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Setup

Setup: motivic homotopy theory.

Work over a nice scheme S, called the base scheme. (Noetherian,
separated, and of finite Krull dimension.)

SmS = category of smooth schemes of finite type over S.

Motivic spaces = localization of simplicial presheaves on SmS at
A1-equivalences and Nisnevich hypercovers.

Motivic spectra = stabilization of pointed motivic spaces with
respect to S1 ∧ − and Gm ∧ −.

Let SH(S) denote the motivic stable homotopy category over S. It
is a compactly generated tensor triangulated category.
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Bigraded spheres

Motivic spheres:

Sp,q = (S1)∧(p−q) ∧S (Gm)∧q

and corresponding suspension functors:

Σp,qX = Sp,q ∧S X = X(q)[p].

Unit for the smash product ∧S :

1S = S0,0 = Σ∞S+.

Example. Gm = A1 − {0} = S1,1.

An − {0} ' S2n−1,n.

P1 ' A1/(A1 − {0}) ' S1 ∧Gm = S2,1.
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Motivic Eilenberg-MacLane spectra

HZ is a motivic spectrum representing motivic cohomology in
SH(S). HZ is an E∞ ring spectrum, in an essentially unique way.
Likewise for HFp.

This yields well-behaved categories of modules over HZ or HFp.

Notation: In case of ambiguity, write the dependency on the base
scheme as HFSp .

Remark. HFl has complicated homotopy:

πp,qHFl = SH(S) (Sp,q, HFl)
= SH(S)

(
S0,0,Σ−p,−qHFl

)
= H−p,−q(S;Fl),

motivic cohomology of the base scheme S.
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Hopkins–Morel isomorphism

Motivation: the Hopkins–Morel isomorphism.

In classical homotopy theory: complex cobordism MU , with

π∗MU ∼= Z[a1, a2, . . .], |ai| = 2i.

The orientation map MU → HZ induces a map

MU/(a1, a2, . . .)
'−→ HZ

which is an equivalence.
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Hopkins–Morel, II

In motivic homotopy theory: algebraic cobordism spectrum MGL,
with ai ∈ π2i,iMGL.

The orientation map MGL→ HZ induces a map

Φ: MGL/(a1, a2, . . .)→ HZ

Theorem (Hopkins–Morel 2004; Hoyois 2015). Let S be
essentially smooth over a field k.

1. In the case char(k) = 0, then Φ is an equivalence.

2. In the case char(k) = p, then Φ becomes an equivalence after
inverting p.

Remark. This theorem has interesting applications to the slice
filtration.
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Hopkins–Morel, III

Key step: For any prime number l 6= p,

HFl ∧ Φ: HFl ∧MGL/(a1, a2, . . .)→ HFl ∧HZ

is an equivalence.

Key ingredient: Motivic Steenrod algebra and its dual.
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Motivic dual Steenrod algebra

There are certain classes in π∗,∗(HFl ∧HFl)

τi, with |τi| = (2li − 1, li − 1), i ≥ 0

ξi, with |ξi| = (2li − 2, li − 1), i ≥ 1.

Consider sequences I = (ε0, r1, ε1, r2, ε2, . . .) with εi ∈ {0, 1}, ri ≥ 0,
and only finitely many non-zero terms. Consider monomials of the
form

τ ε00 ξ
r1
1 τ

ε1
1 ξ

r2
2 τ

ε2
2 · · · ∈ π∗,∗(HFl ∧HFl).

Consider the induced map of HFl-modules

⊕
such sequences I

ΣpI ,qIHFl
ψS
// HFl ∧HFl.

Note that the indexing set is the same for any base scheme S.
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Motivic dual Steenrod algebra, II

Theorem (Voevodsky 2003; Hoyois–Kelly–Østvær 2013). Assume
l is invertible on the base scheme S. Then the map ψS is an
equivalence of HFl-modules.

Goal. Show that ψS is an equivalence in the case S = Spec(k)
where k is a field of characteristic p, and l = p.
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Strategy

Let k be a field of characteristic p.

Let R be a discrete valuation ring R having k as residue field, and
a fraction field Q = Frac(R) of characteristic zero.

Example. k = Fp, R = Zp, the p-adic integers, and Q = Qp, the
p-adic rationals.

Consider the ring maps and induced maps of affine schemes:

Q Spec(Q)
kKj

open
xx

R

@@

�� ��

// Spec(R)

k Spec(k).
S3

i

closed
ff
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The ingredients

What happens on the generic point Spec(Q)?

Lemma. There is an equivalence

j∗HFRp ' HFQp .

What happens on the closed point Spec(k)?

Proposition (Spitzweck 2013). 1. There is an equivalence

i∗HFRp ' HFk
p.

2. There is an equivalence of HFk
p-module spectra

i!HFRp ' Σ−2,−1HFk
p.

Proposition (F.–Spitzweck). There is an equivalence of
HFk

p-module spectra

i∗j∗HFQp ' HFk
p ⊕ Σ−1,−1HFk

p.
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Reduction step

Definition. An object of SH(S) is smooth if it lies in the full
localizing triangulated subcategory of SH(S) generated by the
strongly dualizable objects.

Remark. In the classical stable homotopy category, every object is
smooth in this sense.

In fact, this is one of the axioms of a stable homotopy theory in the
sense of Hovey–Palmieri–Strickland.

If k is a field of characteristic zero, then every object of SH(k) is
smooth (Röndigs–Østvær 2008).
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Reduction step, II

Proposition (F.–Spitzweck). If HFRp is smooth in SH(R), then

the map of HFk
p-module spectra

⊕
I

ΣpI ,qIHFk
p

ψk
// HFk

p ∧HFk
p

is an equivalence. In other words, the structure theorem for the
dual Steenrod algebra holds for S = Spec(k).

Our goal would be achieved!

Proof idea: Use the previous ingredients and the six functor
formalism.
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Why smoothness?

Lemma. Let f : S → T be a map of schemes. For Y in SH(T ) and
X in SH(S), consider the natural map in SH(T )

α : (f∗X) ∧T Y → f∗ (X ∧S f∗Y ) .

If Y is a smooth object of SH(T ), then α is an isomorphism.

In other words, Y and f∗ satisfy the projection formula

(f∗X) ∧T Y ∼= f∗ (X ∧S f∗Y ) .

15 / 20



More on smoothness

Remark. The Hopkins–Morel isomorphism implies that HZ and
HFp are cellular, a condition which implies smoothness.

Hopkins–Morel +3 HFp is cellular

��
HFp is smooth

reduction step

ck
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Sketch of ideas

How to prove the new goal, i.e., that HFRp is smooth in SH(R)?

HZ = hocolimn Σ−2n,−nΣ∞K(Z, 2n, n)

Note: The motivic Eilenberg-MacLane space K(Z, p, q) is also
known as K(Z(q), p).

⇒ It suffices to show that Σ∞K(Z, 2n, n) is smooth for n large
enough.
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Motivic Dold–Thom

In classical homotopy theory, the Dold–Thom theorem yields:

Sym∞(Sn) ' K(Z, n).

In motivic homotopy theory, there is an analogue of the
Dold–Thom theorem (Suslin–Voevodsky 1996).

In characteristic zero, we have:

Sym∞
(
(P1)∧n

)
' Sym∞(S2n,n) ' K(Z, 2n, n).

In characteristic p > 0, there is an analogous (but more
complicated) construction involving correspondences.

Sym∞(X) = hocolimk Symk(X)

⇒ It suffices to show that an appropriate analogue of
Σ∞ Symk

(
(P1)∧n

)
is smooth for n and k large enough.
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Resolutions of symmetric powers

Plan of attack:

Given X in SmS , encode k-fold iterated blow-ups in X via an
algebraic space Bk.

Blow up Bk several times, along a stratification similar to that
of the fat diagonal in the product Xk. Obtain a nicer algebraic
space B̃k.

Find a good approximation B̃k → Z by a smooth scheme Z,
which is projective if X is.

Build an appropriate iterated homotopy pushout Pk of smooth
projective schemes, which implies that Σ∞Pk is smooth in
SH(R).

In the case X = (P1)∧n, show that Pk is a good approximation
of Symk(X).

19 / 20
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Thank you!
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