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e Let k be an infinite field.

e By Jordan decomposition Theorem:
conj. classes of n X n nilp. matrices <+ partitions of n

e Let V be an n-dimensional vector space over k. Fix a
nilpotent X € End(V) with Jordan partition P and a basis
for V' in which X is given by the Jordan matrix Jp.

e The commutator of P:
Cp ={A € Mat,(k)|[A, Jp] = 0}.
e The nilpotent commutator of P:
Np={AeCp|A" =0}.
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(Basili '03) AMp is an irreducible algebraic variety.

Definition.
Q(P) :=the Jordan type of a generic element of Np.

Describe Q(P) in terms of P.
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For R=[r1,r2,---|Fnand Q = [q1,q2, -] F n,

RxQ iHORQ@Q

k k
iff Zri < Zqi, for all k > 1.
i=1 i=1

So Q(P) dominates all partitions in Np.

e More Generally (Panyushev): Let G be a connected simple
algebraic group and g =Lie GG. For a nilpotent e € g, let

O = G.e and define Q(O) as the largest nilpotent orbit meeting
the centraliser of e.
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Note that for all P+ n, [1,--- ,1] < P < [n].

Definition.

A partition P is almost rectangular if its biggest and smallest
parts differ by at most 1.

e P is almost rectangular iff P is the Jordan type of a power of
Iln)-

Example. P=[3,2,2]:= [7]

0100 00 0 00 0 1 0 0 07
00 1 00 0 0 0000 1 00
000100 0 00000 10

Ji=10 000 10 0 =0 0000 01
00000 10 000000 0
00000 0 1 000000 0
000000 0 Lo 0 00 0 0 O]

r0 1 00 00 01
0 0 1[0 0[0 0
0 0 0/0 0[O0 0
Jigao =|0 0 0[]0 1[0 0
0 0 0/0 0[O0 0
0 0 0[0 0[0 1
Lo o oo of0 o]
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Proposition.

If P is almost rectangular then P commutes with [n], and
therefore Q(P) = [n].

Theorem.

(Basili '03) Number of parts of Q(P) = r(P) where r(P) is
min{r| P =[Py, ---, P;] s.t. each P; is almost rectangular}.
Example.

If P=[5,4,3,3,2,1] then [5,4 3,3,2 1]or[6 4,3,3 2,1]
etc. So Q(P) has 3 parts.

Theorem.(Basili-larrobino ’08)

Q(P) = P iff parts of P differ pairwise by at least 2.
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e For A € Np, A=Kk[A, Jp] is an artinian algebra.

Theorem.(Basili-larrobino ’08)

Let char k =0 or > n. If A € Np is generic then the partition
given by the Hilbert function of A is conjugate to Q(P).

Theorem.(Kosir-Oblak '09)
Let char k = 0 or > n. If A € Np is generic then A is
Gorenstein.

=[Macaulay] H(A) = (1,2 ydyhgy hgr1, -+, hg) such that
dzhdzhd+12"'th—1a’ndhz_1_h < 1, for all 4.

Corollary.

For all P, parts of Q(P) differ pairwise by at least 2, and
therefore Q(Q(P)) = Q(P). So the map Q is idempotent.



Poset Dp

Let V be an n-dimensional k vectors space and X € End(V) be

nilpotent of Jordan type P F n. We define the poset Dp as

follows: ([Basili-Iarrobino-K, 10] inspired by P. Oblak’s work)
Dp = the basis of V' in which X is given by Jp;

v/ <wvin Dp <= JA € Up such that Av|, # 0.

Up is a maximal nilpotent subalgebra of Cp.
VN ENP, 4C € Cp s.t. CNC! € Up.
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called a simple U-chain.



Properties of Dp

The set of vertices that belong to an almost rectangular
subpartition of P and the first and last vertices of every row
above them make a (maximum) chain in Dp. Such a chain is
called a simple U-chain.



Theorem.
([Oblak, ’08]) Let P = (--- ,p™,---) with n, > 0. Then the
biggest part of Q(P) is i(P) defined as

max{an, + (a + )ng41 + 2 Z npla > 1}.
p>a+1

Theorem.

(K, ’14]) Let P = (pZs,---p}*) with n; > 0. Then the smallest
part of Q(P), is u(P) defined as follows.
Ifpivi=pi+1forl<i<s(Pisa “spread”), then

p(P) = min{py ng;—1 + (p1 + D)ng; |1 < i < j < r(P)}.
For an arbitrary P, write P = (.fg, -+, Pp) such that each Py is
a spread. Then p(P) = min{u(Py) |1 <k <r(P)}, where Py is
k—1

obtained from Py subtracting QZT(Pi) from each part.
i=1
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Example
Let P =[5,4,3,3,2,1]. Then i(P) =12 and u(P) = 1. So
Q(P) = [12,5,1].



Thus Q(P) is determined when it has at most three parts.
Q(P) is the same as the partition from ”Oblak’s conjecture”.

Example
Let P =[5,4,3,3,2,1]. Then i(P) =12 and u(P) = 1. So
Q(P) = [12,5,1].

hasd

I

I

. I

I

|
,,,,,,,,,,,,,,,,,,,,,



Thus Q(P) is determined when it has at most three parts.
Q(P) is the same as the partition from ”Oblak’s conjecture”.
Example

Let P =1[5,4,3,3,2,1]. Then i(P) =12 and p(P) =1. So
Q(P) = [12,5,1].
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[K ’13] The partition from Oblak’s conjecture is well-defined.



Properties of Dp



Properties of Dp

[Basili-Iarrobino-K, ’10] Let C' be a simple U-chain in Dp and
let P’ be the partition that corresponds to Dp \ C. If C’ is a
simple U-chain in D then C' U C’ is the union of two chains in

the original poset Dp.



Properties of Dp

[Basili-Iarrobino-K, ’10] Let C' be a simple U-chain in Dp and
let P’ be the partition that corresponds to Dp \ C. If C’ is a
simple U-chain in D then C' U C’ is the union of two chains in

the original poset Dp.

P'=(3.2,1]

VARV
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w/ A. larrobino, B. Van Steirteghem, and R. Zhao
Let @ be a stable partitions of n. What can we say about

Q@) ={PFn|QP)=Q)}?

Fact.
For Q = [n], Q71(Q) is the set of all almost rectangular
partitions of n.



Theorem

(TIarrobino, K, Van Steirteghem, and R. Zhao)

Let Q = (u,u — ) for r > 2 and w > r. Then all partitions in
Q7 1(Q) can be arranged in a (r — 1) x (u — ) table, T(Q), such
that the partition in row k& and column ¢ of the table has k + ¢
parts.



Theorem

(Iarrobino, K, Van Steirteghem, and R. Zhao)

Let Q = (u,u — ) for r > 2 and w > r. Then all partitions in
Q7 1(Q) can be arranged in a (r — 1) x (u — ) table, T(Q), such
that the partition in row k& and column ¢ of the table has k + ¢
parts.

Example.
Let @ = [8,3].
(8,3) | (8,03 [ B3,
(5.16]) | (8], [3]%) | (8], [3]°)
(5. [6]%) [ (7%, [4]%) | ([71%, 4]
G.6]) ] (.06 [ (5,169
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[8,3]:

T(Q) for Q




Loci equations for Q7 1(Q)
(w/ M. Boij, A. Iarrobino, B. Van Steirteghem, and R. Zhao)
For Q =[n], Acly &

0 ap az -+ ap
0 0 al

A= . . ) _
. . . . a9
o o0 --- 0 ai
0 O 0 0

Matrices in N, with partition [n]‘ are defined by

a1:---:ag_1:0.




For Q = (8,3)
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For Q = (8, 3)

0 a1 a2 a3 a4 a5 as a7 | f1 f2 f3

0 0 ay ag as ag as ag 0 f1 fo

0 0 0 ay ag as ay as 0 0 f1

0 0 0 0 ay ag as ag 0 0 0

0 0 0 0 0 ay ag as 0 0 0

A€NggeA=| 0 0 0 0 0 0 a a |0 0 0

0 0 0 0 0 0 0 ay 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 g1 92 93 0 b1 b2

0 0 0 0 0 0 g g2]0 0 b

0 0 0 0 0 0 0 g1 0 0 0

by = 0 by = by = 0

0,120 a1:b1:0 a1:b1:b2:0
a1:a2:0 al—a2:b1:0 a1:a2:b1:q1:0
ag=w=a3=0|lan==a3=q@=0|an=a=a3=q¢=0Q2=0

as  f1 as  f1 a5 f2

and Qo =

Here ¢, = ‘ +

g1 b1 g2 b2 g1 b1
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Let Q@ = (u,u —7), 7 > 2. Let 3j ¢ denote the locus in P(Np)
defined by functions vanishing on

{A € Ng| A has Jordan type P, € T(Q)}.

Conjecture.

The variety 3j ¢ is an irreducible complete intersection cut out
by k + ¢ — 2 equations in the coordinates of P(Ng). Of these,
min{k + ¢ — 2,7 — 2} are linear and the rest are quadratic.

Linar and quadratic
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Let Q@ = (u,u —7), 7 > 2. Let 3j ¢ denote the locus in P(Np)
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Definition.
Let Q@ = (u,u —7), 7 > 2. Let 3j ¢ denote the locus in P(Np)
defined by functions vanishing on

{A € Ng| A has Jordan type P,y € T(Q)}.

Conjecture.

The variety 3 is an irreducible complete intersection cut out
by k + ¢ — 2 equations in the coordinates of P(Ng). Of these,
min{k + ¢ — 2,7 — 2} are linear and the rest are quadratic.

The m-th quadratic equation in a single B/C hook or A row is
the sum of m two by two minors of a 2m x 2 matrix that
depends on the row or hook, and is a submatrix of the matrix
that corresponds to the previous quadratic equation in the same
hook or row.



Thank you!



