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• Let k be an infinite field.

• By Jordan decomposition Theorem:
conj. classes of n× n nilp. matrices ↔ partitions of n

• Let V be an n-dimensional vector space over k. Fix a
nilpotent X ∈ End(V ) with Jordan partition P and a basis
for V in which X is given by the Jordan matrix JP .

• The commutator of P :
CP = {A ∈Matn(k) | [A, JP ] = 0}.

• The nilpotent commutator of P :
NP = {A ∈ CP |An = 0}.
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Proposition.

(Basili ’03) NP is an irreducible algebraic variety.

Definition.
Q(P ) :=the Jordan type of a generic element of NP .

Describe Q(P ) in terms of P .
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Dominance order
For R = [r1, r2, · · · ] ` n and Q = [q1, q2, · · · ] ` n,

R 4 Q iff OR ⊆ OQ

iff

k∑
i=1

ri ≤
k∑

i=1

qi, for all k ≥ 1.

So Q(P ) dominates all partitions in NP .

• More Generally (Panyushev): Let G be a connected simple
algebraic group and g =Lie G. For a nilpotent e ∈ g, let
O = G.e and define Q(O) as the largest nilpotent orbit meeting
the centraliser of e.
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Note that for all P ` n, [1, · · · , 1] 4 P 4 [n].

Definition.
A partition P is almost rectangular if its biggest and smallest
parts differ by at most 1.

• P is almost rectangular iff P is the Jordan type of a power of
J[n].

Example. P=[3,2,2]:= [7]3

J3
[7]

=



0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0



3

=



0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


.

J[3,2,2] =
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0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
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Proposition.

If P is almost rectangular then P commutes with [n], and
therefore Q(P ) = [n].

Theorem.
(Basili ’03) Number of parts of Q(P ) = r(P ) where r(P ) is
min{r |P = [P1, · · · , Pr] s.t. each Pi is almost rectangular}.

Example.

If P = [5, 4, 3, 3, 2, 1] then [5, 4 3, 3, 2 1] or [5 4, 3, 3 2, 1]
etc. So Q(P ) has 3 parts.

Theorem.(Basili-Iarrobino ’08)

Q(P ) = P iff parts of P differ pairwise by at least 2.
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• For A ∈ NP , A = k[A, JP ] is an artinian algebra.

Theorem.(Basili-Iarrobino ’08)

Let char k = 0 or > n. If A ∈ NP is generic then the partition
given by the Hilbert function of A is conjugate to Q(P ).

Theorem.(Kǒsir-Oblak ’09)

Let char k = 0 or > n. If A ∈ NP is generic then A is
Gorenstein.

⇒[Macaulay] H(A) = (1, 2, · · · , d, hd, hd+1, · · · , hk) such that
d ≥ hd ≥ hd+1 ≥ · · · ≥ hk = 1 and hi−1 − hi ≤ 1, for all i.

Corollary.

For all P , parts of Q(P ) differ pairwise by at least 2, and
therefore Q(Q(P )) = Q(P ). So the map Q is idempotent.
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Theorem.(Kǒsir-Oblak ’09)

Let char k = 0 or > n. If A ∈ NP is generic then A is
Gorenstein.

⇒[Macaulay] H(A) = (1, 2, · · · , d, hd, hd+1, · · · , hk) such that
d ≥ hd ≥ hd+1 ≥ · · · ≥ hk = 1 and hi−1 − hi ≤ 1, for all i.

Corollary.

For all P , parts of Q(P ) differ pairwise by at least 2, and
therefore Q(Q(P )) = Q(P ). So the map Q is idempotent.



• For A ∈ NP , A = k[A, JP ] is an artinian algebra.

Theorem.(Basili-Iarrobino ’08)

Let char k = 0 or > n. If A ∈ NP is generic then the partition
given by the Hilbert function of A is conjugate to Q(P ).
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Poset DP

Let V be an n-dimensional k vectors space and X ∈ End(V ) be
nilpotent of Jordan type P ` n. We define the poset DP as
follows: ([Basili-Iarrobino-K, 10] inspired by P. Oblak’s work)

DP = the basis of V in which X is given by JP ;

v′ < v in DP ⇐⇒ ∃A ∈ UP such that Av |v′ 6= 0.

UP is a maximal nilpotent subalgebra of CP .
∀N ∈ NP , ∃C ∈ CP s.t. CNC−1 ∈ UP .



Let P=[5,4,3,3,2,1].



Properties of DP

The set of vertices that belong to an almost rectangular
subpartition of P and the first and last vertices of every row
above them make a (maximum) chain in DP . Such a chain is
called a simple U -chain.

12	
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Theorem.
([Oblak, ’08]) Let P = (· · · , pnp , · · · ) with np ≥ 0. Then the
biggest part of Q(P ) is i(P ) defined as

max{ana + (a+ 1)na+1 + 2
∑

p>a+1

np | a ≥ 1}.

Theorem.
([K, ’14]) Let P = (pns

s , · · · p
n1
1 ) with ni > 0. Then the smallest

part of Q(P ), is µ(P ) defined as follows.
If pi+1 = pi + 1 for 1 ≤ i ≤ s (P is a “spread”), then

µ(P ) = min{p1 n2i−1 + (p1 + 1)n2j | 1 ≤ i ≤ j ≤ r(P )}.

For an arbitrary P , write P = (P`, · · · , P1) such that each Pk is
a spread. Then µ(P ) = min{µ(P k) | 1 ≤ k ≤ r(P )}, where P k is

obtained from Pk subtracting 2

k−1∑
i=1

r(Pi) from each part.



Thus Q(P ) is determined when it has at most three parts.

Q(P ) is the same as the partition from ”Oblak’s conjecture”.

Example

Let P = [5, 4, 3, 3, 2, 1]. Then i(P ) = 12 and µ(P ) = 1. So
Q(P ) = [12, 5, 1].

12	

5	 1

[K ’13] The partition from Oblak’s conjecture is well-defined.
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Properties of DP

[Basili-Iarrobino-K, ’10] Let C be a simple U -chain in DP and
let P ′ be the partition that corresponds to DP \ C. If C ′ is a
simple U -chain in D′P then C ∪ C ′ is the union of two chains in
the original poset DP .

C	 P’=[3,2,1]	

C’	
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w/ A. Iarrobino, B. Van Steirteghem, and R. Zhao

Let Q be a stable partitions of n. What can we say about

Q−1(Q) = {P ` n | Q(P ) = Q}?

Fact.
For Q = [n], Q−1(Q) is the set of all almost rectangular
partitions of n.

[n], [n]2, · · · , [n]n
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w/ A. Iarrobino, B. Van Steirteghem, and R. Zhao

Let Q be a stable partitions of n. What can we say about

Q−1(Q) = {P ` n | Q(P ) = Q}?

Fact.
For Q = [n], Q−1(Q) is the set of all almost rectangular
partitions of n.

[n] < [n]2 < · · · < [n]n



Theorem
(Iarrobino, K, Van Steirteghem, and R. Zhao)
Let Q = (u, u− r) for r ≥ 2 and u > r. Then all partitions in
Q−1(Q) can be arranged in a (r− 1)× (u− r) table, T (Q), such
that the partition in row k and column ` of the table has k + `
parts.

Example.

Let Q = [8, 3].

(8, 3) (8, [3]2) (8, [3]3)

(5, [6]2) ([8]2, [3]2) ([8]2, [3]3)

(5, [6]3) ([7]2, [4]3) ([7]2, [4]4)

(5, [6]4) (5, [6]5) (5, [6]6)
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T (Q) for Q = [8, 3]:

(8, 3) (8, [3]2) (8, [3]3)

(5, [6]2) ([8]2, [3]2) ([8]2, [3]3)
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Loci equations for Q−1(Q)
(w/ M. Boij, A. Iarrobino, B. Van Steirteghem, and R. Zhao)
For Q = [n], A ∈ UQ ⇔

A =


0 a1 a2 · · · an−1

0 0 a1
. . .

...
...

...
...

. . . a2
0 0 · · · 0 a1
0 0 · · · 0 0

 .

Matrices in N[n] with partition [n]` are defined by

a1 = · · · = a`−1 = 0.

[n] [n]2 [n]3 · · · · · · [n]n

− a1 = 0 a1 = a2 = 0 · · · · · · a1 = · · · = an−1 = 0



For Q = (8, 3)

A ∈ N(8,3) ⇔ A =



0 a1 a2 a3 a4 a5 a6 a7 f1 f2 f3
0 0 a1 a2 a3 a4 a5 a6 0 f1 f2
0 0 0 a1 a2 a3 a4 a5 0 0 f1
0 0 0 0 a1 a2 a3 a4 0 0 0
0 0 0 0 0 a1 a2 a3 0 0 0
0 0 0 0 0 0 a1 a2 0 0 0
0 0 0 0 0 0 0 a1 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 g1 g2 g3 0 b1 b2
0 0 0 0 0 0 g1 g2 0 0 b1
0 0 0 0 0 0 0 g1 0 0 0



Q−1(8, 3) :

(8, 3) (8, [3]2) (8, [3]3)
(5, [6]2) ([8]2, [3]2) ([8]2, [3]3)
(5, [6]3) ([7]2, [4]3) ([7]2, [4]4)
(5, [6]4) (5, [6]5) (5, [6]6)

b1 = 0 b1 = b2 = 0
a1 = 0 a1 = b1 = 0 a1 = b1 = b2 = 0
a1 = a2 = 0 a1 = a2 = b1 = 0 a1 = a2 = b1 = q1 = 0
a1 = a2 = a3 = 0 a1 = a2 = a3 = q2 = 0 a1 = a2 = a3 = q1 = Q2 = 0



For Q = (8, 3)

A ∈ N(8,3) ⇔ A =



0 a1 a2 a3 a4 a5 a6 a7 f1 f2 f3
0 0 a1 a2 a3 a4 a5 a6 0 f1 f2
0 0 0 a1 a2 a3 a4 a5 0 0 f1
0 0 0 0 a1 a2 a3 a4 0 0 0
0 0 0 0 0 a1 a2 a3 0 0 0
0 0 0 0 0 0 a1 a2 0 0 0
0 0 0 0 0 0 0 a1 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 g1 g2 g3 0 b1 b2
0 0 0 0 0 0 g1 g2 0 0 b1
0 0 0 0 0 0 0 g1 0 0 0



b1 = 0 b1 = b2 = 0
a1 = 0 a1 = b1 = 0 a1 = b1 = b2 = 0
a1 = a2 = 0 a1 = a2 = b1 = 0 a1 = a2 = b1 = q1 = 0
a1 = a2 = a3 = 0 a1 = a2 = a3 = q2 = 0 a1 = a2 = a3 = q1 = Q2 = 0

Here q1 =

∣∣∣∣∣∣
a3 f1

g1 b2

∣∣∣∣∣∣, q2 =

∣∣∣∣∣∣
a4 f1

g1 b1

∣∣∣∣∣∣ and Q2 =

∣∣∣∣∣∣
a4 f1

g2 b2

∣∣∣∣∣∣ +
∣∣∣∣∣∣

a5 f2

g1 b1

∣∣∣∣∣∣.



Definition.
Let Q = (u, u− r), r ≥ 2. Let Zk,` denote the locus in P(NQ)
defined by functions vanishing on

{A ∈ NQ |A has Jordan type Pk,` ∈ T (Q)}.

Conjecture.

The variety Zk,` is an irreducible complete intersection cut out
by k + `− 2 equations in the coordinates of P(NQ). Of these,
min{k + `− 2, r − 2} are linear and the rest are quadratic.
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that corresponds to the previous quadratic equation in the same
hook or row.
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Thank you!


