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Kadesihvili’88 These questions have been
Robinson’89 considered by many people.
Rezk’98 For spectra, chain complexes,

simplicial modules. ..

Tamarkin'98

For many operads: Aw, Eco, Leo,
Lazarev’01 Geo. ..
Goerss-Hopkins'04 Using (variations of)
Angeltveit'08 Hochschild cohomology.

Roitzheim—Whitehouse’11
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E)® = weak equivalence classes of A,.j-algebras which extend
to A,.s-algebras and restrict to the same A,-algebraas R, s < r.

If the green line vanishes, the A,-algebra underlying R extends
uniquely to an A,-algebra for all n > r.
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The fringed line and uniqueness

The obstruction to A.-uniqueness is the lim! in the Milnor s.e.s.

lim' 711 (BA,, R) < 119(BAw, R) = lim 719(BA,, R)
n n

which vanishes provided lim,, ES** =0 foralls >0,
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The fringed line and uniqueness

Proposition

If E;* = 0 for all s > r then R is uniquely determined by its

underlying A,-algebra.

OVER A FIELD k, E;’t = HE*Y1-t(,R) fort > s > 1 and r = 2.
Corollary (Kadeishvili’88)
If HH"?>"(n,R) =0, n > 3, then R is quasi-isomorphic to m.R.

What about existence? We could even be unable to choose a
base point in BA. with given algebra 7.R.
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Extending the fringed spectral sequence

Bousfield’89 defined for the tower of the totalization of a
cosimplicial space:
O an exTensION of the fringed spectral sequence, given a
global base point;
O TRUNCATED spectral sequences, given an intermediate base
point;

O ossTRUCTIONS to lifting intermediate base points.

Our tower is not naturally like this. We proceed in a different
way, suitable for explicit computations beyond the second page.
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Extending the fringed spectral sequence

S = Hk-module spectra, k a field (in order to stay safe).
Endl)\(m = limEndg(” R Endé\(”+1 — End?i” — e
h (Rezk’96) h pulling back X

BAw=1limBA, - --- - BA;1 —— BA, — --- — BA; =BS

A, = operad for A,-algebras
Endy = the endomorphism operad of a spectrum X
Q° =Map(P, Q)
= the space of maps P — Q in the category of (non-X) operads
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Extending the fringed spectral sequence

The spectral sequences of these towers substantially overlap.
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Extending the fringed spectral sequence

The spectral sequences of these towers substantially overlap.

S.s. of {BAu}n>1 S.s. of {Endy }»2

We can take advantage of the
homotopy theory of Aw.

From now on, we work with the second one.
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Where do classical obstructions come from?

The operad A has cells y, in arity n and dimensionn -2, n > 2.

Hochschild
F(Z iy F(Z! Ay LTF(upe
( Hn 1) ( Ivln) differential 1 ([Jn 1)
coaction
Ay Ay 7 Ay

perturbe! 7
obstruction! R|rel.App -7 )

ke extension?

o
Endyx perturbation

The obstruction is in (over a field, X = 7t.R) for n > 4,
Endx ()3 = Hom(X®", X)*™" ~ HH"*"(1.R).
N~——— —

Hochschild cplx.
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Where do new obstructions come from?

For1 < s < m < r, there is a linear A,,-bimodule B, , s and a

cofiber sequence rel. A,

Fa, (ZX,iBm,r,s) — Ay > A



Massey products and uniqueness of
Ac-algebra structures
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Given an operad P = {P(1)},>0, @ LINEAR P-MODULE B is a sequence
B = {B(1)},>0 equipped with maps, 1 <i <s,

P(s) ® B(t) — B(s + t — 1) «— B(s) ® P(¢)

satisfying the obvious associativity and unitality laws, e.g. B = P.

The category of linear P-modules is a pointed stable S-model
category and there is a Quillen pair

F
linear P-modules <:>P P | Operads.



Where do new obstructions come from?

For1 < s < m < r, there is a linear A,,-bimodule B, , s and a

cofiber sequence rel. A,
Fa, (ZX,iBm,r,s) — Ay > A

Tankingl <s < Zlandr=n-1-5,

Fan (inle,V,S) F(Z_I,U»n) — Ay HAm Fay, (Bm,r,s)

| | /

A s ——— | — A ——————— Ay
l perturbe! _ -7

obstruction! rel. Ay_1—s -7

Phe extension?

End <
X
perturbation
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The E,,1 terms of the spectral sequence of a pointed tower
depend on the fibers of the r-fold composites,

distance r

n>2r+1

For {End;’ Yiso, R € End;"", and n > 2r + 1, these fibers are the
following mapping spaces rel. A,

End?"’ (Bm/n,r) ,

which are deloopings of the following mapping Hk-module
spectra in the model category of linear A,,-bimodules

Bm,n,r
EndX .
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The extended spectral sequence

t

s

r=1

0

2
9

It consists of k-modules in the blue region and int —s > 2. If R
is an Ap,—1-algebra, the spectral sequence is defined up to E,.
The second page is E;’t = HH**>~!(t,R) for s > 1 where defined.
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Obstructions

THEOREM

For 1 < s < r, given an A,-algebra R, there is an obstruction
in E/"*~""*7 vanishing iff the A,-algebra underlying R extends
to an A,,s,1-algebra.

For s = 1, we recover the classical obstruction in Hochschild
cohomology E;’r_l = HH"*?>1""(1t,R). The best obstruction is in
EZ2273 fors=r—1.



The first non-trivial obstruction (r,s) = (3,1)

E;’l = weak equivalence classes of As-algebras R which extend

to As-algebras with fixed homology algebra 7.R.
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to As-algebras with fixed homology algebra 7.R.

The classifying class is called unIVERSAL M ASsEY PRODUCT Or
UNIVERSAL TODA BRACKET!,

{m3} € B! = HH> "} (1.R),
since, given x,y,z € m.R with xy =0 =yz,
m3(x,y,z) € {x,Y,2).

Take (m.R,d = 0,mp, m3, my) to be a minimal model for
(R, d, mpy, m3, my).

'Baues’97, Benson-Krause-Schwede’04, Sagave’06, Granja-Hollander’08. ..
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The first non-trivial obstruction (r,s) = (3,1)

Hocshchild cohomology is a commutative algebra and a Lie
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The first non-trivial obstruction (r,s) = (3,1)

Hocshchild cohomology is a commutative algebra and a Lie
algebra in a compatible way (Gerstenhaber algebra).

If 1 € k, the obstruction to extending an A-algebra to an
As-algebra is

HH*>Y(n.R) — HH>7?(1.R)

ms) > 3llms), ()1
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Beyond the second page

THEOREM

Recall that E‘;’t = HH**>7t(,R) for s > 0. We have

dp = £[{ms}, -]: HH***{(n,.R) — HH"* 1 (m,R).



Beyond the second page

The EuLer crass {8} € HH(m,R), 8(x) = |x| - x, satisfies

{m3} - x = [{m3}, {0} - x] + {6} - [{m3}, x].
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Beyond the second page

The EuLer crass {8} € HH(m,R), 8(x) = |x| - x, satisfies

{m3} - x = [{m3}, {0} - x] + {6} - [{m3}, x].

If the following map is an isomorphism for s > 2, then Ej is
concentrated ins =0, 1,

HH*(1.R) — HH*3*1(,R)
x > {ms}-x,




A sufficient condition for existence and uniqueness

THEOREM

Suppose 3 € k. Let R be an Ay-algebra with universal Massey
product {m3} € HH3~1(m,R) such that

HH**(n.,R) — HH**3*1(n,R)
X g {7713} - X,

is an isomorphism for s > 2. If

Sl (ms}1 =0,

then there exists a unique A-algebra with this universal Mas-
sey product, up to weak equivalence. Otherwise there is none.
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Why do we care about this?

Amiot’07 classified 1-Calabi—Yau triangulated categories of
finite type by certain As-algebras R such that the category of
f.g. projective t.R-modules has exact triangles

XLY;ZLZX/ 1ZX€<EI/i/f>-

By the axioms of triangulated categories, multiplication by the
universal Massey product is an isomorphism in the required
range. The previous theorem characterizes the existence and
uniqueness of models.
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Massey products and uniqueness of
Ac-algebra structures

Wia

Consider the minimal A4 algebra (d = 0) with m4 = 0 given by the
algebra

K, £y

"~ (€2, et +te)’

where m3 is the k(t*!)-trilinear map defined by

lel =0, [t=1,

ms(e, €,€) = L.

Then
HH**(m.R) = k[et, t*2,f, {6}]

where |f| = (1,-1) is given by the k(t*!)-linear map with
fley=t",
ms = f1,

dim HH"?"(1.R) = 2, n>1.
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