Lefschetz properties for Artinian Gorenstein algebras presented by quadrics

Rodrigo Gondim Giuseppe Zappalà

Universidade Federal Rural de Pernambuco, Brazil Università degli Studi di Catania, Italy

BIRS Workshop on Lefschetz properties and Artinian algebras, Banff - AB - Canada March, 15, 2016

In the paper *Gorenstein algebras presented by quadrics*, Migliore and Nagel proposed the following two conjectures.

Conjecture

(Injective Conjecture) For any Artinian Gorenstein algebra presented by quadrics, defined over a field \mathbb{K} of characteristic zero, and of socle degree at least three, there exists $L \in A_1$, such that, the multiplication map $\bullet L : A_1 \to A_2$ is injective.

Conjecture

(WLP Conjecture) Any Artinian Gorenstein algebra presented by quadrics, over a field \mathbb{K} of characteristic zero, has the Weak Lefschetz Property.

▲ □ ▶ ▲ □ ▶ ▲

In the paper *Gorenstein algebras presented by quadrics*, Migliore and Nagel proposed the following two conjectures.

Conjecture

(Injective Conjecture) For any Artinian Gorenstein algebra presented by quadrics, defined over a field \mathbb{K} of characteristic zero, and of socle degree at least three, there exists $L \in A_1$, such that, the multiplication map $\bullet L : A_1 \to A_2$ is injective.

Conjecture

(WLP Conjecture) Any Artinian Gorenstein algebra presented by quadrics, over a field \mathbb{K} of characteristic zero, has the Weak Lefschetz Property.

・ 同 ト ・ ヨ ト ・ ヨ ト

In the paper *Gorenstein algebras presented by quadrics*, Migliore and Nagel proposed the following two conjectures.

Conjecture

(Injective Conjecture) For any Artinian Gorenstein algebra presented by quadrics, defined over a field \mathbb{K} of characteristic zero, and of socle degree at least three, there exists $L \in A_1$, such that, the multiplication map $\bullet L : A_1 \to A_2$ is injective.

Conjecture

(WLP Conjecture) Any Artinian Gorenstein algebra presented by quadrics, over a field \mathbb{K} of characteristic zero, has the Weak Lefschetz Property.

・ 同 ト ・ ヨ ト ・ ヨ ト

We deal with a very special kind of f that comes from the theory of Gordan-Noether-Perazzo-Permutti of forms with vanishing hessian. The forms we consider are naturally

We deal with a very special kind of f that comes from the theory of Gordan-Noether-Perazzo-Permutti of forms with vanishing hessian. The forms we consider are naturally bigraded and the separation of variables of $R = \mathbb{K}[x_1, \ldots, x_n, u_1, \ldots, u_m]$ has an important role, as we will see in the sequel. Let $A = (+) A_i$, $A_d \neq 0$ be a standard

We deal with a very special kind of f that comes from the theory of Gordan-Noether-Perazzo-Permutti of forms with vanishing hessian. The forms we consider are naturally bigraded and the separation of variables of $R = \mathbb{K}[x_1, \ldots, x_n, u_1, \ldots, u_m]$ has an important role, as we will see in the sequel. Let $A = \bigoplus A_i, A_d \neq 0$ be a standard bigraded Artinian Gorenstein algebra with $A_k = \bigoplus A_{(i,k-1)} A_{(d_1,d_2)} \neq 0$ for some d_1, d_2 such that

We deal with a very special kind of f that comes from the theory of Gordan-Noether-Perazzo-Permutti of forms with vanishing hessian. The forms we consider are naturally bigraded and the separation of variables of $R = \mathbb{K}[x_1, \ldots, x_n, u_1, \ldots, u_m]$ has an important role, as we will see in the sequel. Let $A = \bigoplus A_i, A_d \neq 0$ be a standard bigraded Artinian Gorenstein algebra with $A_k = \bigoplus A_{(i,k-1)} A_{(d_1,d_2)} \neq 0$ for some d_1, d_2 such that $d_1 + d_2^{i=0} = d$, we call (d_1, d_2) the socle bidegree of A. Since

We deal with a very special kind of f that comes from the theory of Gordan-Noether-Perazzo-Permutti of forms with vanishing hessian. The forms we consider are naturally bigraded and the separation of variables of $R = \mathbb{K}[x_1, \ldots, x_n, u_1, \ldots, u_m]$ has an important role, as we will see in the sequel. Let $A = \bigoplus A_i, A_d \neq 0$ be a standard bigraded Artinian Gorenstein algebra with $A_k = \bigoplus A_{(i,k-1)} A_{(d_1,d_2)} \neq 0$ for some d_1, d_2 such that $d_1 + d_2^{i=0} = d$, we call (d_1, d_2) the socle bidegree of A. Since $A^*_{\iota} \simeq A_{d-k}$ and since duality is compatible with direct sum, we get $A_{(i,i)}^* \simeq A_{(d_1-i,d_2-j)}$.

Let $f \in R_{(d_1,d_2)}$ be a bihomogeneous polynomial of total degree $d = d_1 + d_2$, then $I = \operatorname{Ann}_Q(f) \subset Q$ is a bihomogeneous ideal and A = Q/I is a standard bigraded Artinian Gorenstein algebra of socle bidegree (d_1, d_2) and codimension r = m + n.

$$A_k = \bigoplus_{i+j=k, i \le d_1, j \le d_2} A_{(i,j)}.$$

$$0 \rightarrow I_{(i,j)} \rightarrow Q_{(i,j)} \rightarrow A_{(d_1-i,d_2-j)} \rightarrow 0.$$

$$\mathsf{A}_k = \bigoplus_{i+j=k, i \leq d_1, j \leq d_2} \mathsf{A}_{(i,j)}.$$

$$0 \rightarrow I_{(i,j)} \rightarrow Q_{(i,j)} \rightarrow A_{(d_1-i,d_2-j)} \rightarrow 0.$$

$$A_k = \bigoplus_{i+j=k, i \leq d_1, j \leq d_2} A_{(i,j)}.$$

$$0 \rightarrow I_{(i,j)} \rightarrow Q_{(i,j)} \rightarrow A_{(d_1-i,d_2-j)} \rightarrow 0.$$

$$\mathsf{A}_k = igoplus_{i+j=k, i \leq d_1, j \leq d_2} \mathsf{A}_{(i,j)}.$$

$$0 \rightarrow I_{(i,j)} \rightarrow Q_{(i,j)} \rightarrow A_{(d_1-i,d_2-j)} \rightarrow 0.$$

$$A_k = \bigoplus_{i+j=k, i \leq d_1, j \leq d_2} A_{(i,j)}.$$

$$0 \rightarrow I_{(i,j)} \rightarrow Q_{(i,j)} \rightarrow A_{(d_1-i,d_2-j)} \rightarrow 0.$$

Let $A = Q/\operatorname{Ann}_Q(f) = \bigoplus_{k=0}^d A_k$ be a standard graded Artinian Gorenstein K algebra of socle degree d.Let $i \leq j \leq \frac{d}{2}$ be two integers and let $B_k = \{\alpha_1, \ldots, \alpha_s\}$ and $B_l = \{\beta_1, \ldots, \beta_t\}$ be bases of the K-vector spaces A_k and A_l respectively. The (mixed) hessian matrix of f of order (k, l)is the matrix:

 $\operatorname{Hess}_{f}^{(k,l)} = (\alpha_{i}(\beta_{j}(f)))_{s \times t}.$

We denote $\operatorname{\mathsf{Hess}}_{f}^{k} := \operatorname{\mathsf{Hess}}_{f}^{(k,k)}$, $\operatorname{\mathsf{hess}}_{f}^{k} := \operatorname{\mathsf{det}}(\operatorname{\mathsf{Hess}}_{f}^{k})$ and $\operatorname{\mathsf{hess}}_{f} := \operatorname{\mathsf{hess}}_{f}^{1}$.

Let $A = Q/\operatorname{Ann}_Q(f) = \bigoplus_{k=0}^d A_k$ be a standard graded Artinian Gorenstein K algebra of socle degree d.Let $i \leq j \leq \frac{d}{2}$ be two integers and let $B_k = \{\alpha_1, \ldots, \alpha_s\}$ and $B_l = \{\beta_1, \ldots, \beta_t\}$ be bases of the K-vector spaces A_k and A_l respectively. The (mixed) hessian matrix of f of order (k, l)is the matrix:

 $\operatorname{Hess}_{f}^{(k,l)} = (\alpha_{i}(\beta_{j}(f)))_{s \times t}.$

We denote $\operatorname{\mathsf{Hess}}_{f}^{k} := \operatorname{\mathsf{Hess}}_{f}^{(k,k)}$, $\operatorname{\mathsf{hess}}_{f}^{k} := \operatorname{\mathsf{det}}(\operatorname{\mathsf{Hess}}_{f}^{k})$ and $\operatorname{\mathsf{hess}}_{f} := \operatorname{\mathsf{hess}}_{f}^{1}$.

Let $A = Q/\operatorname{Ann}_Q(f) = \bigoplus_{k=0}^d A_k$ be a standard graded Artinian Gorenstein K algebra of socle degree d.Let $i \leq j \leq \frac{d}{2}$ be two integers and let $B_k = \{\alpha_1, \ldots, \alpha_s\}$ and $B_l = \{\beta_1, \ldots, \beta_t\}$ be bases of the K-vector spaces A_k and A_l respectively. The (mixed) hessian matrix of f of order (k, l)is the matrix:

 $\operatorname{Hess}_{f}^{(k,l)} = (\alpha_{i}(\beta_{j}(f)))_{s \times t}.$

We denote $\operatorname{\mathsf{Hess}}_{f}^{k} := \operatorname{\mathsf{Hess}}_{f}^{(k,k)}$, $\operatorname{\mathsf{hess}}_{f}^{k} := \operatorname{\mathsf{det}}(\operatorname{\mathsf{Hess}}_{f}^{k})$ and $\operatorname{\mathsf{hess}}_{f}^{1} := \operatorname{\mathsf{hess}}_{f}^{1}$.

Let $A = Q/\operatorname{Ann}_Q(f) = \bigoplus_{k=0}^d A_k$ be a standard graded Artinian Gorenstein K algebra of socle degree d.Let $i \leq j \leq \frac{d}{2}$ be two integers and let $B_k = \{\alpha_1, \ldots, \alpha_s\}$ and $B_l = \{\beta_1, \ldots, \beta_t\}$ be bases of the K-vector spaces A_k and A_l respectively. The (mixed) hessian matrix of f of order (k, l)is the matrix:

$$\operatorname{Hess}_{f}^{(k,l)} = (\alpha_{i}(\beta_{j}(f)))_{s \times t}.$$

We denote $\operatorname{Hess}_{f}^{k} := \operatorname{Hess}_{f}^{(k,k)}$, $\operatorname{hess}_{f}^{k} := \operatorname{det}(\operatorname{Hess}_{f}^{k})$ and
 $\operatorname{hess}_{f} := \operatorname{hess}_{f}^{1}.$

h

Let $A = Q/\operatorname{Ann}_Q(f) = \bigoplus_{k=0}^d A_k$ be a standard graded Artinian Gorenstein K algebra of socle degree d.Let $i \leq j \leq \frac{d}{2}$ be two integers and let $B_k = \{\alpha_1, \ldots, \alpha_s\}$ and $B_l = \{\beta_1, \ldots, \beta_t\}$ be bases of the K-vector spaces A_k and A_l respectively. The (mixed) hessian matrix of f of order (k, l)is the matrix:

$$\operatorname{Hess}_{f}^{(k,l)} = (\alpha_{i}(\beta_{j}(f)))_{s \times t}.$$
We denote $\operatorname{Hess}_{f}^{k} := \operatorname{Hess}_{f}^{(k,k)}$, $\operatorname{hess}_{f}^{k} := \operatorname{det}(\operatorname{Hess}_{f}^{k})$ and $\operatorname{ess}_{f} := \operatorname{hess}_{f}^{1}.$

The following result is a generalization of a Theorem due to Maeno - Watanabe in the paper *Lefschetz elements of artinian Gorenstein algebras and Hessians of homogeneous polynomials.*

Theorem

(Hessian Lefschetz criterion) Let $A = Q / \operatorname{Ann}_Q(f)$ be a standard graded Artinian Gorenstein algebra of codimension r and socle degree d and let $L = a_1x_1 + \ldots + a_rx_r \in A_1$, such that $f(a_1, \ldots, a_r) \neq 0$. The map $\bullet L^{l-k} : A_k \to A_l$, for $k \leq \frac{d}{2}$, has maximal rank if and only if the (mixed) Hessian matrix $\operatorname{Hess}_f^{(k,d-l)}(a_1, \ldots, a_r)$ has maximal rank. The following result is a generalization of a Theorem due to Maeno - Watanabe in the paper *Lefschetz elements of artinian Gorenstein algebras and Hessians of homogeneous polynomials.*

Theorem

(Hessian Lefschetz criterion)

Let $A = Q/\operatorname{Ann}_Q(f)$ be a standard graded Artinian Gorenstein algebra of codimension r and socle degree d and let $L = a_1x_1 + \ldots + a_rx_r \in A_1$, such that $f(a_1, \ldots, a_r) \neq 0$. The map $\bullet L^{l-k} : A_k \to A_l$, for $k \leq \frac{d}{2}$, has maximal rank if and only if the (mixed) Hessian matrix $\operatorname{Hess}_f^{(k,d-l)}(a_1, \ldots, a_r)$ has maximal rank. The following result is a generalization of a Theorem due to Maeno - Watanabe in the paper *Lefschetz elements of artinian Gorenstein algebras and Hessians of homogeneous polynomials.*

Theorem

(Hessian Lefschetz criterion)

Let $A = Q/\operatorname{Ann}_Q(f)$ be a standard graded Artinian Gorenstein algebra of codimension r and socle degree d and let $L = a_1x_1 + \ldots + a_rx_r \in A_1$, such that $f(a_1, \ldots, a_r) \neq 0$. The map $\bullet L^{l-k} : A_k \to A_l$, for $k \leq \frac{d}{2}$, has maximal rank if and only if the (mixed) Hessian matrix $\operatorname{Hess}_f^{(k,d-l)}(a_1, \ldots, a_r)$ has maximal rank.

Example

Consider the cubic hypersurface $X = V(f) \subset \mathbb{P}^7$, given by

$$f = \begin{vmatrix} x_0 & x_1 & x_2 \\ x_3 & x_4 & x_5 \\ x_6 & x_7 & 0 \end{vmatrix} \in \mathbb{K}[x_0, \dots, x_7].$$

X represents a tangent section of the secant variety of the Segre variety $Seg(\mathbb{P}^2, \mathbb{P}^2) \subset \mathbb{P}^8$.

I ≡ →

Example

Consider the cubic hypersurface $X = V(f) \subset \mathbb{P}^7$, given by

$$f = \begin{vmatrix} x_0 & x_1 & x_2 \\ x_3 & x_4 & x_5 \\ x_6 & x_7 & 0 \end{vmatrix} \in \mathbb{K}[x_0, \dots, x_7].$$

X represents a tangent section of the secant variety of the Segre variety $Seg(\mathbb{P}^2, \mathbb{P}^2) \subset \mathbb{P}^8$.

 $f = x_1 u_1 u_2 + x_2 u_2 u_3 + x_3 u_3 u_4 + x_4 u_4 u_1 \in R = \mathbb{K}[\underline{x}, \underline{u}].$

The associated algebra A = Q/I with I = Ann(f) does not have the WLP, in fact the map $\bullet L : A_1 \to A_2$ is not injective for any $L \in A_1$. A is presented by quadrics. Indeed: $I = (u_4^2, u_2u_4, x_2u_4, x_1u_4, u_3^2, u_1u_3, x_4u_3, x_1u_3, u_2^2, x_4u_2, x_3u_2, x_2u_2 - x_3u_4, x_1u_2 - x_4u_4, u_1^2, x_4u_1 - x_3u_3, x_3u_1, x_2u_1, x_1u_1 - x_2u_3, x_4^2, x_3x_4, x_2x_4, x_1x_4, x_2^2, x_2x_3, x_1x_3, x_2^2, x_1x_2, x_1^2)$

$$f = x_1 u_1 u_2 + x_2 u_2 u_3 + x_3 u_3 u_4 + x_4 u_4 u_1 \in R = \mathbb{K}[\underline{x}, \underline{u}].$$

The associated algebra A = Q/I with I = Ann(f) does not have the WLP, in fact the map $\bullet L : A_1 \to A_2$ is not injective for any $L \in A_1$. A is presented by quadrics. Indeed: $I = (u_4^2, u_2u_4, x_2u_4, x_1u_4, u_3^2, u_1u_3, x_4u_3, x_1u_3, u_2^2, x_4u_2, x_3u_2, x_2u_2 - x_3u_4, x_1u_2 - x_4u_4, u_1^2, x_4u_1 - x_3u_3, x_3u_1, x_2u_1, x_1u_1 - x_2u_3, x_4^2, x_3x_4, x_2x_4, x_1x_4, x_2^2, x_2x_3, x_1x_3, x_2^2, x_1x_2, x_1^2)$

$$f = x_1 u_1 u_2 + x_2 u_2 u_3 + x_3 u_3 u_4 + x_4 u_4 u_1 \in R = \mathbb{K}[\underline{x}, \underline{u}].$$

The associated algebra A = Q/I with I = Ann(f) does not have the WLP, in fact the map $\bullet L : A_1 \to A_2$ is not injective for any $L \in A_1$. A is presented by quadrics. Indeed: $I = (u_4^2, u_2u_4, x_2u_4, x_1u_4, u_3^2, u_1u_3, x_4u_3, x_1u_3, u_2^2, x_4u_2, x_3u_2, x_2u_2 - x_3u_4, x_1u_2 - x_4u_4, u_1^2, x_4u_1 - x_3u_3, x_3u_1, x_2u_1, x_1u_1 - x_2u_3, x_4^2, x_3x_4, x_2x_4, x_1x_4, x_2^2, x_2x_3, x_1x_3, x_2^2, x_1x_2, x_1^2)$

$$f = x_1 u_1 u_2 + x_2 u_2 u_3 + x_3 u_3 u_4 + x_4 u_4 u_1 \in R = \mathbb{K}[\underline{x}, \underline{u}].$$

The associated algebra A = Q/I with I = Ann(f) does not have the WLP, in fact the map $\bullet L : A_1 \to A_2$ is not injective for any $L \in A_1$. A is presented by quadrics. Indeed: $I = (u_4^2, u_2u_4, x_2u_4, x_1u_4, u_3^2, u_1u_3, x_4u_3, x_1u_3, u_2^2, x_4u_2, x_3u_2, x_2u_2 - x_3u_4, x_1u_2 - x_4u_4, u_1^2, x_4u_1 - x_3u_3, x_3u_1, x_2u_1, x_1u_1 - x_2u_3, x_4^2, x_3x_4, x_2x_4, x_1x_4, x_3^2, x_2x_3, x_1x_3, x_2^2, x_1x_2, x_1^2).$ The previous example motivates the study of bihomogeneous Perazzo polynomials of bidegree (1, d - 1). They can be written in the form

$$f=x_1g_1+\ldots+x_ng_n,$$

where $g_i \in \mathbb{K}[u_1, \ldots, u_m]_{d-1}$. We say that f is of monomial square free type if all g_i are square free monomials. The associated algebra, $A = Q / \operatorname{Ann}_Q(f)$, is bigraded, has socle bidegree (1, d - 1) and we assume that $l_1 = 0$, so codim A = m + n.

The previous example motivates the study of bihomogeneous Perazzo polynomials of bidegree (1, d - 1). They can be written in the form

$$f=x_1g_1+\ldots+x_ng_n,$$

where $g_i \in \mathbb{K}[u_1, \ldots, u_m]_{d-1}$. We say that f is of monomial square free type if all g_i are square free monomials. The associated algebra, $A = Q / \operatorname{Ann}_Q(f)$, is bigraded, has socle bidegree (1, d - 1) and we assume that $l_1 = 0$, so codim A = m + n.

The previous example motivates the study of bihomogeneous Perazzo polynomials of bidegree (1, d - 1). They can be written in the form

$$f=x_1g_1+\ldots+x_ng_n,$$

where $g_i \in \mathbb{K}[u_1, \ldots, u_m]_{d-1}$. We say that f is of monomial square free type if all g_i are square free monomials. The associated algebra, $A = Q / \operatorname{Ann}_Q(f)$, is bigraded, has socle bidegree (1, d - 1) and we assume that $l_1 = 0$, so $\operatorname{codim} A = m + n$.

The previous example motivates the study of bihomogeneous Perazzo polynomials of bidegree (1, d - 1). They can be written in the form

$$f=x_1g_1+\ldots+x_ng_n,$$

where $g_i \in \mathbb{K}[u_1, \ldots, u_m]_{d-1}$. We say that f is of monomial square free type if all g_i are square free monomials. The associated algebra, $A = Q / \operatorname{Ann}_Q(f)$, is bigraded, has socle bidegree (1, d - 1) and we assume that $l_1 = 0$, so codim A = m + n.

Let f be a bihomogeneous polynomial of monomial square-free type, \mathcal{K} the simplicial complex and A the algebra of codimension m + n and socle bidegree (1, d - 1). Then

a basis identified with the k faces of \mathcal{K} , hence dim $A_{(0,k)} = e_k$. such that $X_i G_i(f)$ represents this d - k-face. In particular, the

Let f be a bihomogeneous polynomial of monomial square-free type, \mathcal{K} the simplicial complex and A the algebra of codimension m + n and socle bidegree (1, d - 1). Then

$$A = \bigoplus_{k=0}^{k} A_k$$
 where $A_k = A_{(0,k)} \oplus A_{(1,k-1)}$. Moreover, $A_{(0,k)}$ has

a basis identified with the k faces of \mathcal{K} , hence dim $A_{(0,k)} = e_k$. such that $X_i G_i(f)$ represents this d - k-face. In particular, the

Let f be a bihomogeneous polynomial of monomial square-free type, \mathcal{K} the simplicial complex and A the algebra of codimension m + n and socle bidegree (1, d - 1). Then

$$A = \bigoplus_{k=0}^{k} A_k$$
 where $A_k = A_{(0,k)} \oplus A_{(1,k-1)}$. Moreover, $A_{(0,k)}$ has

a basis identified with the k faces of \mathcal{K} , hence dim $A_{(0,k)} = e_k$. By duality, $A^*_{(1,k-1)} \simeq A_{(0,d-k)}$, and a basis for $A_{(1,k-1)}$ can be chosen by taking, for each d - k-face of \mathcal{K} , a monomial $X_i \tilde{G}_i$ such that $X_i \tilde{G}_i(f)$ represents this d - k-face. In particular, the

Let f be a bihomogeneous polynomial of monomial square-free type, \mathcal{K} the simplicial complex and A the algebra of codimension m + n and socle bidegree (1, d - 1). Then

$$A = \bigoplus_{k=0}^{k} A_k$$
 where $A_k = A_{(0,k)} \oplus A_{(1,k-1)}$. Moreover, $A_{(0,k)}$ has

a basis identified with the k faces of \mathcal{K} , hence dim $A_{(0,k)} = e_k$. By duality, $A^*_{(1,k-1)} \simeq A_{(0,d-k)}$, and a basis for $A_{(1,k-1)}$ can be chosen by taking, for each d - k-face of \mathcal{K} , a monomial $X_i \tilde{G}_i$ such that $X_i \tilde{G}_i(f)$ represents this d - k-face. In particular, the Hilbert vector of A is given by $h_k = \dim A_k = e_k + e_{d-k}$.

Let f be a bihomogeneous polynomial of monomial square-free type, \mathcal{K} the simplicial complex and A the algebra of codimension m + n and socle bidegree (1, d - 1). Then

$$A = \bigoplus_{k=0}^{k} A_k$$
 where $A_k = A_{(0,k)} \oplus A_{(1,k-1)}$. Moreover, $A_{(0,k)}$ has

a basis identified with the k faces of \mathcal{K} , hence dim $A_{(0,k)} = e_k$. By duality, $A^*_{(1,k-1)} \simeq A_{(0,d-k)}$, and a basis for $A_{(1,k-1)}$ can be chosen by taking, for each d - k-face of \mathcal{K} , a monomial $X_i \tilde{G}_i$ such that $X_i \tilde{G}_i(f)$ represents this d - k-face. In particular, the Hilbert vector of A is given by $h_k = \dim A_k = e_k + e_{d-k}$. Furthermore, $I = Ann_{Q}(f)$ is a binomial ideal generated by $(X_1, \ldots, X_n)^2$, by all the monomials in U_i that do not represent faces of \mathcal{K} , by all monomials $X_i F_i$ where f_i does not represent a subface of g_i and by all binomials $X_i \tilde{G}_i - X_i \tilde{G}_i$ where $g_i = \tilde{g}_i g_{ii}$ and $g_i = \tilde{g}_i g_{ii}$ and g_{ii} represents a common subface of g_i, g_i .

Let \mathcal{K} be a homogeneous simplicial complex of dimension d-1. We say that \mathcal{K} is facet connected if for any pair of facets F, F' of \mathcal{K} there exists a sequence of facets, $F_0 = F, F_1, \ldots, F_s = F'$ such that $F_i \cap F_{i+1}$ is a (d-2)-face. We say that \mathcal{K} is upper closed if for all complete subgraphs $H = K_I \subset \mathcal{K}_1$ there is a *l*-face $F \in \mathcal{K}_I$ such that H is the first skeleton of F. In particular \mathcal{K}_1 does not contain any K_d .

Let \mathcal{K} be a homogeneous simplicial complex of dimension d-1. We say that \mathcal{K} is facet connected if for any pair of facets F, F' of \mathcal{K} there exists a sequence of facets, $F_0 = F, F_1, \ldots, F_s = F'$ such that $F_i \cap F_{i+1}$ is a (d-2)-face. We say that \mathcal{K} is upper closed if for all complete subgraphs $H = K_I \subset \mathcal{K}_1$ there is a *l*-face $F \in \mathcal{K}_I$ such that H is the first skeleton of F. In particular \mathcal{K}_1 does not contain any K_d .

Let \mathcal{K} be a homogeneous simplicial complex of dimension d-1. We say that \mathcal{K} is facet connected if for any pair of facets F, F' of \mathcal{K} there exists a sequence of facets, $F_0 = F, F_1, \ldots, F_s = F'$ such that $F_i \cap F_{i+1}$ is a (d-2)-face. We say that \mathcal{K} is upper closed if for all complete subgraphs $H = K_I \subset \mathcal{K}_1$ there is a *I*-face $F \in \mathcal{K}_I$ such that H is the first skeleton of F. In particular \mathcal{K}_1 does not contain any K_d .

Let $f \in \mathbb{K}[x_1, \ldots, x_n, u_1, \ldots, u_m]_{(1,d-1)}$ be a bihomogeneous polynomial of monomial square-free type, let \mathcal{K} be the associated simplicial complex and let $A = Q/\operatorname{Ann}_Q(f)$ be the standard bigraded Artinian Gorenstein algebra. A is presented by quadrics if and only if \mathcal{K} is facet connected and upper closed.

Let $f \in \mathbb{K}[x_1, \ldots, x_n, u_1, \ldots, u_m]_{(1,d-1)}$ be a bihomogeneous polynomial of monomial square-free type, let \mathcal{K} be the associated simplicial complex and let $A = Q / \operatorname{Ann}_Q(f)$ be the standard bigraded Artinian Gorenstein algebra. A is presented by quadrics if and only if \mathcal{K} is facet connected and upper closed.

Let $2 \leq a_1 \leq \ldots \leq a_{d-1}$ be integers, the Turan complex of order $a_1, \ldots, a_{d-1}, \mathcal{K} = \mathcal{TK}(a_1, \ldots, a_{d-1})$, is the Homogeneous simplicial complex whose facets set is the d-1cartesian product $\pi = \prod \{1, 2, \dots, a_i\}$. The Turan i=1 $f = f_{\mathcal{K}} = \sum x_{\alpha} u_{\alpha} \in R = \mathbb{K}[x_{\alpha}, u_{(i,j_i)}]_{\alpha \in \pi, 1 \le i \le d-1, 1 \le j_i \le a_i},$

ヨッ イヨッ イヨッ

Let $2 \leq a_1 \leq \ldots \leq a_{d-1}$ be integers, the Turan complex of order $a_1, \ldots, a_{d-1}, \mathcal{K} = \mathcal{TK}(a_1, \ldots, a_{d-1})$, is the Homogeneous simplicial complex whose facets set is the d-1cartesian product $\pi = \prod \{1, 2, \dots, a_i\}$. The Turan polynomial of order a_1, \ldots, a_{d-1} it the multihomogeneous polynomial $f = f_{\mathfrak{K}} = \sum x_{\alpha} u_{\alpha} \in R = \mathbb{K}[x_{\alpha}, u_{(i,j_i)}]_{\alpha \in \pi, 1 \leq i \leq d-1, 1 \leq j_i \leq a_i},$ $\alpha \in \pi$ where $\alpha = (j_1, ..., j_{d-1}) \in \pi$ and $u_{\alpha} = u_{(1,j_1)} ... u_{(d-1,j_{d-1})}$.

伺下 イヨト イヨト ニヨ

Let $2 \leq a_1 \leq \ldots \leq a_{d-1}$ be integers, the Turan complex of order $a_1, \ldots, a_{d-1}, \mathcal{K} = \mathcal{TK}(a_1, \ldots, a_{d-1})$, is the Homogeneous simplicial complex whose facets set is the d-1cartesian product $\pi = \prod \{1, 2, \dots, a_i\}$. The Turan polynomial of order a_1, \ldots, a_{d-1} it the multihomogeneous polynomial $f = f_{\mathcal{K}} = \sum x_{\alpha} u_{\alpha} \in R = \mathbb{K}[x_{\alpha}, u_{(i,j_i)}]_{\alpha \in \pi, 1 \le i \le d-1, 1 \le j_i \le a_i},$ $\alpha \in \pi$ where $\alpha = (j_1, \dots, j_{d-1}) \in \pi$ and $u_{\alpha} = u_{(1,j_1)} \dots u_{(d-1,j_{d-1})}$. The Turan algebra of order (a_1, \ldots, a_{d-1}) is $TA(a_1,\ldots,a_{d-1}) = A_{\mathcal{K}} = Q / \operatorname{Ann}_Q(f).$

伺下 イヨト イヨト ニヨ

The number of k-faces of a Turan complex is $e_k = s_k$ where $s_k = s_k(a_1, \ldots, a_{d-1})$ is the symmetric function of order k.By Theorem 8, the Hilbert vector of the Turan algebra $TA(a_1, \ldots, a_{d-1})$ is given by $h_k = s_k + s_{d-k}$. It is easy to verify that Turan complexes are facet connected and upper closed.

The number of k-faces of a Turan complex is $e_k = s_k$ where $s_k = s_k(a_1, \ldots, a_{d-1})$ is the symmetric function of order k.By Theorem 8, the Hilbert vector of the Turan algebra $TA(a_1, \ldots, a_{d-1})$ is given by $h_k = s_k + s_{d-k}$. It is easy to verify that Turan complexes are facet connected and upper closed.

The number of k-faces of a Turan complex is $e_k = s_k$ where $s_k = s_k(a_1, \ldots, a_{d-1})$ is the symmetric function of order k.By Theorem 8, the Hilbert vector of the Turan algebra $TA(a_1, \ldots, a_{d-1})$ is given by $h_k = s_k + s_{d-k}$. It is easy to verify that Turan complexes are facet connected and upper closed.

Let $A = TA(a_1, ..., a_{d-1})$ be the Turan algebra of order $(a_1, ..., a_{d-1})$ with $2 \le a_1 \le a_2 \le ... \le a_{d-1}$. Then A is presented by quadrics and for all $L \in A_1$ the map •L : $A_1 \rightarrow A_2$ is not injective. Furthermore, if $a_1 \approx ... \approx a_{d-1}$ are large enough, then Hilb(A) is not unimodal in the first step, that is, dim $A_1 > \dim A_2$.

伺 と く ヨ と く ヨ と

Let $A = TA(a_1, ..., a_{d-1})$ be the Turan algebra of order $(a_1, ..., a_{d-1})$ with $2 \le a_1 \le a_2 \le ... \le a_{d-1}$. Then A is presented by quadrics and for all $L \in A_1$ the map • $L : A_1 \to A_2$ is not injective. Furthermore, if $a_1 \approx ... \approx a_{d-1}$ are large enough, then Hilb(A) is not unimodal in the first step, that is, dim $A_1 > \dim A_2$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Let $A = TA(a_1, ..., a_{d-1})$ be the Turan algebra of order $(a_1, ..., a_{d-1})$ with $2 \le a_1 \le a_2 \le ... \le a_{d-1}$. Then A is presented by quadrics and for all $L \in A_1$ the map • $L : A_1 \to A_2$ is not injective. Furthermore, if $a_1 \approx ... \approx a_{d-1}$ are large enough, then Hilb(A) is not unimodal in the first step, that is, dim $A_1 > \dim A_2$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ