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Unstable Motivic Spaces

I will only work over the base scheme Spec C. Motivic spaces are
Q@ start with the category Sm/C of C-schemes (smooth, fin. type)
@ add htpy colimits by embedding it in simplicial presheaves
@ sPre(Sm/C) has point-wise model structures from sSet.,

@ Bousfield localize to

o force Nisnevich covers to be homotopy colimits
o make “the interval” A} contractible

Theorem (Morel-Voevodsky)

This gives a symmetric monoidal model category Spce, and there is a
realization functor R by taking C-points

R
—

Spce <<= Top.
Sing
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There are two types of spheres in Spce.
@ The constant U —> Al/JA! = S which realizes to S' € Top.
This is called the simplicial sphere and denoted by S*°.

© The scheme G,,, = (AL)™, which realizes to S € Top.
This is called the geometric sphere and denoted by S':1.

This gives bigraded spheres S™T+m = (5170)/\1« A (51’1)/\” for n,k > 0,
and thus bigraded homotopy groups, and bigraded everything. ...

The first index S™™ is the topological dimension.
The second index S™™ is called the weight.
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Theorem (Morel-Voevodsky, Jardine, Hu)

There is a symmetric monoidal (with the smash product — A —) model
category of motivic spectra Sptc, and the realization pair stabilizes to

an adjunction
R
Spte === Spt.
Sing

A lot of classical spectra have their motivic analogues. We have
@ Spheres S™"

Eilenberg-Maclane spectra HTF,

o Complex K-theory KGL and kgl, with |8] = (2,1)

o (Algebraic) Cobordism MGL, with |z;| = (2¢,4)

e ...etc

and they all realize to their classical analogues.
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We now fix p = 2 for the remaining of the talk.

Theorem (Voevodsky)
o The coefficients are HF5**(S%9) = My = Fo[7] for |7] = (0,1).
o The HFy-Steenrod Algebra is Ac = Mo <Sq1a Sq¢?, .. > / Adem -

The HF, motivic Adams spectral sequence for S%0 takes the form
Ext . (Ma, My) = ,,(5090,),

and the element 7 € Ext® survives to a map S%~! ——» 500, but
does not exist before 2-completion.

Therefore, we work in the 2-completed category, and S%° means
the 2-completed sphere.
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The realization functor and 7

The map S%~! 5 590 realizes to
50 9, g0
and realization has the computational effect of setting 7 = 1.
From the motivic A.s.s. to the classical A.s.s.
@ copies of My become copies of Fy
o copies of My /7" disappear, i.e., T-torsion disappears.

For example n* € T4,4 is not zero, but is 7-torsion as m™* =0, and so
n* realizes to 0 which is consistent with the classical n* = 0 € m,.

Question

What happens when we let 7 =0 ?
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Let’s look at the 2-cell complex C'7 that fits in the cofiber sequence

T p

§01 Lo 500 s or s gt

Although it realizes to a tiny * € Top, its homotopy is a miracle:

Theorem (Hu-Kriz-Ormsby, Isaksen)

There is an isomorphism of bigraded abelian groups
s (CT) —> E5(S% BP),

where Fo(S%; BP) is a (harmless) regrading of the Adams-Novikov
Es-page for the sphere S°, i.e., Extgp, pp(BP., BP,).




Very cool question

Is there a ring structure on C't inducing the product on EQ—AN(SO) ?
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Notice the big vanishing regions for C'r

The classical E>-AN(S°) has big vanishing areas:

f o Adams-Novikov filtration > stem

zero | zero o negative Adams-Novikov filtration

@ negative stem.

zero | zero s

These vanishing areas give via the isomorhism W*)*(CT) =~ EQ—AN(SO)

w w
zero zero zero
non-vanishing homotopy non-vanishing region
L]
zero zero s zero-| zero s

lots of vanishing in 7, (CT), and also use [S1~1C71,C7] = 0.
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The ring structure of C't

Smash with — A C'7 the defining cofiber sequence of C'

3 p
SO—1 A COr L5 §90 A Or —> Cr A CT —> SV A CT
1
o \:’HM?

Cr.

o 7€ [X01CT,Cr] =0

o there is a left unital multipication p

o and a splitting C7 A Cr ~ Cr VvV E-~ICr
o [XLTICT,CT] =0

e /4 is unique

o u is the projection on the first factor C't
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The good ring structure on C'1

The multiplication on CT extends (uniquely) to an E-ring structure. l

The isomorphism 7, ,(CT) =2 Ey-AN(S) is an isomorphism of higher
rings, i.e., preserves all higher products.

Theorem (G.)

In fact every CT" admits a unique E-ring structure.
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Recall the maps ¢ and p in the defining cofiber sequence of Cr

%

p _
500 Cr —> SV7h

T

SO,*]

Proposition (G.)

o The Eo-ring spectrum CT A CT has homotopy ring

e (OT ACT) = B3-AN(S%)[2] /2
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Operations and Co-operations on C't

Recall the maps ¢ and p in the defining cofiber sequence of Cr

4 D

500 Cr —> S

T

SO,*]

Proposition (G.)

o The Eo-ring spectrum CT A CT has homotopy ring

Tun (C7 A Cr) 2 E2-AN(S®)[a] /2

o The A-endomorphism spectrum End(CT) has homotopy ring

Ty« (End(C7)) = E5-AN(S°) (x) / o — g—l)'“‘xa =i op(a)
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Parts of the classical Chromatic story

@ Start with complex cobordism MU.
© Quillen showed MU,y ~ VBP.
@ From BP, we construct the fields K (n).

Here are some cool properties of these guys:

@ The Morava K-theories K (n) are essentially the only graded
fields, and K (n).-acyclic spectra the only thick subcategories
of FinSpt.

@ MU detects nilpotence, and p-locally BP does too.
@ Every X € FinSpt ) has a well-defined type, and any spectrum
of type n admits a periodic self-map inducing -v¥ in K(n).
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What is the Motivic Chromatic story 7 Let p = 2.

@ There is an algebraic cobordism MGL, with MGL. , = Zo|7][2].
@ Similarly MGL ~ VBPGL with BPGL, . = Zs[7][vi].
© We also get Morava K-theories K (n) with K(n). . = Fa[r][vil].

However the story is more complicated, for example:

@ The K(n)’s are not fields (even though K(n) A CT are).
@ There are more thick subcategories [Joachimi].

@ MGL does not detect nilpotence, as n: St —> §%0 is not
nilpotent and all |z;| = (2%,2°7!) are in even degrees.

@ No idea what to say about type.
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There is more (non-)Nilpotence and Periodicity

We need something bigger than M GL to detect nilpotence and to
capture all the periodicity.

© There are more non-nilpotent elements than n € 7 ;. For
example the classes detected by Phy € mg 5, or di € m32,13.

@ There are more periodicity operators than the v;’s. For
example, the class that Phy detects is n-periodic, and Dan
Isaksen observed g-periodic classes in 7, .(S%9).

Michael Andrews et al. suggested that n = wp, and that there should
be an infinite family of w;’s behaving like the v;’s. He started the
process and constructed a wi-map on C7, at the prime p = 2. His
intuition for these maps comes from using the algebraic Novikov s.s.

Using C, the w;’s fit in the following setting:
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Q@ For every n, there is an Eo-ring spectrum K (w,) with homotopy
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wBP and Morava K-theories K (w;)

Theorem (G.)

Q@ For every n, there is an Eo-ring spectrum K (w,) with homotopy
e, (K (wn)) 2= Falwy ],

which is a graded field and with the correct cohomology.

@ There is a (almost certainly Es ) ring spectrum wBP with
homotopy
7T*7*(’LUBP) = Fg[wo,’wl, . .],

and with the correct cohomology.

Question

Where do the w;’s come from ?




Applications to Motivic Chromatic Homotopy theory
O000®0000

The v;’s and the Steenrod Algebra

Voevodsky computed the motivic HF-Steenrod Algebra, its dual is

% gM2[§1;§27"'a7077-17"'] /»7—%2 — T§i+1



Applications to Motivic Chromatic Homotopy theory
O000®0000

The v;’s and the Steenrod Algebra

Voevodsky computed the motivic HF-Steenrod Algebra, its dual is
- [ M2[§1a§27 e T0,T1y - - ] /T’LZ — T§i+1’

and denote by Q; € A the dual of 7; in the monomial basis.



Applications to Motivic Chromatic Homotopy theory
O000®0000

The v;’s and the Steenrod Algebra

Voevodsky computed the motivic HF-Steenrod Algebra, its dual is
% =~ M2[§1a§27' -5 T05 Ty - - ] /T’LZ — T§i+1’
and denote by Q; € A the dual of 7; in the monomial basis.

@ The Q;’s are primitive



Applications to Motivic Chromatic Homotopy theory
O000®0000

The v;’s and the Steenrod Algebra

Voevodsky computed the motivic HF-Steenrod Algebra, its dual is
% =~ M2[§1a§27' -5 T05 Ty - - ] /T’LZ — T§i+1’
and denote by Q; € A the dual of 7; in the monomial basis.

@ The Q;’s are primitive and exterior.



The v;’s and the Steenrod Algebra

Voevodsky computed the motivic HF-Steenrod Algebra, its dual is
A, =2 Mef61, &, 70,71, /7—3 = €1
and denote by Q; € A the dual of 7; in the monomial basis.

@ The Q;’s are primitive and exterior.

@ HF,*(BPGL) = A//E(Qo,Q1,...).



The v;’s and the Steenrod Algebra

Voevodsky computed the motivic HF-Steenrod Algebra, its dual is
A, =2 Mef61, &, 70,71, /7—3 = T
and denote by Q; € A the dual of 7; in the monomial basis.

@ The Q;’s are primitive and exterior.

@ By a change of rings, its Adams s.s. collapses giving

Tun(BPGLY, = Zo[r][v1, v, . . .
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The w;’s and the Steenrod Algebra

Voevodsky computed the motivic HF-Steenrod Algebra, its dual is

Ao = Ms[&1,82, ..y To, Ty - - - /7_12 =&
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The w;’s and the Steenrod Algebra

Voevodsky computed the motivic HF-Steenrod Algebra, its dual is
A*,* o~ M2[§1,§2, ey T Ty - - ] /7_12 =T

and denote by R; € A the dual of & in the monomial basis.

The w;’s would like to arise from the R;’s, but they are not exterior.

o The R;’s are exterior modulo 7.

e Since 7* = 0 € m, ., we need to mod out by 7 if we want
polynomial homotopy in the w;’s.
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The w;’s from HFy A CT

Therefore, let H = HFy A Ct and it has coefficients H*’* ~F,. We
can compute its Steenrod algebra since we understand End(C7), and
its dual is

A*,* = F2[§17£27~”] ®E(7—077—17"') ®E(£L'),

where x is a 7-Bockstein and the R;’s are now primitive and exterior.

We are looking for a spectrum with the property
H*’*(’IUBP) = A//E(Rl, RQ, e .),

its Adams s.s. would collapse and give 7, (WBP)y = Falwg, w1, .. .].
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How about wMU ?

The degree of the w;’s on 7, ,(wBP) are |w;| = (271 —3,2° — 1), so

lwol = (1,1)
wi] = (5,3)
nothing in (9, 5)
lwa| = (13,7)
ete,

which is the same pattern as the v;’s of BP, between the z;’s of MU,.



lwol = (1,1)
wi] = (5,3)
nothing in (9, 5)
lwa| = (13,7)
ete,

which is the same pattern as the v;’s of BP, between the z;’s of MU,.

There is a (almost certainly Eo) ring spectrum wMU with homotopy

T (WMU) = Foly1, o, . . .,

where |y;| = (44 + 1,2i + 1), and which splits as a wedge of wBP’s.
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o The K (wp)-local sphere was computed by Andrews-Miller with
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What’s next ?

Question

o Is there an interpretation of wMU ?
@ Do motivic BP and wBP capture all the chromatic phenomena ?

o The K (wp)-local sphere was computed by Andrews-Miller with
Guillou-Isaksen

T (Lic(uny5°°) 2 F2l7 o o] / (.

What is the LK(wl)SO’O ?
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@ Bonus 1: S/2 A C7 admits a vi-self map (instead of v{ on S/2)
1 1

© Bonus 2: kO A C7 admits a vi-self map (instead of v{ on kO)
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Bonus 1: S/2 A C7 admits a vi-map

There is no map %*15/2 s S/2. Indeed

22,15/2 S2,1

/'3 _ lﬂ
L, ’r] 2

5/2 10 10




Bonus 1: S/2 A C7 admits a vi-map

There is no map $215/2 —» §/2. Indeed

22,15/2 52,1 2 52,1
1 ,’, n
! REY l
L 2
S/2 S1o S1.0

since 2 - 7] is not zero in 73 1.5/2 = Z/4.
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Bonus 1: S/2 A C7 admits a vi-map

After smashing with O, there is a map X%*C7/2 s C7/2. Indeed

Y2107/2 «—— ¥2IC0r <—2 Y2107

\ -
-
1 e
1 -
El’l)1| PR _ l’r]

- 3 M
\ Ve
2
O1/2 ——> 00T —=— 1007

since 2 - 7] is zero in [X%1C1,C7/2] 2 Z/2.



Bonus 1: S/2 A C7 admits a vi-map

After smashing with C7, there is a map X21C7/2 SN C7/2. Indeed

N0 /2 e Y207 2 32107

-7 n

!
1
.
E|'U1:

\ Vs
Cr)2 —— 2100t —)2 »Locr

since 2 - 7] is zero in [X%*Ct,C7/2| = Z/2. More concisely, the
obstruction to having a vi-map is the bracket (2,7, 2) = 72, and thus
C7/2 enjoys it.



Thank you for your attention !

ZEro

Figure: The homotopy groups 7s,.,(C7), with lots of non-nilpotent elements
2, 1,3, a5,Q7, .. ..
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