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There is a strong parallelism between the theory of posets
and the theory of Artinian rings.
Suppose that P =

⊔c
i=0Pi is a finite graded poset.

If you do not know what this means, please consider the
Boolean lattice:

P = 2{1,2,··· ,n}.

P is a graded poset with the graded piece

Pi = {M ∈ P |#M = i}
at level i and it gives us the decomposition:

P =
n⊔

i=0

Pi.
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Note 2{1,2,··· ,n} can be thought of as the set of square free
monomials. So the lattice

P = 2{x1,x2,··· ,xn}

is a graded basis of the Artinian algebra

A = Q[x1, x2, · · · , xn]/(x
2
1, · · · , x

2
n),

A =
n∑

i=0

Ai.

The number of elements |Pi| in a graded component of P
is called a rank number. I would like to call the sequence

(|P0|, |P1|, · · · , |Pc−1|, |Pc|)
c = n in this case.

the rank vector of P .
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Definition

Let P =
⊔c
i=0Pi be a finite graded poset. The rank

numbers are the entries of the vector:

(|P0|, |P1|, · · · , |Pc−1|, |Pc|)

A rank vector is unimodal if ∃j

(|P0| ≤ |P1| ≤ · · · ≤ |Pj| ≥ · · · ≥ |Pc−1| ≥ |Pc|)
The Sperner number of P is the most number of |Pi|.
The Dilworth number, denoted by d(P ), is

d(P ) = Max{|I|; antichain I ⊂ P}
Recall that P has the Sperner property if the Dilworth

number d(P ) is equal to the Sperner number.
We will state it as a definition:
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Definition : Sperner property (for posets)

Let P =
⊔c
i=0Pi be a graded poset. P has the Sperner

property if
d(P ) = Sperner(P )

i.e., maxi |Pi| ≥ |I| for any antichain I in P .

If we translate this definition into the language of com-
mutative rings, then the definition is

Definition : Sperner property (for artinian algebras)

Let A =
⊕c

i=0Ai be a graded artinian algebra. A has
the Sperner property if

d(A) = Sperner(A)

i.e., maxi(dimK Ai) ≥ µ(a) for any ideal a in A.
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The Dilworth number d(A) is defined by

d(A) := max{µ(I)|I ideal of A}.

One of the motivations for the definition of the weak Lef-
schetz property was the implication

Weak Lefschetz property ⇒ Sperner Property

The proof is easy. In some sense “Sperner property” is
the goal, “weak Lefschetz property” is a method to prove
it.

6



Although “the weak Lefschetz property” of Artinian rings
is a very good definition, it has one weakness:
In many cases the assumption

“characteristic zero on the ground field”

is almost inevitable.
For example

Let A = K[x1, x2, · · · , xn]/(x
2
1, x

2
2, · · · , x

2
n).

A

{
has the WLP if char K = 0,
does not have the WLP if char K > 0,

if p < n.

On the other hand,

A has the Sprener property for any K.
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So I would like to introduce a new definition:

Definition

Let A =
⊕c

i=0Ai be a graded algebra over K = A0 a
field. A has the matching property if

dimK V ≤ dimK(A1 · V ) if dimK Ai ≤ dimK Ai+1,

for any vector subspace V ⊂ Ai, where A1 · V denotes
the subspace of Ai+1 spanned by

{xy|x ∈ A1, y ∈ V }

If we borrow a term from Hall’s Marriage Theorem, A1·V
can be called the neighbor of V . If a is an ideal generated
by elements of the same degree, then

dimK V ≤ dimK(A1 · V ) ⇔ µ(a) ≤ µ(ma).
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With this definition we can prove three interesting theo-
rems as follows:

Theorem 1

Suppose that A = ⊕c
i=0Ai is a graded Gorenstein alge-

bra. If A = ⊕c
i=0Ai has the matching property and if A

has a unimodal Hilbert function, then A has the Sperner
property.

Theorem 2

Assume that the EGH conjecture is true. Then every
complete intersection has the Sperner property. (I will
explain the EGH conjecture shortly.)
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Theorem 3

Suppose that A = K[x1, x2, · · · , xn]/(F1, F2, · · · , Fn) is
a complete intersection, where Fi is a product of linear
forms. Then A has the Sperner property.

(Abed Abedelfatah proved that the EGH conjecture is
true for such A.)
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Sketch of proof

There are implications:

Theorem 1 ⇒ Theorem 2 ⇒ Theorem 3.

Let me outline the proof for Theorem 1.
We use the following notation.
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Notation

Suppose (A,m) is a local ring.

µ(a) = dim a/ma

τ (a) = dim(a : m)/a

d(A) = Max{µ(a)|a ⊂ A.}
So µ(a) is the minimal number of generators and τ (a) is
the type of a. (d(A) is the Dilworth number of A.)
τ (a) is the index of reduciblity.
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For an Artinian (Gorenstein) local ring (A,m) we intro-
duce two families of ideals:

F(A) := {a | µ(a) = d(A)}, G(A) := {a | τ (a) = d(A)}.
If A is graded, we assume that a runs over all graded ideals
of A (although it does not make much difference). The
following result was proved in Ikeda-Watanabe:
“Dilworth lattice of Artin rings” Journal of commut. Al-

gebra vol. 1, no.2 (2009), 315–326.
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Proposition

F(A) and G(A) are posets with the inclusion as an order,
and moreover these are lattices with respect to + and ∩
as join and meet, and they are isomorphic as lattices via
the correspondence:

F(A) ↔ G(A)

F(A) ∋ a 7→ ma ∈ G(A), and

G(A) ∋ a 7→ (a : m) ∈ F(A).

Assume that A is Gorenstein. Then the correspondence

F(A) → G(A)

defined by a 7→ (0 : a) gives an order reversing iso-
morphism of lattices. Since A is Gorenstein, we have
0 : (0 : a) = a, which implies that the same correspon-
dence a 7→ 0 : a gives us the isomorphism in the opposite
direction also.
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Continue: Outline of proof of Theorem 1

Proof of Theorem 1.
Suppose that a ⊂ A is an ideal with µ(a) = d(A). We

have to show that dimK Ai = µ(a) ∃i.
Compare two ideals a and a′ defined as follows:

a =
∑
j≥α

aj ⊃ a′ :=
∑
j>α

aj.

(α is the initial degree of a.)
Basis elements for aα, say,

f1, f2, · · · , fl
do not exist in a′ but basis elements chosen among

A1 · f1, A1 · f2, · · · , A1 · fl
are a part of a minimal generating set for a′.
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If dimK aα ≤ dimK(A1 · aα), this implies that

µ(a) ≤ µ(a′). (1)

Let j0 be the smallest integer such that

dimK Aj0 > dimK Aj0+1,

and (let α be the initial degree of a and) assume for the
moment

α < j0.

Then the matching property implies the inequality (1).
Since µ(a) < µ(a′) is not the case, this implies that

µ(a) = µ(a′) = d(A).

This argument can be used repeatedly so we may assume
that there exists an ideal a such that

µ(a) = d(A), and a ⊂
∑
i≥j0

Ai = mj0.
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By Ikeda’s isomorphisms

F → G → F
a 7→ ma 7→ 0 : ma,

The ideal 0 : ma has the same number of generators as a.
But

0 : ma ⊃ 0 : mj0+1 ⊃ mc−j0,

and since A has the unimodal Hilbert vector c − j0 ≤ j0.
So

0 : ma ⊃ 0 : mj0+1 ⊃ mc−j0 ⊃ mj0.

By the same argument as before, we may construct an
ideal a′′ containing mj0 with initial degree at least j0, with
µ(a′′) = d(A). So proof is complete.
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Proof for Theorem 2

The EGH conjecture is this:

A is a complete intersection (artinian) and B is a mono-
mial complete intersection with the the same set of gen-
erator degrees as A. If I ⊂ A is an ideal, then there
should be an ideal J ⊂ B such that A/I and B/J have
the same Hilbert function.

In view of Theorem 1, it suffices to show that A has the
matching property:

dimK V ≤ dimK(A1 · V )

for any V ⊂ Aj as long as dimK Aj ≤ dimK Aj+1.
It is easy to see that the monomial complete intersection

has the matching property. (For proof use the matching
property of finite chain product in combinatorics. Or also
the WLP of the monomial complete intersection over Q can
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be used.)
Before I proceed, I would like to make a remark.

Remark

The Hilbert function of an ideal I ⊂ A usually means
the Hilbert function of A/I. So it is the vector:

(|(A/I)0|, |(A/I)1|, |(A/I)2|, · · · , )
(I used the notation |V | = dimK V.)
I want to say the Hilbert funtion of I is the vector:

(0, · · · , 0, |Iα|, |Iα+1|, |Iα+2|, · · · , )
Of course this is determined by the Hilbert functions of
A and A/I.
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Given V ⊂ Aj, let I be the ideal generated by V . Then
the first non-zero part of the Hilbert function for I is

(|V |, |A1 · V |, · · · , )
where |V | := dimK V , |A1 · V | := dimK(A1 · V ).
The EGH Conjecture says that there is an ideal J in B

(the monomial complete intersection) such that J and I
have the same Hilbert function. So the proof is complete.
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Proof of Theorem 3

A recent result of Abed Abedelfatah

“On the Eisenbud-Green-Harris Conjecture”

says that the EGH Conjecture is ture for a complete in-
tersection whose defining ideal is generated by products of
linear forms. Therefore we can apply Theorem 2.
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Outline of proof of Abedelfatah’s theorem

How can it be proved that the EGH Conjecture is true
for a complete intersection if the defining ideal is generated
by products of linear forms?

This is how.

If the defining ideal of A is generated by products of linear
forms, then there exists a linear element l ∈ A such that
both A/lA and A/(0 : l) are complete intersections whose
defining ideals are products of linear forms. Furthermore
there is a short exact sequence:

0 → A/(0 : l) → A → A/(l) → 0.

So we can use the induction to prove that the EGH con-
jecture is true for A.
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Problem 1

Is the matching property inherited by a subring (with
the same socle)? It is true that many complete intersec-
tions are subrings of quadratic complete intersections. If
the answer to this problem is yes, then it encourages us
to assume that generators are degree two to start with.

Problem 2

Is the EGH conjecture inherited by a subring (with
the same socle)? Original EGH conjecture is about
quadratic complete intersections. This fact and Chris
McDaniel’s result in mind, I want to emphasize this
problem, because if the answer is yes, it might reduce
the EGH conjecture to the original case.
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This is the end of my talk. Thank you very much.
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Some remarks on EGH Conjecture

The original EGH conjecture is the case all degrees of
F1, · · · , Fn are two so each generator. In this sense the
complete intersection:

K[x1, x2, · · · , xn]/(f1, f2, · · · , fn)
where fi is a product of two linear forms is interesting.
Assume that the Young subgroup

G := Sn1 × Sn2 × · · ·Snr ⊂ Sn

acts on K[x1, x2, · · · , xn] block-wise (so Sn1 permutes the
first n1 variables, and Sn2 permutes the second n2 vari-
ables, and so on... ) and G permutes the set

f1, f2, · · · , fn
as it does the variables. Define a ring homomorphism

ϕ : K[y1, y2, · · · , yr] → K[x1, · · · , xn]/(f1, f2, · · · , fn)
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by
y1 7→ x1 + x2 + · · · + xn1

y2 7→ xn1+1 + xn1+2 + · · · + xn1+n2
...

yr 7→ xn1+···+nr−1+1 + · · · + · · · + xn

By Goto’s Theorem the kernel of ϕ is a complete intersec-

tion.
If we assume that, for every i, fi = lil

′
i is a product of

linear forms, then the kernel of ϕ can be generated by a
product of linear forms.
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