Togliatti systems and artinian ideals failing the Weak Lefschetz Property

Emilia Mezzetti

Dipartimento di Matematica e Geoscienze Università degli Studi di Trieste mezzette@units.it

Lefschetz Properties and Artinian Algebras Banff, March 15 2016

イロト イポト イヨト イヨト

- 2 Connections with WLP and Togliatti systems
- 8 Results for monomial Togliatti systems

4 Methods

Joint work with R.M. Miró-Roig and G. Ottaviani

イロト イポト イヨト イヨト

æ

Osculating spaces

K algebraically closed field, char(K) = 0

- $X \subset \mathbb{P}^N$ projective variety of dimension n
- $x \in X$ a smooth point
 - X has an affine local parametrization Φ(t₁,..., t_n) in formal power series in a neighbourhood of x
 - t_1, \ldots, t_n local parameters
 - $x = \Phi(0,\ldots,0)$

The vector tangent space $T_X X$, in differential geometric sense, is generated by the partial derivatives vectors $\Phi_{t_1}(0), \ldots, \Phi_{t_n}(0)$. The *s*-th osculating space $T_X^{(s)} X$, $s \ge 1$, is generated by all partial derivatives of order $\le s$.

Osculating spaces

K algebraically closed field, char(K) = 0

- $X \subset \mathbb{P}^N$ projective variety of dimension n
- $x \in X$ a smooth point
 - X has an affine local parametrization Φ(t₁,..., t_n) in formal power series in a neighbourhood of x
 - t_1, \ldots, t_n local parameters
 - $x = \Phi(0, \ldots, 0)$

The vector tangent space $T_x X$, in differential geometric sense, is generated by the partial derivatives vectors $\Phi_{t_1}(0), \ldots, \Phi_{t_n}(0)$. The *s*-th osculating space $T_x^{(s)} X$, $s \ge 1$, is generated by all partial derivatives of order $\le s$.

Osculating spaces

K algebraically closed field, char(K) = 0

- $X \subset \mathbb{P}^N$ projective variety of dimension n
- $x \in X$ a smooth point
 - X has an affine local parametrization Φ(t₁,..., t_n) in formal power series in a neighbourhood of x

•
$$x = \Phi(0,\ldots,0)$$

The vector tangent space $T_x X$, in differential geometric sense, is generated by the partial derivatives vectors $\Phi_{t_1}(0), \ldots, \Phi_{t_n}(0)$. The *s*-th osculating space $T_x^{(s)} X$, $s \ge 1$, is generated by all partial derivatives of order $\le s$.

Rational varieties

If X is a rational variety, there is a rational parametrization

$$\phi: \mathbb{P}^{n} \cdots \xrightarrow{[F_0, \dots, F_N]} X \subset \mathbb{P}^N$$

 $F_i \in S := K[x_0, \ldots, x_n]_d$

The embedded *s*-th osculating space $\mathbb{T}^{(s)}_{X}X$ is generated by all partials of order *s* of ϕ (Euler).

Definition

1. The expected dimension of $\mathbb{T}_{X}^{(s)}X$ is min $\{N, \binom{n+s}{s} - 1\}$ 2. *X* satisfies δ Laplace equations of order *s* if at a general smooth point *x*

$$\dim \mathbb{T}_{x}^{(s)} X = \binom{n+s}{s} - 1 - \delta$$

Rational varieties

If X is a rational variety, there is a rational parametrization

$$\phi: \mathbb{P}^{n} \cdots \xrightarrow{[F_{0}, \dots, F_{N}]} X \subset \mathbb{P}^{N}$$

 $F_i \in S := K[x_0, \ldots, x_n]_d$

The embedded *s*-th osculating space $\mathbb{T}^{(s)}_{X}X$ is generated by all partials of order *s* of ϕ (Euler).

Definition

1. The expected dimension of $\mathbb{T}_{X}^{(s)}X$ is min $\{N, \binom{n+s}{s} - 1\}$ 2. *X* satisfies δ Laplace equations of order *s* if at a general smooth point *x*

$$\dim \mathbb{T}_{x}^{(s)} X = \binom{n+s}{s} - 1 - \delta$$

Rational varieties

If X is a rational variety, there is a rational parametrization

$$\phi: \mathbb{P}^n \cdots \xrightarrow{[F_0, \dots, F_N]} X \subset \mathbb{P}^N$$

 $F_i \in S := K[x_0, \ldots, x_n]_d$

The embedded *s*-th osculating space $\mathbb{T}^{(s)}_{X}X$ is generated by all partials of order *s* of ϕ (Euler).

Definition

1. The expected dimension of $\mathbb{T}_{x}^{(s)}X$ is min $\{N, \binom{n+s}{s} - 1\}$ 2. X satisfies δ Laplace equations of order *s* if at a general smooth point *x*

$$\dim \mathbb{T}_{x}^{(s)} X = \binom{n+s}{s} - 1 - \delta$$

Rational varieties

If X is a rational variety, there is a rational parametrization

$$\phi: \mathbb{P}^n \cdots \xrightarrow{[F_0, \dots, F_N]} X \subset \mathbb{P}^N$$

 $F_i \in S := K[x_0, \ldots, x_n]_d$

The embedded *s*-th osculating space $\mathbb{T}^{(s)}_{X}X$ is generated by all partials of order *s* of ϕ (Euler).

Definition

1. The expected dimension of $\mathbb{T}_{X}^{(s)}X$ is min $\{N, \binom{n+s}{s} - 1\}$ 2. *X* satisfies δ Laplace equations of order *s* if at a general smooth point *x*

$$\dim \mathbb{T}_{X}^{(s)} X = \binom{n+s}{s} - 1 - \delta$$

1. Ruled varieties: the parametrization can be chosen so that one of the variables appears at most at degree 1 in the components of ϕ .

2. Curves: at a general point the osculating space always has the expected dimension.

3. Togliatti surface (Eugenio Togliatti, 1929, 1946) $X \subset \mathbb{P}^5$, rational surface parametrized by cubics, special projection of the del Pezzo sextic surface $S \subset \mathbb{P}^6$.

ヘロト ヘワト ヘビト ヘビト

1. Ruled varieties: the parametrization can be chosen so that one of the variables appears at most at degree 1 in the components of ϕ .

2. Curves: at a general point the osculating space always has the expected dimension.

3. Togliatti surface (Eugenio Togliatti, 1929, 1946) $X \subset \mathbb{P}^5$, rational surface parametrized by cubics, special projection of the del Pezzo sextic surface $S \subset \mathbb{P}^6$.

・ロット (雪) () () () ()

1. Ruled varieties: the parametrization can be chosen so that one of the variables appears at most at degree 1 in the components of ϕ .

2. Curves: at a general point the osculating space always has the expected dimension.

3. Togliatti surface (Eugenio Togliatti, 1929, 1946) $X \subset \mathbb{P}^5$, rational surface parametrized by cubics, special projection of the del Pezzo sextic surface $S \subset \mathbb{P}^6$.

くロト (過) (目) (日)

Togliatti surface

The parametrization is:

$$\phi: \mathbb{P}^2 \dashrightarrow \mathbb{P}^5 \phi: [x, y, z] \to [x^2y, x^2z, xy^2, xz^2, y^2z, yz^2]$$

The Laplace equation: $x^2\phi_{xx} - xy\phi_{xy} - xz\phi_{xz} + y^2\phi_{yy} - yz\phi_{yz} + z^2\phi_{zz} = 0$

Geometric interpretation: consider

 $v_3 : (\mathbb{P}^2)^* \to \mathbb{P}^9 = \mathbb{P}(K[a, b, c]_3)$ the triple Veronese embedding $v_3 : I[a, b, c] \to l^3$

then project $v_3(\mathbb{P}^2)$ first from the plane $\langle a^3, b^3, c^3 \rangle$ and get the del Pezzo surface *S*, then from the point *abc*, that belongs to all its osculating spaces.

イロン 不同 とくほう イヨン

Togliatti surface

The parametrization is:

$$\phi: \mathbb{P}^2 \dashrightarrow \mathbb{P}^5$$

$$\phi: [x, y, z] \to [x^2y, x^2z, xy^2, xz^2, y^2z, yz^2]$$

The Laplace equation: $x^2\phi_{xx} - xy\phi_{xy} - xz\phi_{xz} + y^2\phi_{yy} - yz\phi_{yz} + z^2\phi_{zz} = 0$

Geometric interpretation: consider

 $v_3: (\mathbb{P}^2)^* \to \mathbb{P}^9 = \mathbb{P}(K[a, b, c]_3)$ the triple Veronese embedding $v_3: I[a, b, c] \to l^3$

then project $v_3(\mathbb{P}^2)$ first from the plane $\langle a^3, b^3, c^3 \rangle$ and get the del Pezzo surface *S*, then from the point *abc*, that belongs to all its osculating spaces.

ヘロア 人間 アメヨア 人口 ア

1946: Togliatti classifies all the projections of $v_3(\mathbb{P}^2)$ satisfying at least one Laplace equation of order 2

2007: Brenner - Kaid: if char K = 0, an ideal $I = (x^3, y^3, z^3, f(x, y, z))$, deg f = 3, fails WLP if and only if $f \in (x^3, y^3, z^3, xyz)$.

Which is the connection between these two examples?

ヘロト 人間 ト ヘヨト ヘヨト

1946: Togliatti classifies all the projections of $v_3(\mathbb{P}^2)$ satisfying at least one Laplace equation of order 2

2007: Brenner - Kaid: if char K = 0, an ideal $I = (x^3, y^3, z^3, f(x, y, z))$, deg f = 3, fails WLP if and only if $f \in (x^3, y^3, z^3, xyz)$.

Which is the connection between these two examples?

くロト (過) (目) (日)

Apolarity, or Macaulay-Matlis duality

 $I \subset S = K[x_0, \ldots, x_n]$ homogenous ideal

 $\mathcal{D} = K[y_0, \dots, y_n]$ *S*-module with the product given by differentiation:

$$FD := F(\frac{\partial}{\partial y_0}, \ldots, \frac{\partial}{\partial y_n})(D)$$

 $I^{-1} = \{ D \in \mathcal{D} \mid FD = 0 \ \forall F \in I \}$, graded *S*-submodule of \mathcal{D} : Macaulay inverse system of *I*

Conversely: given $M \subset \mathcal{D}$ graded *S*-submodule, Ann $(M) \subset S$ is a homogenous ideal.

Bijection:

{homogeneous artinian ideals of S}

{graded finitely generated S – submodules of \mathcal{D} }

Apolarity, or Macaulay-Matlis duality

 $I \subset S = K[x_0, \ldots, x_n]$ homogenous ideal

 $\mathcal{D} = \mathcal{K}[y_0, \dots, y_n]$ *S*-module with the product given by differentiation:

$$FD := F(\frac{\partial}{\partial y_0}, \ldots, \frac{\partial}{\partial y_n})(D)$$

 $I^{-1} = \{ D \in \mathcal{D} \mid FD = 0 \ \forall F \in I \}$, graded *S*-submodule of \mathcal{D} : Macaulay inverse system of *I*

Conversely: given $M \subset D$ graded *S*-submodule, Ann $(M) \subset S$ is a homogenous ideal.

Bijection:

{homogeneous artinian ideals of S}

{graded finitely generated S – submodules of D}

Apolar varieties

If *I* is monomial, generated by monomials all of degree *d*, I^{-1} can be seen inside *S*, generated by the monomials of degree *d* not in *I*.

If *I* is artinian: $I = (F_1, ..., F_r)$, $F_1, ..., F_r$ of degree *d*, then $(I^{-1})_d$ is a linear system of hypersurfaces of degree *d*. We have maps:

$$\phi_{(I^{-1})_d}: \mathbb{P}^n \dashrightarrow X \subset \mathbb{P}^N, N = \binom{n+d}{d} - 1 - r$$

X rational variety projection of $v_d(\mathbb{P}^n)$ from $\langle F_1, \ldots, F_r \rangle$,

 $\phi_{I_d}: \mathbb{P}^n \to Y \subset \mathbb{P}^{r-1}$ is a morphism.

X and Y are apolar varieties

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Apolar varieties

If *I* is monomial, generated by monomials all of degree *d*, I^{-1} can be seen inside *S*, generated by the monomials of degree *d* not in *I*.

If *I* is artinian: $I = (F_1, ..., F_r)$, $F_1, ..., F_r$ of degree *d*, then $(I^{-1})_d$ is a linear system of hypersurfaces of degree *d*. We have maps:

 $\phi_{(l^{-1})_d} : \mathbb{P}^n \dashrightarrow X \subset \mathbb{P}^N, N = \binom{n+d}{d} - 1 - r$ X rational variety projection of $v_d(\mathbb{P}^n)$ from $\langle F_1, \dots, F_r \rangle$, $\phi_{l_d} : \mathbb{P}^n \to Y \subset \mathbb{P}^{r-1}$ is a morphism.

X and Y are apolar varieties

ヘロア 人間 アメヨア 人口 ア

Apolar varieties

If *I* is monomial, generated by monomials all of degree *d*, I^{-1} can be seen inside *S*, generated by the monomials of degree *d* not in *I*.

If *I* is artinian: $I = (F_1, ..., F_r)$, $F_1, ..., F_r$ of degree *d*, then $(I^{-1})_d$ is a linear system of hypersurfaces of degree *d*. We have maps:

 $\phi_{(l^{-1})_d}: \mathbb{P}^n \dashrightarrow X \subset \mathbb{P}^N, N = \binom{n+d}{d} - 1 - r$

X rational variety projection of $v_d(\mathbb{P}^n)$ from $\langle F_1, \ldots, F_r \rangle$,

 $\phi_{I_d}: \mathbb{P}^n \to Y \subset \mathbb{P}^{r-1}$ is a morphism.

X and Y are apolar varieties

ヘロン ヘアン ヘビン ヘビン

æ

Apolar varieties

If *I* is monomial, generated by monomials all of degree *d*, I^{-1} can be seen inside *S*, generated by the monomials of degree *d* not in *I*.

If *I* is artinian: $I = (F_1, ..., F_r)$, $F_1, ..., F_r$ of degree *d*, then $(I^{-1})_d$ is a linear system of hypersurfaces of degree *d*. We have maps:

$$\phi_{(I^{-1})_d}: \mathbb{P}^n \dashrightarrow X \subset \mathbb{P}^N, N = \binom{n+d}{d} - 1 - r$$

X rational variety projection of $v_d(\mathbb{P}^n)$ from $\langle F_1, \ldots, F_r \rangle$,

 $\phi_{I_d}: \mathbb{P}^n \to Y \subset \mathbb{P}^{r-1}$ is a morphism.

X and Y are apolar varieties

ヘロン ヘアン ヘビン ヘビン

Togliatti systems

Theorem (MMO, 2013)

 $I \subset S$ homogeneous artinian ideal generated by F_1, \ldots, F_r of degree d. Let $r \leq \binom{n+d-1}{n-1}$. The following are equivalent:

- I fails WLP in degree d 1;
- F₁,..., F_r become linearly dependent in S/(L), for any linear form L;
- 3 X satisfies at least one Laplace equation of order d 1.

The ideals *I* as in the Theorem are called Togliatti systems.

Remark

The assumption on r means that the Laplace equations satisfied by X are not trivial. For example, if n = 2 $r \le d + 1$.

Togliatti systems

Theorem (MMO, 2013)

 $I \subset S$ homogeneous artinian ideal generated by F_1, \ldots, F_r of degree d. Let $r \leq \binom{n+d-1}{n-1}$. The following are equivalent:

- I fails WLP in degree d 1;
- F₁,..., F_r become linearly dependent in S/(L), for any linear form L;
- 3 X satisfies at least one Laplace equation of order d 1.

The ideals *I* as in the Theorem are called Togliatti systems.

Remark

The assumption on r means that the Laplace equations satisfied by X are not trivial. For example, if n = 2 $r \le d + 1$.

Togliatti systems

Theorem (MMO, 2013)

 $I \subset S$ homogeneous artinian ideal generated by F_1, \ldots, F_r of degree d. Let $r \leq \binom{n+d-1}{n-1}$. The following are equivalent:

- I fails WLP in degree d 1;
- F₁,..., F_r become linearly dependent in S/(L), for any linear form L;
- 3 X satisfies at least one Laplace equation of order d 1.

The ideals *I* as in the Theorem are called Togliatti systems.

Remark

The assumption on r means that the Laplace equations satisfied by X are not trivial. For example, if n = 2 $r \le d + 1$.

Minimal and smooth Togliatti systems

Definition

- A Togliatti system I is called:
 - monomial if I can be generated by monomials;
 - minimal if I does not contain any smaller Togliatti system;
 - smooth if X is a smooth variety.

Goal: classify the minimal smooth Togliatti systems.

Reformulation of Togliatti's result: if n = 2, d = 3, the only smooth Togliatti system is $I = (x^3, y^3, z^3, xyz)$.

Remark

Minimal and smooth Togliatti systems

Definition

- A Togliatti system I is called:
 - monomial if I can be generated by monomials;
 - minimal if I does not contain any smaller Togliatti system;
 - smooth if X is a smooth variety.

Goal: classify the minimal smooth Togliatti systems.

Reformulation of Togliatti's result: if n = 2, d = 3, the only smooth Togliatti system is $I = (x^3, y^3, z^3, xyz)$.

Remark

Minimal and smooth Togliatti systems

Definition

- A Togliatti system I is called:
 - monomial if I can be generated by monomials;
 - minimal if I does not contain any smaller Togliatti system;
 - smooth if X is a smooth variety.

Goal: classify the minimal smooth Togliatti systems.

Reformulation of Togliatti's result: if n = 2, d = 3, the only smooth Togliatti system is $I = (x^3, y^3, z^3, xyz)$.

Remark

Minimal and smooth Togliatti systems

Definition

- A Togliatti system I is called:
 - monomial if I can be generated by monomials;
 - minimal if I does not contain any smaller Togliatti system;
 - smooth if X is a smooth variety.

Goal: classify the minimal smooth Togliatti systems.

Reformulation of Togliatti's result: if n = 2, d = 3, the only smooth Togliatti system is $I = (x^3, y^3, z^3, xyz)$.

Remark

Togliatti systems of cubics, n = 3

Theorem (MMO, 2013)

If n = 3, d = 3, the only monomial minimal smooth Togliatti systems are

- (x³, y³, z³, t³, xyz, xyt, xzt, yzt) the triple embedding of P³ blown up at 4 general points, then suitably projected from a P³ - truncated simplex
- (x³, y³, z³, t³, x²y, xy², xzt, yzt) the triple embedding of P³ blown up at 2 points and a line, then suitably projected from a P¹
- **③** $(x^3, y^3, z^3, t^3, x^2y, xy^2, z^2t, zt^2)$ the triple embedding of \mathbb{P}^3 blown up at 2 skew lines.

This answers to a conjecture of G. Ilardi (2006).

Monomial Togliatti systems of cubics

In [MMO] there is also a class of examples and a conjecture for monomial minimal smooth Togliatti systems of cubics with $n \ge 3$.

Michałek and Miró-Roig classify monomial minimal smooth Togliatti systems of quadrics and cubics, proving the conjecture (2016).

くロト (過) (目) (日)

Monomial Togliatti systems, any d

For d > 3 the situation is much more intricate.

[MM, 2016] Let $\mu(I)$ = minimal number of generators of *I*.

- Computation of the minimal and maximal bound on $\mu(I)$ for $I \in \mathcal{T}(n, d)$ and $I \in \mathcal{T}^{s}(n, d)$
- Classification on the border and near the border
- Existence results in the admissible range

where:

 $\mathcal{T}(n, d)$: minimal monomial Togliatti systems $K[x_0, \dots, x_n]$ generated in degree d

 $\mathcal{T}^{s}(n, d)$: minimal smooth monomial Togliatti systems in $K[x_0, \dots, x_n]$ generated in degree d

Toric varieties

 $I \subset S = K[x_0, \dots, x_n]$ homogeneous artinian generated by monomials of degree d

 I^{-1} inverse system also contained in S

The variety $X = \phi_{(l^{-1})_d}(\mathbb{P}^n)$ is a toric projective variety and can be studied with combinatorial methods [Gelfand - Kapranov - Zelevinski].

Definition

 Δ_n standard simplex in \mathbb{R}^{n+1} with coordinates a_0, \ldots, a_n Consider $d\Delta_n$ in the hyperplane $a_0 + \cdots + a_n = d$ identified with \mathbb{R}^n Every point (a_0, \ldots, a_n) of $d\Delta_n \cap \mathbb{Z}^n$ with $a_0 + \cdots + a_n = d$

corresponds to a monomial $x_0^{a_0} \dots x_n^{a_n} \in S_d$.

Toric varieties

 $I \subset S = K[x_0, ..., x_n]$ homogeneous artinian generated by monomials of degree d

 I^{-1} inverse system also contained in S

The variety $X = \phi_{(l^{-1})_d}(\mathbb{P}^n)$ is a toric projective variety and can be studied with combinatorial methods [Gelfand - Kapranov - Zelevinski].

Definition

 Δ_n standard simplex in \mathbb{R}^{n+1} with coordinates a_0, \ldots, a_n Consider $d\Delta_n$ in the hyperplane $a_0 + \cdots + a_n = d$ identified with \mathbb{R}^n Every point (a_0, \ldots, a_n) of $d\Delta_n \cap \mathbb{Z}^n$ with $a_0 + \cdots + a_n = d$ corresponds to a monomial $x_0^{a_0} \ldots x_n^{a_n} \in S_d$.

Polytopes

Given $I \subset S$ monomial artinian ideal generated in degree d:

- *A_I* ⊂ *d*∆_n is the set of points corresponding to monomials of degree *d* not in *I*, i.e., in (*I*⁻¹)_d.
- *P_I* is the convex hull of *A_I*: the polytope associated to *I*.

Example: Togliatti's surface

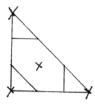


Figure : A_1 is the punctured hexagon

イロト イポト イヨト イヨト

Polytopes

Given $I \subset S$ monomial artinian ideal generated in degree d:

- *A_I* ⊂ *d*∆_n is the set of points corresponding to monomials of degree *d* not in *I*, i.e., in (*I*⁻¹)_d.
- *P*_{*I*} is the convex hull of *A*_{*I*}: the polytope associated to *I*. **Example: Togliatti's surface**

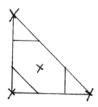


Figure : A_l is the punctured hexagon

イロト イポト イヨト イヨト

Two Togliatti examples with n = 3, d = 3

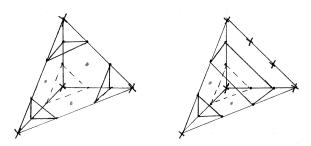


Figure : The truncated simplex and case 2

If n > 3 all monomial minimal smooth Togliatti systems correspond to a partition of the vertices (with some condition). We remove the corresponding faces and the centres of the remaining hexagons.

Two Togliatti examples with n = 3, d = 3

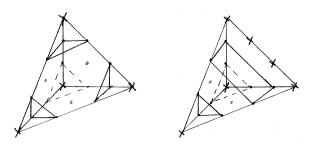


Figure : The truncated simplex and case 2

If n > 3 all monomial minimal smooth Togliatti systems correspond to a partition of the vertices (with some condition). We remove the corresponding faces and the centres of the remaining hexagons.

Theorem (Perkinson, 2000)

I is a Togliatti system if and only there exists a hypersurface of degree d - 1 in \mathbb{R}^n containing all points of A_I .

Moreover *I* is a minimal Togliatti system if and only if every such hypersurface does not contain any point of $d\Delta_n \setminus A_l$ except possibly some vertex.

ヘロン 人間 とくほ とくほ とう

Theorem (GKZ)

The toric variety X is smooth if and only if

- translating every vertex v of P₁ in the origin, and considering on any edge emanating from v the first point with integer coordinates, they form a Z-basis of Zⁿ;
- 2 technical condition. If n = 2 it says that every inner point in an edge of P_1 must belong to A_1 .

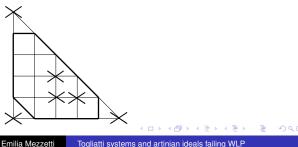
ヘロン 人間 とくほ とくほ とう

Trivial Togliatti systems

Definition

A Togliatti system is trivial if *I* contains x_0F, \ldots, x_nF for some form *F* of degree d - 1.

The hypersurface of degree d - 1 containing all points of A_l is a union of hyperplanes. Here is a trivial smooth Togliatti system with d = 5.



A trivial monomial Togliatti system can have 2n + 1 or 2n + 2 generators.

For instance, with d = 4:

- 2n + 1 generators: $(x_0^4, \ldots, x_n^4, x_0^3 x_1, \ldots, x_0^3 x_n)$, or
- 2n + 2 generators: $(x_0^4, \dots, x_n^4, x_0^2 x_1 x_2, x_0 x_1^2 x_2, x_0 x_1 x_2^2, x_0 x_1 x_2 x_3, \dots, x_0 x_1 x_2 x_n)$

イロト 不得 とくほ とくほとう

Results

Define $\mu(n, d) = \min\{\mu(I) \mid I \in \mathcal{T}(n, d)\}$ $\mu^{s}(n, d) = \min\{\mu(I) \mid I \in \mathcal{T}^{s}(n, d)\}$

Theorem (MM, 2016)

• For all $n \ge 2$, $d \ge 4$

$$\mu(n, d) = \mu^{s}(n, d) = 2n + 1.$$

If μ(I) = 2n + 1 then either I is trivial, or n = 2, μ(I) = 5 and, up to permutation of the coordinates, either
 d = 4, I = (x⁴, y⁴, z⁴, x²yz, y²z²) non-smooth, or

• d = 5, $I = (x^5, y^5, z^5, x^3yz, xy^2z^2)$ smooth.

ヘロト ヘアト ヘビト ヘビト

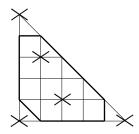


Figure : The smooth Togliatti system with n = 2, d = 5, $\mu(I) = 5$.

This rational surface X has inflection points, i.e. points where the dimension of $\mathbb{T}_{x}^{(s)}X$ decreases more than for general x, for $s \leq 4$. The hypersurface of degree 4 containing A_{l} is irreducible.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (MM, 2016)

If $d \ge 4$ and I is a smooth monomial minimal Togliatti system with $\mu(I) = 2n + 2$, then either I is trivial, or n = 2, $\mu(I) = 6$. Moreover, up to permutation of the coordinates, either

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Picture for $n = 2, d \ge 4$

Define

$$\rho(n, d) = \max\{\mu(I) \mid I \in \mathcal{T}(n, d)\}$$

 $\rho^{s}(n, d) = \max\{\mu(I) \mid I \in \mathcal{T}^{s}(n, d)\}$
Let $n = 2$. For any $d \ge 4$:
• $\mu(2, d) = \mu^{s}(2, d) = 5$;
• $\rho(2, d) = \rho^{s}(2, d) = d + 1$;
• for any r with $5 \le r \le d + 1$, there exists $I \in \mathcal{T}^{s}(2, d)$ is $\mu(I) = r$.

ヘロト 人間 とくほとくほとう

₹ 990

Picture for $n = 2, d \ge 4$

Define

$$\rho(n, d) = \max\{\mu(I) \mid I \in \mathcal{T}(n, d)\}$$

$$\rho^{s}(n, d) = \max\{\mu(I) \mid I \in \mathcal{T}^{s}(n, d)\}$$

Let n = 2. For any $d \ge 4$:

•
$$\mu(2, d) = \mu^{s}(2, d) = 5;$$

•
$$\rho(2, d) = \rho^{s}(2, d) = d + 1;$$

• for any r with $5 \le r \le d + 1$, there exists $l \in \mathcal{T}^{s}(2, d)$ with $\mu(l) = r$.

イロト 不得 とくほと くほとう

Gaps for $n \ge 3$

If *n* ≥ 3, *d* ≥ 4:

- monomial Togliatti systems with μ(I) = 2n + 1, 2n + 2 are trivial;
- there is no smooth monomial minimal Togliatti system with $\mu(I) = 2n + 3;$

•
$$\rho(n, d) = \binom{n+d-1}{n-1};$$

• if n = 3, for any $d \ge 4$ and r with $\mu(3, d) = 7 \le r \le \rho(3, d) = \binom{d+2}{2}$, there exists $I \in \mathcal{T}(3, d)$ with $\mu(I) = r$.

イロト 不得 とくほ とくほ とう

= 990

Thank you!

Emilia Mezzetti Togliatti systems and artinian ideals failing WLP

イロン イロン イヨン イヨン

References

- E. Togliatti, *Alcuni esempi di superfici algebriche degli iperspazi che rappresentano un'equazione di Laplace*, Comm. Math. Helvetici **1** (1929), 255-272.
- E. Togliatti, Alcune osservazioni sulle superfici razionali che rappresentano equazioni di Laplace, Ann. Mat. Pura Appl. (4) 25 (1946) 325-339.
- H. Brenner and A. Kaid, Syzygy bundles on P² and the Weak Lefschetz Property, Illinois J. Math. 51 (2007), 1299–1308.
- E. Mezzetti, R.M. Miró-Roig and G. Ottaviani: Laplace Equations and the Weak Lefschetz Property, Canad. J. Math. 65 (2013), 634–654.

ヘロト ヘアト ヘビト ヘビト

æ

- G. Ilardi, *Togliatti systems*, Osaka J. Math. **43** (2006), 1–12.
- M. Michałek and R.M. Miró-Roig, *Smooth monomial Togliatti systems of cubics*, arXiv:1310.2529.
- E. Mezzetti and R.M. Miró-Roig, *The minimal number of generators of a Togliatti system*, Ann. Mat. Pura Appl., to appear.
- D. Perkinson, *Inflections of toric varieties*, Michigan Math. J.
 48 (2000), 483–515.

ヘロト 人間 ト ヘヨト ヘヨト

æ