# Equations of loci in tables of commuting Jordan types 

Leila Khatami

Union College

Banff, Alberta, Canada
March 2016

- Let k be an infinite field.
- Let k be an infinite field.
- By Jordan decomposition Theorem: conj. classes of $n \times n$ nilp. matrices $\leftrightarrow$ partitions of $n$
- Let k be an infinite field.
- By Jordan decomposition Theorem: conj. classes of $n \times n$ nilp. matrices $\leftrightarrow$ partitions of $n$
- Let $V$ be an $n$-dimensional vector space over k. Fix a nilpotent $X \in \operatorname{End}(V)$ with Jordan partition $P$ and a basis for $V$ in which $X$ is given by the Jordan matrix $J_{P}$.
- Let k be an infinite field.
- By Jordan decomposition Theorem: conj. classes of $n \times n$ nilp. matrices $\leftrightarrow$ partitions of $n$
- Let $V$ be an $n$-dimensional vector space over k. Fix a nilpotent $X \in \operatorname{End}(V)$ with Jordan partition $P$ and a basis for $V$ in which $X$ is given by the Jordan matrix $J_{P}$.
- The commutator of $P$ :

$$
\mathcal{C}_{P}=\left\{A \in \operatorname{Mat}_{n}(\mathrm{k}) \mid\left[A, J_{P}\right]=0\right\} .
$$

- The nilpotent commutator of $P$ :
$\mathcal{N}_{P}=\left\{A \in \mathcal{C}_{P} \mid A^{n}=0\right\}$.


## Proposition.

(Basili '03) $\mathcal{N}_{P}$ is an irreducible algebraic variety.

## Proposition.

(Basili '03) $\mathcal{N}_{P}$ is an irreducible algebraic variety.
Definition.
$Q(P):=$ the Jordan type of a generic element of $\mathcal{N}_{P}$.

## Proposition.

(Basili '03) $\mathcal{N}_{P}$ is an irreducible algebraic variety.
Definition.
$Q(P):=$ the Jordan type of a generic element of $\mathcal{N}_{P}$.

$$
\text { Describe } Q(P) \text { in terms of } P \text {. }
$$

Dominance order
For $R=\left[r_{1}, r_{2}, \cdots\right] \vdash n$ and $Q=\left[q_{1}, q_{2}, \cdots\right] \vdash n$,

$$
\begin{array}{ll}
R \preccurlyeq Q & \text { iff } \mathcal{O}_{R} \subseteq \overline{\mathcal{O}}_{Q} \\
& \text { iff } \sum_{i=1}^{k} r_{i} \leq \sum_{i=1}^{k} q_{i}, \text { for all } k \geq 1
\end{array}
$$

Dominance order
For $R=\left[r_{1}, r_{2}, \cdots\right] \vdash n$ and $Q=\left[q_{1}, q_{2}, \cdots\right] \vdash n$,

$$
\begin{array}{ll}
R \preccurlyeq Q & \text { iff } \mathcal{O}_{R} \subseteq \overline{\mathcal{O}}_{Q} \\
& \text { iff } \sum_{i=1}^{k} r_{i} \leq \sum_{i=1}^{k} q_{i}, \text { for all } k \geq 1
\end{array}
$$

So $Q(P)$ dominates all partitions in $\mathcal{N}_{P}$.

## Dominance order

For $R=\left[r_{1}, r_{2}, \cdots\right] \vdash n$ and $Q=\left[q_{1}, q_{2}, \cdots\right] \vdash n$,

$$
\begin{array}{ll}
R \preccurlyeq Q & \text { iff } \mathcal{O}_{R} \subseteq \overline{\mathcal{O}}_{Q} \\
& \text { iff } \sum_{i=1}^{k} r_{i} \leq \sum_{i=1}^{k} q_{i}, \text { for all } k \geq 1
\end{array}
$$

So $Q(P)$ dominates all partitions in $\mathcal{N}_{P}$.

- More Generally (Panyushev): Let $G$ be a connected simple algebraic group and $\mathfrak{g}=$ Lie $G$. For a nilpotent $e \in \mathfrak{g}$, let $\mathcal{O}=G . e$ and define $Q(\mathcal{O})$ as the largest nilpotent orbit meeting the centraliser of $e$.

Note that for all $P \vdash n,[1, \cdots, 1] \preccurlyeq P \preccurlyeq[n]$.

Note that for all $P \vdash n,[1, \cdots, 1] \preccurlyeq P \preccurlyeq[n]$.
Definition.
A partition $P$ is almost rectangular if its biggest and smallest parts differ by at most 1 .

Example. $\mathrm{P}=[3,2,2]$

Note that for all $P \vdash n,[1, \cdots, 1] \preccurlyeq P \preccurlyeq[n]$.
Definition.
A partition $P$ is almost rectangular if its biggest and smallest parts differ by at most 1 .

- $P$ is almost rectangular iff $P$ is the Jordan type of a power of $J_{[n]}$.
Example. $\mathrm{P}=[3,2,2]$

Note that for all $P \vdash n,[1, \cdots, 1] \preccurlyeq P \preccurlyeq[n]$.
Definition.
A partition $P$ is almost rectangular if its biggest and smallest parts differ by at most 1 .

- $P$ is almost rectangular iff $P$ is the Jordan type of a power of $J_{[n]}$.
Example. $\mathrm{P}=[3,2,2]:=[7]^{3}$

Note that for all $P \vdash n,[1, \cdots, 1] \preccurlyeq P \preccurlyeq[n]$.
Definition.
A partition $P$ is almost rectangular if its biggest and smallest parts differ by at most 1 .

- $P$ is almost rectangular iff $P$ is the Jordan type of a power of $J_{[n]}$.
Example. $P=[3,2,2]:=[7]^{3}$

$$
\begin{aligned}
J_{[7]}^{3}=\left[\begin{array}{lllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]^{3}=\left[\begin{array}{lllllll}
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] . \\
J_{[3,2,2]}=\left[\begin{array}{lll|ll|ll}
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] .
\end{aligned}
$$

## Proposition.

If $P$ is almost rectangular then $P$ commutes with $[n]$, and therefore $Q(P)=[n]$.

## Proposition.

If $P$ is almost rectangular then $P$ commutes with $[n]$, and therefore $Q(P)=[n]$.

Theorem.
(Basili '03) Number of parts of $Q(P)=r(P)$ where $r(P)$ is $\min \left\{r \mid P=\left[P_{1}, \cdots, P_{r}\right]\right.$ s.t. each $P_{i}$ is almost rectangular $\}$.

## Proposition.

If $P$ is almost rectangular then $P$ commutes with $[n]$, and therefore $Q(P)=[n]$.

Theorem.
(Basili '03) Number of parts of $Q(P)=r(P)$ where $r(P)$ is $\min \left\{r \mid P=\left[P_{1}, \cdots, P_{r}\right]\right.$ s.t. each $P_{i}$ is almost rectangular $\}$.

Example.
If $P=[5,4,3,3,2,1]$ then $[5,4 \quad 3,3,2 \quad 1]$ or $\left[\begin{array}{lll}5 & 4,3,3 & 2,1]\end{array}\right.$ etc. So $Q(P)$ has 3 parts.

## Proposition.

If $P$ is almost rectangular then $P$ commutes with $[n]$, and therefore $Q(P)=[n]$.

Theorem.
(Basili '03) Number of parts of $Q(P)=r(P)$ where $r(P)$ is $\min \left\{r \mid P=\left[P_{1}, \cdots, P_{r}\right]\right.$ s.t. each $P_{i}$ is almost rectangular $\}$.

Example.
If $P=[5,4,3,3,2,1]$ then $\left[\begin{array}{lll}5,4 & 3,3,2 & 1\end{array}\right]$ or $\left[\begin{array}{lll}5 & 4,3,3 & 2,1\end{array}\right]$ etc. So $Q(P)$ has 3 parts.

Theorem.(Basili-Iarrobino '08)
$Q(P)=P$ iff parts of $P$ differ pairwise by at least 2 .

- For $A \in \mathcal{N}_{P}, \mathcal{A}=\mathrm{k}\left[A, J_{P}\right]$ is an artinian algebra.
- For $A \in \mathcal{N}_{P}, \mathcal{A}=\mathrm{k}\left[A, J_{P}\right]$ is an artinian algebra.

Theorem.(Basili-Iarrobino '08)
Let char $\mathrm{k}=0$ or $>n$. If $A \in \mathcal{N}_{P}$ is generic then the partition given by the Hilbert function of $\mathcal{A}$ is conjugate to $Q(P)$.

- For $A \in \mathcal{N}_{P}, \mathcal{A}=\mathrm{k}\left[A, J_{P}\right]$ is an artinian algebra.

Theorem.(Basili-Iarrobino '08)
Let char $\mathrm{k}=0$ or $>n$. If $A \in \mathcal{N}_{P}$ is generic then the partition given by the Hilbert function of $\mathcal{A}$ is conjugate to $Q(P)$.


- For $A \in \mathcal{N}_{P}, \mathcal{A}=\mathrm{k}\left[A, J_{P}\right]$ is an artinian algebra.

Theorem.(Basili-Iarrobino '08)
Let char $\mathrm{k}=0$ or $>n$. If $A \in \mathcal{N}_{P}$ is generic then the partition given by the Hilbert function of $\mathcal{A}$ is conjugate to $Q(P)$.


Theorem.(Kǒsir-Oblak '09)
Let char $\mathrm{k}=0$ or $>n$. If $A \in \mathcal{N}_{P}$ is generic then $\mathcal{A}$ is
Gorenstein.

- For $A \in \mathcal{N}_{P}, \mathcal{A}=\mathrm{k}\left[A, J_{P}\right]$ is an artinian algebra.

Theorem.(Basili-Iarrobino '08)
Let char $\mathrm{k}=0$ or $>n$. If $A \in \mathcal{N}_{P}$ is generic then the partition given by the Hilbert function of $\mathcal{A}$ is conjugate to $Q(P)$.


Theorem.(Kǒsir-Oblak '09)
Let char $\mathrm{k}=0$ or $>n$. If $A \in \mathcal{N}_{P}$ is generic then $\mathcal{A}$ is Gorenstein.
$\Rightarrow[$ Macaulay $] H(\mathcal{A})=\left(1,2, \cdots, d, h_{d}, h_{d+1}, \cdots, h_{k}\right)$ such that
$d \geq h_{d} \geq h_{d+1} \geq \cdots \geq h_{k}=1$ and $h_{i-1}-h_{i} \leq 1$, for all $i$.

- For $A \in \mathcal{N}_{P}, \mathcal{A}=\mathrm{k}\left[A, J_{P}\right]$ is an artinian algebra.

Theorem.(Basili-Iarrobino '08)
Let char $\mathrm{k}=0$ or $>n$. If $A \in \mathcal{N}_{P}$ is generic then the partition given by the Hilbert function of $\mathcal{A}$ is conjugate to $Q(P)$.


Theorem.(Kǒsir-Oblak '09)
Let char $\mathrm{k}=0$ or $>n$. If $A \in \mathcal{N}_{P}$ is generic then $\mathcal{A}$ is Gorenstein.
$\Rightarrow[$ Macaulay $] H(\mathcal{A})=\left(1,2, \cdots, d, h_{d}, h_{d+1}, \cdots, h_{k}\right)$ such that
$d \geq h_{d} \geq h_{d+1} \geq \cdots \geq h_{k}=1$ and $h_{i-1}-h_{i} \leq 1$, for all $i$.
Corollary.
For all $P$, parts of $Q(P)$ differ pairwise by at least 2 , and therefore $Q(Q(P))=Q(P)$. So the map $\mathcal{Q}$ is idempotent.
$\underline{\text { Poset } \mathcal{D}_{P}}$

Let $V$ be an $n$-dimensional k vectors space and $X \in \operatorname{End}(V)$ be nilpotent of Jordan type $P \vdash n$. We define the poset $\mathcal{D}_{P}$ as follows: ([Basili-Iarrobino-K, 10] inspired by P. Oblak's work)

$$
\begin{gathered}
\mathcal{D}_{P}=\text { the basis of } V \text { in which } X \text { is given by } J_{P} \\
v^{\prime}<v \text { in } \mathcal{D}_{P} \Longleftrightarrow \exists A \in \mathcal{U}_{P} \text { such that }\left.A v\right|_{v^{\prime}} \neq 0
\end{gathered}
$$

$\mathcal{U}_{P}$ is a maximal nilpotent subalgebra of $\mathcal{C}_{P}$. $\forall N \in \mathcal{N}_{P}, \exists C \in \mathcal{C}_{P}$ s.t. $C N C^{-1} \in \mathcal{U}_{P}$.

Let $P=[5,4,3,3,2,1]$.


## Properties of $\mathcal{D}_{P}$

## Properties of $\mathcal{D}_{P}$

The set of vertices that belong to an almost rectangular subpartition of $P$ and the first and last vertices of every row above them make a (maximum) chain in $\mathcal{D}_{P}$. Such a chain is called a simple $U$-chain.

## Properties of $\mathcal{D}_{P}$

The set of vertices that belong to an almost rectangular subpartition of $P$ and the first and last vertices of every row above them make a (maximum) chain in $\mathcal{D}_{P}$. Such a chain is called a simple $U$-chain.


## Theorem.

([Oblak, '08]) Let $P=\left(\cdots, p^{n_{p}}, \cdots\right)$ with $n_{p} \geq 0$. Then the biggest part of $Q(P)$ is $i(P)$ defined as

$$
\max \left\{a n_{a}+(a+1) n_{a+1}+2 \sum_{p>a+1} n_{p} \mid a \geq 1\right\} .
$$

Theorem.
([K, '14]) Let $P=\left(p_{s}^{n_{s}}, \cdots p_{1}^{n_{1}}\right)$ with $n_{i}>0$. Then the smallest part of $Q(P)$, is $\mu(P)$ defined as follows.
If $p_{i+1}=p_{i}+1$ for $1 \leq i \leq s(P$ is a "spread" $)$, then

$$
\mu(P)=\min \left\{p_{1} n_{2 i-1}+\left(p_{1}+1\right) n_{2 j} \mid 1 \leq i \leq j \leq r(P)\right\} .
$$

For an arbitrary $P$, write $P=\left(P_{\ell}, \cdots, P_{1}\right)$ such that each $P_{k}$ is a spread. Then $\mu(P)=\min \left\{\mu\left(\bar{P}_{k}\right) \mid 1 \leq k \leq r(P)\right\}$, where $\bar{P}_{k}$ is obtained from $P_{k}$ subtracting $2 \sum_{i=1}^{k-1} r\left(P_{i}\right)$ from each part.

Thus $Q(P)$ is determined when it has at most three parts.

Thus $Q(P)$ is determined when it has at most three parts. $Q(P)$ is the same as the partition from "Oblak's conjecture".

Thus $Q(P)$ is determined when it has at most three parts. $Q(P)$ is the same as the partition from "Oblak's conjecture".
Example
Let $P=[5,4,3,3,2,1]$. Then $i(P)=12$ and $\mu(P)=1$. So $Q(P)=[12,5,1]$.

Thus $Q(P)$ is determined when it has at most three parts. $Q(P)$ is the same as the partition from "Oblak's conjecture".
Example
Let $P=[5,4,3,3,2,1]$. Then $i(P)=12$ and $\mu(P)=1$. So $Q(P)=[12,5,1]$.


Thus $Q(P)$ is determined when it has at most three parts. $Q(P)$ is the same as the partition from "Oblak's conjecture". Example
Let $P=[5,4,3,3,2,1]$. Then $i(P)=12$ and $\mu(P)=1$. So $Q(P)=[12,5,1]$.

[ $\left.K^{\prime} 13\right]$ The partition from Oblak's conjecture is well-defined.

## Properties of $\mathcal{D}_{P}$

## Properties of $\mathcal{D}_{P}$

[Basili-Iarrobino-K, '10] Let $C$ be a simple $U$-chain in $\mathcal{D}_{P}$ and let $P^{\prime}$ be the partition that corresponds to $\mathcal{D}_{P} \backslash C$. If $C^{\prime}$ is a simple $U$-chain in $\mathcal{D}_{P}^{\prime}$ then $C \cup C^{\prime}$ is the union of two chains in the original poset $\mathcal{D}_{P}$.

## Properties of $\mathcal{D}_{P}$

[Basili-Iarrobino-K, '10] Let $C$ be a simple $U$-chain in $\mathcal{D}_{P}$ and let $P^{\prime}$ be the partition that corresponds to $\mathcal{D}_{P} \backslash C$. If $C^{\prime}$ is a simple $U$-chain in $\mathcal{D}_{P}^{\prime}$ then $C \cup C^{\prime}$ is the union of two chains in the original poset $\mathcal{D}_{P}$.

w/ A. Iarrobino, B. Van Steirteghem, and R. Zhao
Let $Q$ be a stable partitions of $n$. What can we say about

$$
\mathcal{Q}^{-1}(Q)=\{P \vdash n \mid \mathcal{Q}(P)=Q\} ?
$$

w/ A. Iarrobino, B. Van Steirteghem, and R. Zhao
Let $Q$ be a stable partitions of $n$. What can we say about

$$
\mathcal{Q}^{-1}(Q)=\{P \vdash n \mid \mathcal{Q}(P)=Q\} ?
$$

Fact.
For $Q=[n], \mathcal{Q}^{-1}(Q)$ is the set of all almost rectangular partitions of $n$.

$$
[n], \quad[n]^{2}, \cdots, \quad[n]^{n}
$$

w/ A. Iarrobino, B. Van Steirteghem, and R. Zhao
Let $Q$ be a stable partitions of $n$. What can we say about

$$
\mathcal{Q}^{-1}(Q)=\{P \vdash n \mid \mathcal{Q}(P)=Q\} ?
$$

Fact.
For $Q=[n], \mathcal{Q}^{-1}(Q)$ is the set of all almost rectangular partitions of $n$.

$$
[n] \succcurlyeq[n]^{2} \succcurlyeq \cdots \succcurlyeq[n]^{n}
$$

## Theorem

(Iarrobino, K, Van Steirteghem, and R. Zhao)
Let $Q=(u, u-r)$ for $r \geq 2$ and $u>r$. Then all partitions in $\mathcal{Q}^{-1}(Q)$ can be arranged in a $(r-1) \times(u-r)$ table, $\mathcal{T}(Q)$, such that the partition in row $k$ and column $\ell$ of the table has $k+\ell$ parts.

## Theorem

(Iarrobino, K, Van Steirteghem, and R. Zhao)
Let $Q=(u, u-r)$ for $r \geq 2$ and $u>r$. Then all partitions in $\mathcal{Q}^{-1}(Q)$ can be arranged in a $(r-1) \times(u-r)$ table, $\mathcal{T}(Q)$, such that the partition in row $k$ and column $\ell$ of the table has $k+\ell$ parts.

## Example.

Let $Q=[8,3]$.

| $(8,3)$ | $\left(8,[3]^{2}\right)$ | $\left(8,[3]^{3}\right)$ |
| :---: | :---: | :---: |
| $\left(5,[6]^{2}\right)$ | $\left([8]^{2},[3]^{2}\right)$ | $\left([8]^{2},[3]^{3}\right)$ |
| $\left(5,[6]^{3}\right)$ | $\left([7]^{2},[4]^{3}\right)$ | $\left([7]^{2},[4]^{4}\right)$ |
| $\left(5,[6]^{4}\right)$ | $\left(5,[6]^{5}\right)$ | $\left(5,[6]^{6}\right)$ |


$\mathcal{T}(Q)$ for $Q=[8,3]:$| $(8,3)$ | $\left(8,[3]^{2}\right)$ | $\left(8,[3]^{3}\right)$ |
| :---: | :---: | :---: |
| $\left(5,[6]^{2}\right)$ | $\left([8]^{2},[3]^{2}\right)$ | $\left([8]^{2},[3]^{3}\right)$ |
| $\left(5,[6]^{3}\right)$ | $\left([7]^{2},[4]^{3}\right)$ | $\left([7]^{2},[4]^{4}\right)$ |
| $\left(5,[6]^{4}\right)$ | $\left(5,[6]^{5}\right)$ | $\left(5,[6]^{6}\right)$ |


|  |  |  |
| :---: | :---: | :---: |
|  |  |  |
|  |  |  |
|  |  |  |

Loci equations for $\mathcal{Q}^{-1}(Q)$
(w/ M. Boij, A. Iarrobino, B. Van Steirteghem, and R. Zhao)
For $Q=[n], A \in \mathcal{U}_{Q} \Leftrightarrow$

$$
A=\left(\begin{array}{ccccc}
0 & a_{1} & a_{2} & \cdots & a_{n-1} \\
0 & 0 & a_{1} & \ddots & \vdots \\
\vdots & \vdots & \vdots & \ddots & a_{2} \\
0 & 0 & \cdots & 0 & a_{1} \\
0 & 0 & \cdots & 0 & 0
\end{array}\right)
$$

Matrices in $\mathcal{N}_{[n]}$ with partition $[n]^{\ell}$ are defined by

$$
a_{1}=\cdots=a_{\ell-1}=0
$$

| $[n]$ | $[n]^{2}$ | $[n]^{3}$ | $\cdots$ | $\cdots$ | $[n]^{n}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

$$
\begin{array}{|l|l|l|l|l|}
\hline- & a_{1}=0 & a_{1}=a_{2}=0 & \cdots \cdots & a_{1}=\cdots=a_{n-1}=0 \\
\hline
\end{array}
$$

For $Q=(8,3)$

$$
A \in \mathcal{N}_{(8,3)} \Leftrightarrow A=\left(\begin{array}{cccccccc|ccc}
0 & a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6} & a_{7} & f_{1} & f_{2} & f_{3} \\
0 & 0 & a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6} & 0 & f_{1} & f_{2} \\
0 & 0 & 0 & a_{1} & a_{2} & a_{3} & a_{4} & a_{4} & a_{5} & 0 & 0 \\
f_{1} \\
0 & 0 & 0 & 0 & a_{1} & a_{2} & a_{3} & a_{4} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & a_{1} & a_{2} & a_{3} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & a_{1} & a_{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & a_{1} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & g_{1} & g_{2} & g_{3} & 0 & b_{1} & b_{2} \\
0 & 0 & 0 & 0 & 0 & 0 & g_{1} & g_{2} & 0 & 0 & b_{1} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & g_{1} & 0 & 0 & 0
\end{array}\right)
$$

$$
\mathcal{Q}^{-1}(8,3): \begin{array}{|c|c|c|}
\hline(8,3) & \left(8,[3]^{2}\right) & \left(8,[3]^{3}\right) \\
\cline { 2 - 4 } & \left(5,[6]^{2}\right) & \left([8]^{2},[3]^{2}\right) \\
\hline\left([8]^{2},[3]^{3}\right) \\
\hline\left(5,[6]^{3}\right) & \left([7]^{2},[4]^{3}\right) & \left([7]^{2},[4]^{4}\right) \\
\hline\left(5,[6]^{4}\right) & \left(5,[6]^{5}\right) & \left(5,[6]^{6}\right) \\
\hline
\end{array}
$$

|  | $b_{1}=0$ | $b_{1}=b_{2}=0$ |
| :--- | :--- | :--- |
| $a_{1}=0$ | $a_{1}=b_{1}=0$ | $a_{1}=b_{1}=b_{2}=0$ |
| $a_{1}=a_{2}=0$ | $a_{1}=a_{2}=b_{1}=0$ | $a_{1}=a_{2}=b_{1}=q_{1}=0$ |
| $a_{1}=a_{2}=a_{3}=0$ | $a_{1}=a_{2}=a_{3}=q_{2}=0$ | $a_{1}=a_{2}=a_{3}=q_{1}=Q_{2}=0$ |

For $Q=(8,3)$

$$
A \in \mathcal{N}_{(8,3)} \Leftrightarrow A=\left(\begin{array}{cccccccc|ccc}
0 & a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6} & a_{7} & f_{1} & f_{2} & f_{3} \\
0 & 0 & a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6} & 0 & f_{1} & f_{2} \\
0 & 0 & 0 & a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & 0 & 0 & f_{1} \\
0 & 0 & 0 & 0 & a_{1} & a_{2} & a_{3} & a_{4} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & a_{1} & a_{2} & a_{3} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & a_{1} & a_{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & a_{1} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & g_{1} & g_{2} & g_{3} & 0 & b_{1} & b_{2} \\
0 & 0 & 0 & 0 & 0 & 0 & g_{1} & g_{2} & 0 & 0 & b_{1} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & g_{1} & 0 & 0 & 0
\end{array}\right)
$$

|  | $b_{1}=0$ | $b_{1}=b_{2}=0$ |
| :--- | :--- | :--- |
| $a_{1}=0$ | $a_{1}=b_{1}=0$ | $a_{1}=b_{1}=b_{2}=0$ |
| $a_{1}=a_{2}=0$ | $a_{1}=a_{2}=b_{1}=0$ | $a_{1}=a_{2}=b_{1}=q_{1}=0$ |
| $a_{1}=a_{2}=a_{3}=0$ | $a_{1}=a_{2}=a_{3}=q_{2}=0$ | $a_{1}=a_{2}=a_{3}=q_{1}=Q_{2}=0$ |

Here $q_{1}=\left|\begin{array}{ll}a_{3} & f_{1} \\ g_{1} & b_{2}\end{array}\right|, q_{2}=\left|\begin{array}{cc}a_{4} & f_{1} \\ g_{1} & b_{1}\end{array}\right|$ and $Q_{2}=\left|\begin{array}{cc}a_{4} & f_{1} \\ g_{2} & b_{2}\end{array}\right|+\left|\begin{array}{cc}a_{5} & f_{2} \\ g_{1} & b_{1}\end{array}\right|$.

## Definition.

Let $Q=(u, u-r), r \geq 2$. Let $\mathfrak{Z}_{k, \ell}$ denote the locus in $\mathbb{P}\left(\mathcal{N}_{Q}\right)$ defined by functions vanishing on

$$
\left\{A \in \mathcal{N}_{Q} \mid A \text { has Jordan type } P_{k, \ell} \in \mathcal{T}(Q)\right\}
$$

## Definition.

Let $Q=(u, u-r), r \geq 2$. Let $\mathfrak{Z}_{k, \ell}$ denote the locus in $\mathbb{P}\left(\mathcal{N}_{Q}\right)$ defined by functions vanishing on

$$
\left\{A \in \mathcal{N}_{Q} \mid A \text { has Jordan type } P_{k, \ell} \in \mathcal{T}(Q)\right\}
$$

## Conjecture.

The variety $\mathfrak{Z}_{k, \ell}$ is an irreducible complete intersection cut out by $k+\ell-2$ equations in the coordinates of $\mathbb{P}\left(\mathcal{N}_{Q}\right)$. Of these, $\min \{k+\ell-2, r-2\}$ are linear and the rest are quadratic.

## Definition.

Let $Q=(u, u-r), r \geq 2$. Let $\mathfrak{Z}_{k, \ell}$ denote the locus in $\mathbb{P}\left(\mathcal{N}_{Q}\right)$ defined by functions vanishing on

$$
\left\{A \in \mathcal{N}_{Q} \mid A \text { has Jordan type } P_{k, \ell} \in \mathcal{T}(Q)\right\}
$$

## Conjecture.

The variety $\mathfrak{Z}_{k, \ell}$ is an irreducible complete intersection cut out by $k+\ell-2$ equations in the coordinates of $\mathbb{P}\left(\mathcal{N}_{Q}\right)$. Of these, $\min \{k+\ell-2, r-2\}$ are linear and the rest are quadratic.


Definition.
Let $Q=(u, u-r), r \geq 2$. Let $\mathfrak{Z}_{k, \ell}$ denote the locus in $\mathbb{P}\left(\mathcal{N}_{Q}\right)$ defined by functions vanishing on

$$
\left\{A \in \mathcal{N}_{Q} \mid A \text { has Jordan type } P_{k, \ell} \in \mathcal{T}(Q)\right\}
$$

Definition.
Let $Q=(u, u-r), r \geq 2$. Let $\mathfrak{Z}_{k, \ell}$ denote the locus in $\mathbb{P}\left(\mathcal{N}_{Q}\right)$ defined by functions vanishing on

$$
\left\{A \in \mathcal{N}_{Q} \mid A \text { has Jordan type } P_{k, \ell} \in \mathcal{T}(Q)\right\}
$$

## Conjecture.

The variety $\mathfrak{Z}_{k, \ell}$ is an irreducible complete intersection cut out by $k+\ell-2$ equations in the coordinates of $\mathbb{P}\left(\mathcal{N}_{Q}\right)$. Of these, $\min \{k+\ell-2, r-2\}$ are linear and the rest are quadratic.

The $m$-th quadratic equation in a single $\mathrm{B} / \mathrm{C}$ hook or A row is the sum of $m$ two by two minors of a $2 m \times 2$ matrix that depends on the row or hook, and is a submatrix of the matrix that corresponds to the previous quadratic equation in the same hook or row.

Thank you!

