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Osculating spaces

K algebraically closed field, char(K ) = 0

X ⊂ PN projective variety of dimension n
x ∈ X a smooth point

X has an affine local parametrization Φ(t1, . . . , tn) in formal
power series in a neighbourhood of x
t1, . . . , tn local parameters
x = Φ(0, . . . ,0)

The vector tangent space TxX , in differential geometric sense,
is generated by the partial derivatives vectors Φt1(0), . . . ,Φtn (0).
The s-th osculating space T (s)

x X , s ≥ 1, is generated by all
partial derivatives of order ≤ s.
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Rational varieties

If X is a rational variety, there is a rational parametrization

φ : Pn · · · [F0,...,FN ]−−−−−−→ X ⊂ PN

Fi ∈ S := K [x0, . . . , xn]d

The embedded s-th osculating space T(s)
x X is generated by all

partials of order s of φ (Euler).

Definition

1. The expected dimension of T(s)
x X is min{N,

(n+s
s

)
− 1}

2. X satisfies δ Laplace equations of order s if at a general
smooth point x

dimT(s)
x X =

(
n + s

s

)
− 1− δ
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Examples

1. Ruled varieties: the parametrization can be chosen so that
one of the variables appears at most at degree 1 in the
components of φ.

2. Curves: at a general point the osculating space always has
the expected dimension.

3. Togliatti surface (Eugenio Togliatti, 1929, 1946)
X ⊂ P5, rational surface parametrized by cubics, special
projection of the del Pezzo sextic surface S ⊂ P6.
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Togliatti surface

The parametrization is:

φ : P2 99K P5

φ : [x , y , z]→ [x2y , x2z, xy2, xz2, y2z, yz2]

The Laplace equation:
x2φxx − xyφxy − xzφxz + y2φyy − yzφyz + z2φzz = 0

Geometric interpretation: consider

v3 : (P2)∗ → P9 = P(K [a,b, c]3) the triple Veronese embedding
v3 : l[a,b, c]→ l3

then project v3(P2) first from the plane 〈a3,b3, c3〉 and get the
del Pezzo surface S, then from the point abc, that belongs to all
its osculating spaces.
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1946: Togliatti classifies all the projections of v3(P2) satisfying
at least one Laplace equation of order 2

2007: Brenner - Kaid:
if char K = 0, an ideal I = (x3, y3, z3, f (x , y , z)), deg f = 3, fails
WLP if and only if f ∈ (x3, y3, z3, xyz).

Which is the connection between these two examples?
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Apolarity, or Macaulay-Matlis duality

I ⊂ S = K [x0, . . . , xn] homogenous ideal

D = K [y0, . . . , yn] S-module with the product given by
differentiation:
FD := F ( ∂

∂y0
, . . . , ∂

∂yn
)(D)

I−1 = {D ∈ D | FD = 0 ∀F ∈ I}, graded S-submodule of D:
Macaulay inverse system of I

Conversely: given M ⊂ D graded S-submodule, Ann(M) ⊂ S is
a homogenous ideal.

Bijection:
{homogeneous artinian ideals of S}

l
{graded finitely generated S − submodules of D}

Emilia Mezzetti Togliatti systems and artinian ideals failing WLP



Laplace equations
Connections with WLP and Togliatti systems

Results for monomial Togliatti systems
Methods

Apolarity, or Macaulay-Matlis duality

I ⊂ S = K [x0, . . . , xn] homogenous ideal

D = K [y0, . . . , yn] S-module with the product given by
differentiation:
FD := F ( ∂

∂y0
, . . . , ∂

∂yn
)(D)

I−1 = {D ∈ D | FD = 0 ∀F ∈ I}, graded S-submodule of D:
Macaulay inverse system of I

Conversely: given M ⊂ D graded S-submodule, Ann(M) ⊂ S is
a homogenous ideal.

Bijection:
{homogeneous artinian ideals of S}

l
{graded finitely generated S − submodules of D}

Emilia Mezzetti Togliatti systems and artinian ideals failing WLP



Laplace equations
Connections with WLP and Togliatti systems

Results for monomial Togliatti systems
Methods

Apolar varieties

If I is monomial, generated by monomials all of degree d , I−1

can be seen inside S, generated by the monomials of degree d
not in I.

If I is artinian: I = (F1, . . . ,Fr ), F1, . . . ,Fr of degree d , then
(I−1)d is a linear system of hypersurfaces of degree d .
We have maps:

φ(I−1)d
: Pn 99K X ⊂ PN , N =

(n+d
d

)
− 1− r

X rational variety projection of vd (Pn) from 〈F1, . . . ,Fr 〉,

φId : Pn → Y ⊂ Pr−1 is a morphism.

X and Y are apolar varieties
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Togliatti systems

Theorem (MMO, 2013)
I ⊂ S homogeneous artinian ideal generated by F1, . . . ,Fr of
degree d. Let r ≤

(n+d−1
n−1

)
. The following are equivalent:

1 I fails WLP in degree d − 1;
2 F1, . . . ,Fr become linearly dependent in S/(L), for any

linear form L;
3 X satisfies at least one Laplace equation of order d − 1.

The ideals I as in the Theorem are called Togliatti systems.

Remark
The assumption on r means that the Laplace equations
satisfied by X are not trivial.
For example, if n = 2 r ≤ d + 1.
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Minimal and smooth Togliatti systems

Definition
A Togliatti system I is called:

monomial if I can be generated by monomials;
minimal if I does not contain any smaller Togliatti system;
smooth if X is a smooth variety.

Goal: classify the minimal smooth Togliatti systems.

Reformulation of Togliatti’s result: if n = 2, d = 3, the only
smooth Togliatti system is I = (x3, y3, z3, xyz).

Remark
If I ⊂ S = K [x0, . . . , xn] is artinian monomial generated in
degree d, then I contains xd

0 , . . . , x
d
n .
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Togliatti systems of cubics, n = 3

Theorem (MMO, 2013)
If n = 3, d = 3, the only monomial minimal smooth Togliatti
systems are

1 (x3, y3, z3, t3, xyz, xyt , xzt , yzt) the triple embedding of P3

blown up at 4 general points, then suitably projected from a
P3 - truncated simplex

2 (x3, y3, z3, t3, x2y , xy2, xzt , yzt) the triple embedding of P3

blown up at 2 points and a line, then suitably projected
from a P1

3 (x3, y3, z3, t3, x2y , xy2, z2t , zt2) the triple embedding of P3

blown up at 2 skew lines.

This answers to a conjecture of G. Ilardi (2006).
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Monomial Togliatti systems of cubics

In [MMO] there is also a class of examples and a conjecture for
monomial minimal smooth Togliatti systems of cubics with
n ≥ 3.

Michałek and Miró-Roig classify monomial minimal smooth
Togliatti systems of quadrics and cubics, proving the conjecture
(2016).
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Monomial Togliatti systems, any d

For d > 3 the situation is much more intricate.

[MM, 2016]
Let µ(I) = minimal number of generators of I.

Computation of the minimal and maximal bound on µ(I) for
I ∈ T (n,d) and I ∈ T s(n,d)

Classification on the border and near the border
Existence results in the admissible range

where:
T (n,d): minimal monomial Togliatti systems K [x0, . . . , xn]
generated in degree d

T s(n,d): minimal smooth monomial Togliatti systems in
K [x0, . . . , xn] generated in degree d
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Toric varieties

I ⊂ S = K [x0, . . . , xn] homogeneous artinian generated by
monomials of degree d

I−1 inverse system also contained in S

The variety X = φ(I−1)d
(Pn) is a toric projective variety and can

be studied with combinatorial methods [Gelfand - Kapranov -
Zelevinski].

Definition

∆n standard simplex in Rn+1 with coordinates a0, . . . ,an
Consider d∆n in the hyperplane a0 + · · ·+ an = d identified
with Rn

Every point (a0, . . . ,an) of d∆n ∩ Zn with a0 + · · ·+ an = d
corresponds to a monomial xa0

0 . . . xan
n ∈ Sd .
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Polytopes

Given I ⊂ S monomial artinian ideal generated in degree d :
AI ⊂ d∆n is the set of points corresponding to monomials
of degree d not in I, i.e., in (I−1)d .
PI is the convex hull of AI : the polytope associated to I.

Example: Togliatti’s surface

	  

Figure : AI is the punctured hexagon
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Two Togliatti examples with n = 3, d = 3

Figure : The truncated simplex and case 2

If n > 3 all monomial minimal smooth Togliatti systems
correspond to a partition of the vertices (with some condition).
We remove the corresponding faces and the centres of the
remaining hexagons.
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Two facts

Theorem (Perkinson, 2000)
I is a Togliatti system if and only there exists a hypersurface of
degree d − 1 in Rn containing all points of AI .

Moreover I is a minimal Togliatti system if and only if every such
hypersurface does not contain any point of d∆n \ AI except
possibly some vertex.
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Theorem (GKZ)
The toric variety X is smooth if and only if

1 translating every vertex v of PI in the origin, and
considering on any edge emanating from v the first point
with integer coordinates, they form a Z-basis of Zn;

2 technical condition. If n = 2 it says that every inner point in
an edge of PI must belong to AI .
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Trivial Togliatti systems

Definition
A Togliatti system is trivial if I contains x0F , . . . , xnF for some
form F of degree d − 1.

The hypersurface of degree d − 1 containing all points of AI is a
union of hyperplanes. Here is a trivial smooth Togliatti system
with d = 5.
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A trivial monomial Togliatti system can have 2n + 1 or 2n + 2
generators.
For instance, with d = 4:

2n + 1 generators: (x4
0 , . . . , x

4
n , x3

0 x1, . . . , x3
0 xn), or

2n + 2 generators:
(x4

0 , . . . , x
4
n , x2

0 x1x2, x0x2
1 x2, x0x1x2

2 , x0x1x2x3, . . . , x0x1x2xn)
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Results

Define
µ(n,d) = min{µ(I) | I ∈ T (n,d)}
µs(n,d) = min{µ(I) | I ∈ T s(n,d)}

Theorem (MM, 2016)
1 For all n ≥ 2, d ≥ 4

µ(n,d) = µs(n,d) = 2n + 1.

2 If µ(I) = 2n + 1 then either I is trivial, or n = 2, µ(I) = 5
and, up to permutation of the coordinates, either

d = 4, I = (x4, y4, z4, x2yz, y2z2) non-smooth, or
d = 5, I = (x5, y5, z5, x3yz, xy2z2) smooth.
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Figure : The smooth Togliatti system with n = 2, d = 5, µ(I) = 5.

This rational surface X has inflection points, i.e. points where
the dimension of T(s)

x X decreases more than for general x , for
s ≤ 4.
The hypersurface of degree 4 containing AI is irreducible.
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Theorem (MM, 2016)
If d ≥ 4 and I is a smooth monomial minimal Togliatti system
with µ(I) = 2n + 2, then either I is trivial, or n = 2, µ(I) = 6.
Moreover, up to permutation of the coordinates, either

d = 5, three cases, or
d = 7, three cases.
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Picture for n = 2, d ≥ 4

Define
ρ(n,d) = max{µ(I) | I ∈ T (n,d)}
ρs(n,d) = max{µ(I) | I ∈ T s(n,d)}

Let n = 2. For any d ≥ 4:
µ(2,d) = µs(2,d) = 5;
ρ(2,d) = ρs(2,d) = d + 1;
for any r with 5 ≤ r ≤ d + 1, there exists I ∈ T s(2,d) with
µ(I) = r .
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Picture for n = 2, d ≥ 4

Define
ρ(n,d) = max{µ(I) | I ∈ T (n,d)}
ρs(n,d) = max{µ(I) | I ∈ T s(n,d)}

Let n = 2. For any d ≥ 4:
µ(2,d) = µs(2,d) = 5;
ρ(2,d) = ρs(2,d) = d + 1;
for any r with 5 ≤ r ≤ d + 1, there exists I ∈ T s(2,d) with
µ(I) = r .
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Gaps for n ≥ 3

If n ≥ 3, d ≥ 4:
monomial Togliatti systems with µ(I) = 2n + 1,2n + 2 are
trivial;
there is no smooth monomial minimal Togliatti system with
µ(I) = 2n + 3;
ρ(n,d) =

(n+d−1
n−1

)
;

if n = 3, for any d ≥ 4 and r with
µ(3,d) = 7 ≤ r ≤ ρ(3,d) =

(d+2
2

)
, there exists I ∈ T (3,d)

with µ(I) = r .
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Thank you!
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