Equations of loci in tables of commuting Jordan types

Leila Khatami

Union College

Banff, Alberta, Canada $_{\rm March\ 2016}$

 $\bullet\,$ Let k be an infinite field.

- $\bullet~$ Let k~ be an infinite field.
- By Jordan decomposition Theorem: conj. classes of $n \times n$ nilp. matrices \leftrightarrow partitions of n

- $\bullet\,$ Let k be an infinite field.
- By Jordan decomposition Theorem: conj. classes of $n \times n$ nilp. matrices \leftrightarrow partitions of n
- Let V be an n-dimensional vector space over k. Fix a nilpotent $X \in \text{End}(V)$ with Jordan partition P and a basis for V in which X is given by the Jordan matrix J_P .

- Let k be an infinite field.
- By Jordan decomposition Theorem: conj. classes of $n \times n$ nilp. matrices \leftrightarrow partitions of n
- Let V be an n-dimensional vector space over k. Fix a nilpotent $X \in \text{End}(V)$ with Jordan partition P and a basis for V in which X is given by the Jordan matrix J_P .
- The commutator of P: $C_P = \{A \in \mathcal{M}at_n(\mathsf{k}) \mid [A, J_P] = 0\}.$
- The nilpotent commutator of P: $\mathcal{N}_P = \{A \in \mathcal{C}_P \mid A^n = 0\}.$

(Basili '03) \mathcal{N}_P is an irreducible algebraic variety.

(Basili '03) \mathcal{N}_P is an irreducible algebraic variety.

Definition.

Q(P) := the Jordan type of a generic element of \mathcal{N}_P .

(Basili '03) \mathcal{N}_P is an irreducible algebraic variety.

Definition.

Q(P) := the Jordan type of a generic element of \mathcal{N}_P .

Describe Q(P) in terms of P.

Dominance order For $R = [r_1, r_2, \cdots] \vdash n$ and $Q = [q_1, q_2, \cdots] \vdash n$, $R \preccurlyeq Q$ iff $\mathcal{O}_R \subseteq \overline{\mathcal{O}}_Q$ iff $\sum_{i=1}^k r_i \leq \sum_{i=1}^k q_i$, for all $k \geq 1$.

Dominance order For $R = [r_1, r_2, \cdots] \vdash n$ and $Q = [q_1, q_2, \cdots] \vdash n$, $R \preccurlyeq Q$ iff $\mathcal{O}_R \subseteq \overline{\mathcal{O}}_Q$ iff $\sum_{i=1}^k r_i \leq \sum_{i=1}^k q_i$, for all $k \geq 1$.

So Q(P) dominates all partitions in \mathcal{N}_P .

So Q(P) dominates all partitions in \mathcal{N}_P .

• More Generally (Panyushev): Let G be a connected simple algebraic group and \mathfrak{g} =Lie G. For a nilpotent $e \in \mathfrak{g}$, let $\mathcal{O} = G.e$ and define $Q(\mathcal{O})$ as the largest nilpotent orbit meeting the centraliser of e.

Definition.

A partition P is almost rectangular if its biggest and smallest parts differ by at most 1.

Example. P = [3,2,2]

Definition.

A partition P is almost rectangular if its biggest and smallest parts differ by at most 1.

• P is almost rectangular iff P is the Jordan type of a power of $J_{[n]}$.

Example. P = [3,2,2]

Definition.

A partition P is almost rectangular if its biggest and smallest parts differ by at most 1.

• P is almost rectangular iff P is the Jordan type of a power of $J_{[n]}.$

Example. $P = [3,2,2] := [7]^3$

Definition.

A partition P is almost rectangular if its biggest and smallest parts differ by at most 1.

• P is almost rectangular iff P is the Jordan type of a power of $J_{[n]}$.

Example. $P = [3,2,2] := [7]^3$

$$J_{[7]}^{3} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}^{3} = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

If P is almost rectangular then P commutes with [n], and therefore Q(P) = [n].

If P is almost rectangular then P commutes with [n], and therefore Q(P) = [n].

Theorem.

(Basili '03) Number of parts of Q(P) = r(P) where r(P) is $\min\{r \mid P = [P_1, \dots, P_r] \text{ s.t. each } P_i \text{ is almost rectangular}\}.$

If P is almost rectangular then P commutes with [n], and therefore Q(P) = [n].

Theorem.

(Basili '03) Number of parts of Q(P) = r(P) where r(P) is $\min\{r \mid P = [P_1, \dots, P_r] \text{ s.t. each } P_i \text{ is almost rectangular}\}.$

Example.

If P = [5, 4, 3, 3, 2, 1] then [5, 4, 3, 3, 2, 1] or [5, 4, 3, 3, 2, 1] etc. So Q(P) has 3 parts.

If P is almost rectangular then P commutes with [n], and therefore Q(P) = [n].

Theorem.

(Basili '03) Number of parts of Q(P) = r(P) where r(P) is $\min\{r \mid P = [P_1, \dots, P_r] \text{ s.t. each } P_i \text{ is almost rectangular}\}.$

Example.

If P = [5, 4, 3, 3, 2, 1] then [5, 4, 3, 3, 2, 1] or [5, 4, 3, 3, 2, 1] etc. So Q(P) has 3 parts.

Theorem.(Basili-Iarrobino '08)

Q(P) = P iff parts of P differ pairwise by at least 2.

Theorem.(Basili-Iarrobino '08)

Let char $\mathbf{k} = 0$ or > n. If $A \in \mathcal{N}_P$ is generic then the partition given by the Hilbert function of \mathcal{A} is conjugate to Q(P).

Theorem.(Basili-Iarrobino '08)

Let char $\mathbf{k} = 0$ or > n. If $A \in \mathcal{N}_P$ is generic then the partition given by the Hilbert function of \mathcal{A} is conjugate to Q(P).

Theorem.(Basili-Iarrobino '08)

Let char $\mathbf{k} = 0$ or > n. If $A \in \mathcal{N}_P$ is generic then the partition given by the Hilbert function of \mathcal{A} is conjugate to Q(P).

Theorem.(Kŏsir-Oblak '09)

Let char $\mathsf{k} = 0$ or > n. If $A \in \mathcal{N}_P$ is generic then \mathcal{A} is Gorenstein.

Theorem.(Basili-Iarrobino '08)

Let char $\mathbf{k} = 0$ or > n. If $A \in \mathcal{N}_P$ is generic then the partition given by the Hilbert function of \mathcal{A} is conjugate to Q(P).

Theorem.(Kŏsir-Oblak '09)

Let char $\mathsf{k} = 0$ or > n. If $A \in \mathcal{N}_P$ is generic then \mathcal{A} is Gorenstein.

 $\Rightarrow [\text{Macaulay}] \ H(\mathcal{A}) = (1, 2, \cdots, d, h_d, h_{d+1}, \cdots, h_k) \text{ such that} \\ d \ge h_d \ge h_{d+1} \ge \cdots \ge h_k = 1 \text{ and } h_{i-1} - h_i \le 1, \text{ for all } i.$

Theorem.(Basili-Iarrobino '08)

Let char $\mathbf{k} = 0$ or > n. If $A \in \mathcal{N}_P$ is generic then the partition given by the Hilbert function of \mathcal{A} is conjugate to Q(P).

Theorem.(Kŏsir-Oblak '09)

Let char $\mathsf{k} = 0$ or > n. If $A \in \mathcal{N}_P$ is generic then \mathcal{A} is Gorenstein.

 $\Rightarrow [\text{Macaulay}] \ H(\mathcal{A}) = (1, 2, \cdots, d, h_d, h_{d+1}, \cdots, h_k) \text{ such that} \\ d \ge h_d \ge h_{d+1} \ge \cdots \ge h_k = 1 \text{ and } h_{i-1} - h_i \le 1, \text{ for all } i.$

Corollary.

For all P, parts of Q(P) differ pairwise by at least 2, and therefore Q(Q(P)) = Q(P). So the map Q is idempotent.

$\textbf{Poset} \,\, \mathcal{D}_P$

Let V be an n-dimensional k vectors space and $X \in \text{End}(V)$ be nilpotent of Jordan type $P \vdash n$. We define the poset \mathcal{D}_P as follows: ([Basili-Iarrobino-K, 10] inspired by P. Oblak's work)

$$\mathcal{D}_P = \text{the basis of } V \text{ in which } X \text{ is given by } J_P;$$

 $v' < v \text{ in } \mathcal{D}_P \iff \exists A \in \mathcal{U}_P \text{ such that } Av \mid_{v'} \neq 0.$

 \mathcal{U}_P is a maximal nilpotent subalgebra of \mathcal{C}_P . $\forall N \in \mathcal{N}_P, \exists C \in \mathcal{C}_P \text{ s.t. } CNC^{-1} \in \mathcal{U}_P.$

Let
$$P = [5,4,3,3,2,1]$$
.

The set of vertices that belong to an almost rectangular subpartition of P and the first and last vertices of every row above them make a (maximum) chain in \mathcal{D}_P . Such a chain is called a simple U-chain.

The set of vertices that belong to an almost rectangular subpartition of P and the first and last vertices of every row above them make a (maximum) chain in \mathcal{D}_P . Such a chain is called a simple U-chain.

Theorem.

([Oblak, '08]) Let $P = (\cdots, p^{n_p}, \cdots)$ with $n_p \ge 0$. Then the biggest part of Q(P) is i(P) defined as

$$\max\{an_a + (a+1)n_{a+1} + 2\sum_{p>a+1} n_p \,|\, a \ge 1\}.$$

Theorem.

([K, '14]) Let $P = (p_s^{n_s}, \cdots p_1^{n_1})$ with $n_i > 0$. Then the smallest part of Q(P), is $\mu(P)$ defined as follows. If $p_{i+1} = p_i + 1$ for $1 \le i \le s$ (P is a "spread"), then

$$\mu(P) = \min\{p_1 \, n_{2i-1} + (p_1 + 1)n_{2j} \, | \, 1 \le i \le j \le r(P)\}.$$

For an arbitrary P, write $P = (P_{\ell}, \dots, P_1)$ such that each P_k is a spread. Then $\mu(P) = \min\{\mu(\overline{P}_k) \mid 1 \le k \le r(P)\}$, where \overline{P}_k is obtained from P_k subtracting $2\sum_{i=1}^{k-1} r(P_i)$ from each part. Thus Q(P) is determined when it has at most three parts.

Example

Let P = [5, 4, 3, 3, 2, 1]. Then i(P) = 12 and $\mu(P) = 1$. So Q(P) = [12, 5, 1].

Example

Let P = [5, 4, 3, 3, 2, 1]. Then i(P) = 12 and $\mu(P) = 1$. So Q(P) = [12, 5, 1].

Example

Let P = [5, 4, 3, 3, 2, 1]. Then i(P) = 12 and $\mu(P) = 1$. So Q(P) = [12, 5, 1].

[K '13] The partition from Oblak's conjecture is well-defined.

[Basili-Iarrobino-K, '10] Let C be a simple U-chain in \mathcal{D}_P and let P' be the partition that corresponds to $\mathcal{D}_P \setminus C$. If C' is a simple U-chain in \mathcal{D}'_P then $C \cup C'$ is the union of two chains in the original poset \mathcal{D}_P .

[Basili-Iarrobino-K, '10] Let C be a simple U-chain in \mathcal{D}_P and let P' be the partition that corresponds to $\mathcal{D}_P \setminus C$. If C' is a simple U-chain in \mathcal{D}'_P then $C \cup C'$ is the union of two chains in the original poset \mathcal{D}_P .

w/ A. Iarrobino, B. Van Steirteghem, and R. Zhao Let Q be a stable partitions of n. What can we say about

$$\mathcal{Q}^{-1}(Q) = \{ P \vdash n \mid \mathcal{Q}(P) = Q \}?$$

w/ A. Iarrobino, B. Van Steirteghem, and R. Zhao Let Q be a stable partitions of n. What can we say about

$$\mathcal{Q}^{-1}(Q) = \{ P \vdash n \mid \mathcal{Q}(P) = Q \}?$$

Fact.

For Q = [n], $Q^{-1}(Q)$ is the set of all almost rectangular partitions of n.

$$[n], [n]^2, \cdots, [n]^n$$

w/ A. Iarrobino, B. Van Steirteghem, and R. Zhao Let Q be a stable partitions of n. What can we say about

$$\mathcal{Q}^{-1}(Q) = \{ P \vdash n \mid \mathcal{Q}(P) = Q \}?$$

Fact.

For Q = [n], $Q^{-1}(Q)$ is the set of all almost rectangular partitions of n.

$$[n] \succcurlyeq [n]^2 \succcurlyeq \cdots \succcurlyeq [n]^n$$

Theorem

(Iarrobino, K, Van Steirteghem, and R. Zhao) Let Q = (u, u - r) for $r \ge 2$ and u > r. Then all partitions in $Q^{-1}(Q)$ can be arranged in a $(r - 1) \times (u - r)$ table, $\mathcal{T}(Q)$, such that the partition in row k and column ℓ of the table has $k + \ell$ parts.

Theorem

(Iarrobino, K, Van Steirteghem, and R. Zhao) Let Q = (u, u - r) for $r \ge 2$ and u > r. Then all partitions in $Q^{-1}(Q)$ can be arranged in a $(r - 1) \times (u - r)$ table, $\mathcal{T}(Q)$, such that the partition in row k and column ℓ of the table has $k + \ell$ parts.

Example.

Let Q = [8, 3].

(8,3)	$(8, [3]^2)$	$(8, [3]^3)$
$(5, [6]^2)$	$([8]^2, [3]^2)$	$([8]^2, [3]^3)$
$(5, [6]^3)$	$([7]^2, [4]^3)$	$([7]^2, [4]^4)$
$(5, [6]^4)$	$(5, [6]^5)$	$(5, [6]^6)$

	(8,3)	$(8, [3]^2)$	$(8, [3]^3)$
$\mathcal{T}(O)$ for $O = \begin{bmatrix} 8 & 2 \end{bmatrix}$	$(5, [6]^2)$	$([8]^2, [3]^2)$	$([8]^2, [3]^3)$
f(Q) for $Q = [6, 5]$.	$(5, [6]^3)$	$([7]^2, [4]^3)$	$([7]^2, [4]^4)$
	$(5, [6]^4)$	$(5, [6]^5)$	$(5, [6]^6)$

•••••	•••••	•••••
• • •	0 0 0	* * *
••••	•••	
••••	• • • •	••••
••••• •• •	••••	• • • •

Loci equations for $Q^{-1}(Q)$ (w/ M. Boij, A. Iarrobino, B. Van Steirteghem, and R. Zhao) For $Q = [n], A \in \mathcal{U}_Q \Leftrightarrow$

$$A = \begin{pmatrix} 0 & a_1 & a_2 & \cdots & a_{n-1} \\ 0 & 0 & a_1 & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & a_2 \\ 0 & 0 & \cdots & 0 & a_1 \\ 0 & 0 & \cdots & 0 & 0 \end{pmatrix}$$

Matrices in $\mathcal{N}_{[n]}$ with partition $[n]^{\ell}$ are defined by

$$a_1 = \dots = a_{\ell-1} = 0.$$

$$[n] \mid [n]^2 \mid [n]^3 \mid \cdots \mid [n]^n$$

$$- | a_1 = 0 | a_1 = a_2 = 0 | \cdots | a_1 = \cdots = a_{n-1} = 0$$

For
$$Q = (8, 3)$$

Definition.

Let $Q = (u, u - r), r \ge 2$. Let $\mathfrak{Z}_{k,\ell}$ denote the locus in $\mathbb{P}(\mathcal{N}_Q)$ defined by functions vanishing on

 $\{A \in \mathcal{N}_Q \mid A \text{ has Jordan type } P_{k,\ell} \in \mathcal{T}(Q)\}.$

Definition.

Let $Q = (u, u - r), r \ge 2$. Let $\mathfrak{Z}_{k,\ell}$ denote the locus in $\mathbb{P}(\mathcal{N}_Q)$ defined by functions vanishing on

$$\{A \in \mathcal{N}_Q \mid A \text{ has Jordan type } P_{k,\ell} \in \mathcal{T}(Q)\}.$$

Conjecture.

The variety $\mathfrak{Z}_{k,\ell}$ is an irreducible complete intersection cut out by $k + \ell - 2$ equations in the coordinates of $\mathbb{P}(\mathcal{N}_Q)$. Of these, $\min\{k + \ell - 2, r - 2\}$ are linear and the rest are quadratic.

Definition.

Let $Q = (u, u - r), r \ge 2$. Let $\mathfrak{Z}_{k,\ell}$ denote the locus in $\mathbb{P}(\mathcal{N}_Q)$ defined by functions vanishing on

$$\{A \in \mathcal{N}_Q \mid A \text{ has Jordan type } P_{k,\ell} \in \mathcal{T}(Q)\}.$$

Conjecture.

The variety $\mathfrak{Z}_{k,\ell}$ is an irreducible complete intersection cut out by $k + \ell - 2$ equations in the coordinates of $\mathbb{P}(\mathcal{N}_Q)$. Of these, $\min\{k + \ell - 2, r - 2\}$ are linear and the rest are quadratic.

Definition. Let $Q = (u, u - r), r \ge 2$. Let $\mathfrak{Z}_{k,\ell}$ denote the locus in $\mathbb{P}(\mathcal{N}_Q)$ defined by functions vanishing on

 $\{A \in \mathcal{N}_Q \mid A \text{ has Jordan type } P_{k,\ell} \in \mathcal{T}(Q)\}.$

Definition. Let $Q = (u, u - r), r \ge 2$. Let $\mathfrak{Z}_{k,\ell}$ denote the locus in $\mathbb{P}(\mathcal{N}_Q)$ defined by functions vanishing on

 $\{A \in \mathcal{N}_Q \mid A \text{ has Jordan type } P_{k,\ell} \in \mathcal{T}(Q)\}.$

Conjecture.

The variety $\mathfrak{Z}_{k,\ell}$ is an irreducible complete intersection cut out by $k + \ell - 2$ equations in the coordinates of $\mathbb{P}(\mathcal{N}_Q)$. Of these, $\min\{k + \ell - 2, r - 2\}$ are linear and the rest are quadratic.

The *m*-th quadratic equation in a single B/C hook or A row is the sum of *m* two by two minors of a $2m \times 2$ matrix that depends on the row or hook, and is a submatrix of the matrix that corresponds to the previous quadratic equation in the same hook or row.

Thank you!