed front.
I All neutral fractions contribute to the spread at the leading edge.
I Result relies heavily on the fact that k ∼ N(µ, σ2).
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Results Fat-tail dispersal

Fat-tail dispersal kernel
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Figure: Numerical simulation using the parameter values R = 2.5, K = 1, and
α = 0.015.
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Discussion Conclusions & Future work

Discussion

Conclusions
I Thin-tailed dispersal kernels per capita growth maximal at zero →

pulled front solutions.
I Allee effect → pushed front solutions.
I Fat-tailed dispersal → complicated dynamics?

Future work
I Obtain analytic results for Model (1) with a fat-tailed dispersal kernel.
I Analyze the contribution of different neutral fractions by providing a

measure for the genetic diversity in the population.
I Apply Model (1) to the range expansion of mountain pine beetle

across western Canada.

Nathan Marculis (marculis@ualberta.ca) Neutral genetic patterns for expanding populations 17 / 18



Discussion Conclusions & Future work

Discussion

Conclusions
I Thin-tailed dispersal kernels per capita growth maximal at zero →

pulled front solutions.
I Allee effect → pushed front solutions.
I Fat-tailed dispersal → complicated dynamics?

Future work
I Obtain analytic results for Model (1) with a fat-tailed dispersal kernel.
I Analyze the contribution of different neutral fractions by providing a

measure for the genetic diversity in the population.
I Apply Model (1) to the range expansion of mountain pine beetle

across western Canada.

Nathan Marculis (marculis@ualberta.ca) Neutral genetic patterns for expanding populations 17 / 18



Discussion Acknowledgements

Outline

1 Background
Motivation
Inside dynamics
Mathematical Model

2 Results
Dispersal and growth functions
Thin-tailed kernel & maximal per capita growth at zero
Strong Allee effect
Fat-tail dispersal

3 Discussion
Conclusions & Future work
Acknowledgements

Nathan Marculis (marculis@ualberta.ca) Neutral genetic patterns for expanding populations 17 / 18



Discussion Acknowledgements

Acknowledgements

I would like to express my gratitude to
I The organizers
I Mark Lewis
I Roger Lui
I Lewis Research Group
I TRIA-Net
I NSERC

Nathan Marculis (marculis@ualberta.ca) Neutral genetic patterns for expanding populations 18 / 18


	Background
	Motivation
	Inside dynamics
	Mathematical Model

	Results
	Dispersal and growth functions
	Thin-tailed kernel & maximal per capita growth at zero
	Strong Allee effect
	Fat-tail dispersal

	Discussion
	Conclusions & Future work
	Acknowledgements


