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IDEs for movement in “trait space”

Plants & other organisms with indeterminate growth: size is most

important trait.

Size varies continuously: effects of size described by regression models.

Platte thistle, Cirsium

canescens (Rose et al.

2005)

the integral projection model (IPM) in which individu-
als are characterized by a continuous variable x such as
size. The state of the population given by n(x,t), such
that the number of individuals with sizes between a and
b is

R b
a n(x, t)dx. Instead of the matrix M, the IPM has a

projection kernel K(y,x), so that

n(y, tþ1)¼
ZS

s

K(y, x)n(x, t)dx,

where s and S are the minimum and maximum possible
sizes. The integration is the continuous version of
equation 4, adding up all the contributions to size y at
time tþ 1 by individuals of size x at time t. Providing
some technical conditions are met (see Ellner and Rees,
2006, for details), the IPM behaves essentially like a

matrix model, and so the results described above carry
over.

Constructing the projection kernel K(y,x) is
straightforward using the regressions shown in figure
3. For an individual of size x to become size y, it must
(1) grow from x to y, (2) survive, and (3) not flower
(flowering is fatal in monocarpic plants like Platte
thistle). These probabilities are calculated from the
fitted relationships in figures 3A, 3B, and 3C, respec-
tively. The use of regression models to construct the
projection kernel brings some advantages: (1) accepted
statistical approaches can be used for selecting an ap-
propriate regression model; and (2) additional vari-
ables characterizing individuals’ states can be included
by adding explanatory variables rather than having to
select a single best state variable. For example, in some
thistles the probability of flowering depends on both an
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Figure 3. Size-structured demographic rates for Platte thistle,
Cirsium canescens. (A) Growth (as characterized by plant size in
successive years), (B) survival , (C) the probability of flowering, and
(D) seed production all vary continuously with size and can be de-
scribed by simple regression models. (Redrawn from Rose et al.,

2005) In panels B and C, the data were divided into 20 equal-sized
categories, and the plotted points are fractions within each cate-
gory, but the logistic regression models (plotted as curves) were
fitted to the binary values (e.g., flowering or not flowering) for each
individual.
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Growth ∼ size: dynamic model for

changes in individual state.

Can be: nonlinear, non-Gaussian,

size-dependent variance, random year

effects, etc.
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Integral Projection Model (IPM)

n(z, t) = distribution of individual state, z

Transitions z (now) to z′ (next census) described by

K(z′, z) = P (z′, z)︸ ︷︷ ︸
Survival/growth

+ F (z′, z)︸ ︷︷ ︸
Reproduction

n(z′, t+ 1) =

∫
Z

K(z′, z)n(z, t) dz

NOTE: ′ always means “value at next census”

NOTE: trait space Z compact.
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Idaho sagebrush steppe

That’s where the data are: 26 quadrats established 1926-1932 at US

Sheep Expt. Station, mapped most years until 1957 (22 annual transitions)
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Artemisia tripartita (ARTR) Poa secunda (POSE)

Pseudoroegneria
Spicata (PSSP)

Hesperostipa
Comata (HECO)
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Hand-drawn maps...
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...digitized by Peter Adler to GIS shapefiles
Extracting demographic data

 1935 1936

For each plant, we

know:

size

survival

growth

location, size, species of competitors

daily temperature, rainfall, snowfall
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Survival and growth fitted as regression models of individual area, site

covariates (grazed/ungrazed, etc.), and competitive pressure W .

Competitive pressure W = the sum over all neighboring plants of

Size of neighbor

× “competition coeffient” αij

(effect of species-j neighbor on species-i focal plant)

× “competition kernel” (near vs. far neighbors)

(B. Teller et al. 2016, Methods in Ecology and Evolution)
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Demographic variability among individuals

Reproductive skew:

A few parents have many offspring

most parents have few offspring.

Wire-tailed manakin Pipra filicauda (Ryder et al. 2009, Proc. RSL B)
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Artemisia tripartita (ARTR) Poa secunda (POSE)

Pseudoroegneria
Spicata (PSSP)

Hesperostipa
Comata (HECO)

“Canopy” plants are

the lucky few.

MANY seedlings/yr,

FEW become full-size

adult.
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R. Snyder and SPE (Am. Nat. 2016): who becomes one of lucky few

plants, and why?

Survival/growth kernel P is Markov chain for individual paths through

life (add death as absorbing state)

⇒ Many life-cycle properties can be computed!

Var(lifespan|state at birth)= e(2N2 −N)− (eN)2

where N = (I − P )−1, e ≡ 1.

MANY more: download (free?)

and see chapter 3.
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Who becomes one of the lucky few, and why?

1 Compute the conditional transition kernels for the

Lucky and Unlucky.

2 Compare these to ask: when and how do paths

diverge?
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Possible absorbing sets A1, A2, · · ·AM :

- Process conditional on absorbing into Aj is Markov chain

- Easy to compute Prob(absorb into Aj), P (z′, z| absorb into Aj)

Define the “Lucky” absorbing set:

Size at death is ≥ z∗

Maximum size (at any age) is ≥ z∗

Lifetime total # offspring1 ≥ T ∗

Lifetime total # breeding times ≥ T ∗

and so on...

1state z =(size, #kids so far)
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Examples

Dacryidium elatum, tropical tree

Deterministic growth.

Eelke Jongejans et al. (2010),

Journal of Ecology
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Examples

Artemisia ordosica on

Mongolian sand dunes

Variable growth.

S-L Li et al. (2011),

Journal of Ecology
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Examples

Cedrela odorata (Spanish cedar),

tropical tree

Variable growth; differences

among individuals are persistent.

Zuidema et al. (2009): the

“lucky few” are consistently

fast-growing trees.
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Dacrydium elatum: the 1%

Size at death

and LRS are

bimodal
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Dacrydium elatum: Lucky=20cm dbh
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Dacrydium: Enormous

survival differences.

Tiny growth differences

except in seedlings –

where it aids survival.
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Artemisia (Lucky =

40cm)

Same story.
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class 6)

Big growth divergence:

big enough to get

Lucky in one time-step.
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To a large extent, the Lucky are just those who do

not die early.
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What kind of lucky break is most helpful?

Sensitivity of qL = P (die Lucky) to perturbation at age a:

∂qL
∂φ

=
∂aL
∂φ

P a + aLN
∂P

∂φ
P a, N = (I − P )−1.
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Traits vs. luck (R. Snyder & SPE, in prep)

Ecologists want to believe that there is a reason for large differences

in reproductive success.

To what extent can trait differences override luck?

Do these determine who joins the Lucky few, or is it still mostly

luck?

Motivating example (Idaho): how much does it matter if a seedling

germinates in a good spot or a bad spot?

Good = no close conspecifics!

26 / 52



Artemisia: site quality matters

Site quality: W1, competition at first census
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Annual mortality plateau = 0.047/yr

Good site: some chance of

surviving to age 10, large and

fecund.

Poor site: no.
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Partitioning variance in LRS: Trait vs. Luck

R = Lifetime Reproductive Success (LRS)

W1=site quality at birth, Z=size at age 2.

Var(LRS) =

E[s(W1)Var(R
∗|W1, Z)]︸ ︷︷ ︸

1©
+E[s(W1)(1− s(W1))(E(R∗|W1, Z))

2]︸ ︷︷ ︸
2©

+ EW1 [s(W1)
2 VarZ E(R∗|W1, Z)]︸ ︷︷ ︸

3©
+VarW1 [E(R|W1)]︸ ︷︷ ︸

4©

where R∗ = LRS conditional on surviving to age 2.
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Partitioning variance in LRS: Trait vs. Luck

Var(LRS) =

1 Effect of trait variation (site quality)

2 Components of luck

a Do you survive to age 2?

b How big are you, if you survive?

c Variation independent of state at age 2.
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Results: Luck dominates!

Artemisia Pseudoroegneria

Trait: W1 0.2% 0.5%

Luck: survive to 2? 11% 12%

Luck(?): size at 2 0.8% 1.4%

Luck: later variation 88% 86%
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Not just shrubs in Idaho!

Kittiwake Rissa tridactyla
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Not just shrubs in Idaho!

Emmanuele Cam, University of Toulouse III
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The idea of differences in individual quality has been put

forward ...to explain differences in lifetime production

among individuals. (Cam et al. 2004, Oikos)

In kittiwake adults (Cam et al. 2002, American Naturalist)

Survival probability, CV ≈ 0.2 (CV = σ
µ)

Breeding probability, CV ≈ 0.1
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But variation in LRS is still mostly luck!
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Is LRS always dominated by luck? (R.Snyder & SPE)

Two life stages, Juvenile and Adult

Juvenile survival sJ , adult lifetime τ (random),

F offspring/yr on average.

Stable population at trait mean: R0 = 1.

CV = 0.3 ⇒ 3-fold ratio between 95th and 5th

percentiles of a Gaussian trait distribution with

positive mean.
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Trait is offspring/yr (deterministic),CV=0.3
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Trait is adult survival (CV=0.3), constant clutch size
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Trait is survival to adulthood

Trait variation accounts for under 10% of total

variation in LRS, so long as trait CV < 1.
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Trait variation dominates Var(LRS) if survival to

adulthood is high, and trait effectively is adult LRS.

LRS ≈ Lifespan × Mean clutch size.

If one of those is ≈constant, and the other one is the

trait, then trait variation dominates LRS.

Otherwise, so many forking paths through life that

becoming big and fecund is mostly sheer dumb luck.
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Typically we model transitions using densities: transition

probabities are absolutely continuous w.r.t. underlying

measure.

For trait space, not always reasonable:

Deterministic transitions of some trait components

(genotype, breeding value).

Constraints: allocations to growth + reserves = total

energy intake.

Resulting models are very different, very little theory.
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Simplest possible case:

z = (x, y) ∈ Z = X×Y

x has deterministic transitions

x′ = ω(x), ω smooth with smooth inverse α

y has smooth stochastic transitions:

P (y′|x, y) = s(x, y)G(y′|x, y)

n(x′, y′, t+ 1) =

∫
Z
F (x′, y′, x, z)n(x, y, t) dxdy

+ 1ω(X)(x
′)
∣∣α′(x′)∣∣ ∫

Y
G(y′|x′∗, y)s(x′∗, y)n(x′∗, y, t) dy

where x′∗ = α(x′), n ≡ 0 off Z
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Example:

Individuals classified by size y, site quality x ≥ 0 that decreases over time.

x′ = δx, 0 < δ < 1

Growth: y′ ∼ Normal(µ = x+ 0.9y, σ = σg)

Survival: logit s(y) = A+By,B > 0

Number of offspring: b(x, y) = by

x at birth ∼ Normal(µx, σx)

y at birth ∼ Normal(µy, σy)
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Agent-based simulations (to stable distribution)
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Numerical iteration of IPM
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n(x′, y′, t+ 1) = φ(x′;µx, σx)φ(y
′;µy, σy)

∫
Z
byn(x, y, t) dydx

+
1

δ

∫
Y
φ(y′;x′/δ + 0.9y, σg)s(y)n(x

′/δ, y, t) dy

What function space does this “live on”?

Does n stay smooth, or can it develop “shock waves”?

All the basic theory: stable stage distribution,

eigenvalue sensitivity formulas, etc.
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Conclusions

1 IDEs are models for the lives of individuals. We can

extract from them much more information than we

have been.

2 IDEs based on individual-level processes may not have

transition densities. We know very little about such

models.
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Questions?  
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Graduate diversity recruitment weekend, E&EB Cornell and NB&B Cornell

April 21-23, 2007

An event to connect students from under-represented backgrounds with

faculty, before they apply for graduate school.

For college Junior or Seniors, or students who have graduated and are

considering graduate school.

Application at cudiverisityrecruitment.weebly.com

Application deadline December 1, 2016.

Attendees will get $400 for travel, housing/meals for the weekend.
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Even among the lucky few, LOTS of skew

in seedling production. However, sample sizes were

small and quadratic regressions were not a very good fit

(the parameter for the quadratic term had a P value of

0.17 at Duke Forest and 0.23 at Coweeta). We therefore

fit a smoothing spline function to simply illustrate the

trend (Fig. 5A and B). However, it should be noted that

this pattern depends on one or two trees of advanced age

at each site, and a small number of young trees with

established offspring. Seedling production also exhibited

a hump-shaped relationship to annual growth increment

(Fig. 5C and D). As in the case of age, we fitted a

smoothing spline. The quadratic regression was a very

poor fit at Duke Forest (P value for quadratic term ¼
0.6), but marginally significant for Coweeta (R¼�1839
þ 15 131 (inc) �18 249(inc2) [where ‘‘inc’’ stands for

‘‘growth increment’’]; P value for quadratic term ¼

0.058). The spline curve shows an even higher interme-

diate peak than the quadratic. Because there was no

relationship between age and growth increment, this

may be driven by a trade-off between growth and

reproduction at higher growth rates and a lack of

resources in the slow-growing trees. The slowest-

growing individuals are those that are ‘‘suppressed’’;

shorter than the dominant canopy trees, they receive

relatively little light.

DISCUSSION

We find that the distribution of seedling production

for red oaks at both of our study sites is highly unequal,

with a few individuals contributing disproportionately

to the next generation while many individuals produce

few or no offspring. Among reproductive individuals,

FIG. 3. (A, B) Ri given at least one observed offspring (bars), with fitted lognormal distributions (curves) for (A) Duke Forest
and (B) Coweeta. (C, D) Mean annual seed production for trees with .50% probability of maturity (gray bars), with fitted
lognormal distributions, and for trees with ,50% probability of maturity (hatched bars) for (C) Duke Forest and (D) Coweeta.

EMILY V. MORAN AND JAMES S. CLARK1088 Ecology, Vol. 93, No. 5

Seedlings/yr, trees (Moran & Clark 2012)

(A) Duke Forest: top 5% make 29% of seedlings

(B) Coweeta: top 5% make 47% of seedlings
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Competition kernel: splines (B. Teller et al. 2016, Methods in Ecology and

Evolution)
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