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Framework

ηt homogeneous Poisson process of intensity t ≥ 1 on a compact
convex set W ⊂ Rd with Vol(W ) = 1

For θt > 0 construct the random geometric graph G (ηt , θt) by
connecting two points x1, x2 ∈ ηt by an edge if ‖x1 − x2‖ ≤ θt .
(θt)t≥1 family of positive real numbers with θt → 0 as t →∞
Throughout this talk, we consider the functionals

L
(τ)
t =

1

2

∑
(x1,x2)∈η2t,6=

1{‖x1 − x2‖ ≤ θt} ‖x1 − x2‖τ , t ≥ 1, τ ∈ R.
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Expectation

Bd(x , r) ball with centre x and radius r > 0 in Rd , κd := Vol(Bd(0, 1))

Theorem: Reitzner/S./Thäle (2016+)

Let gW (y) := Vol(W ∩ (W + y)), y ∈ Rd . For τ > −d ,

EL(τ)t =
t2

2

∫
Bd (0,θt)

‖y‖τgW (y) dy =
dκd

2(τ + d)
t2θτ+d

t (1 + O(θt)).

There are two asymptotic regimes:

limt→∞ t2θdt = λ ∈ [0,∞): limt→∞ EL(0)t = κd
2 λ

limt→∞ t2θdt =∞: limt→∞ EL(0)t =∞
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Covariances

Theorem: Reitzner/S./Thäle (2016+)

For τ1, τ2 > −d such that τ1 + τ2 > −d ,

Cov(L
(τ1)
t , L

(τ2)
t )

=

(
dκd

2(τ1 + τ2 + d)
t2θτ1+τ2+d

t +
d2κ2d

(τ1 + d)(τ2 + d)
t3θτ1+τ2+2d

t

)
(1 + O(θt)).

Remark:

The typical vertex has the expected degree κd tθ
d
t .

limt→∞ tθdt = 0 sparse regime

limt→∞ tθdt = c ∈ (0,∞) thermodynamic regime

limt→∞ tθdt =∞ dense regime
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Asymptotic covariances

Theorem: Reitzner/S./Thäle (2016+)

For distinct τ1, . . . , τm > −d/2 define

L̃
(τi )
t = (L

(τi )
t − EL(τi )t )/max{tθτi+d/2

t , t3/2θτi+d
t }, i ∈ {1, . . . ,m}.

Then (L̃
(τ1)
t , . . . , L̃

(τm)
t ) has the asymptotic covariance matrix

Σ :=


Σ1, limt→∞ tθdt = 0

Σ1 + cΣ2, limt→∞ tθdt = c ∈ (0, 1]
1
c Σ1 + Σ2, limt→∞ tθdt = c ∈ (1,∞)

Σ2, limt→∞ tθdt =∞

with

Σ1 =

(
dκd

2(τi + τj + d)

)m

i ,j=1

and Σ2 =

(
d2κ2d

τi + d)(τj + d)

)m

i ,j=1

.

For m ≥ 2, Σ1 is positive definite and Σ2 is singular.
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Compound Poisson approximation

Theorem: Decreusefond/S./Thäle (2016)

Assume that limt→∞ t2θdt := λ ∈ [0,∞) and let τ ∈ R. Then,

t2τ/dL
(τ)
t

d−→
N∑
i=1

‖Xi‖τ =: Z as t →∞

with independent N ∼ Poisson(κdλ/2) and Xi ∼ Uniform(Bd(0, λ1/d)),
i ∈ N. In particular, there is a constant C > 0 depending on W and
supt≥1 t

2θdt such that

dTV (t2τ/dL
(τ)
t ,Z ) ≤ C (|t2θdt − λ|+ t−min{2/d ,1}), t ≥ 1.

The total variation distance of two random variables X ,Y is

dTV (X ,Y ) := sup
A∈B(R)

|P(X ∈ A)− P(Y ∈ A)|.
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Central limit theorems

Theorem: Reitzner/S./Thäle (2016+)

Assume that limt→∞ t2θdt =∞ and let N be a standard Gaussian r.v.

If τ > −d/2,

L
(τ)
t − EL(τ)t√

Var L
(τ)
t

d−→ N, as t →∞.

If τ = −d/2,

L
(τ)
t − EL(τ)t√

dκd t2 ln(t2/dθt)/2 + 4κ2d t
3θdt

d−→ N, as t →∞.

If τ ∈ (−d ,−d/2) and limt→∞ t3+4τ/dθ
2(τ+d)
t =∞,

L
(τ)
t − EL(τ)t

dκd t3/2θ
τ+d
t /(τ + d)

d−→ N, as t →∞.
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Quantitative central limit theorems

For two random variables X ,Y define

dK (X ,Y ) := sup
u∈R
|P(X ≤ u)− P(Y ≤ u)|.

Theorem: Reitzner/S./Thäle (2016+)

Let τ > −d/4 and let N be a standard Gaussian random variable. Then
there is a constant C > 0 depending on τ and W such that

dK

(
L
(τ)
t − EL(τ)t√

Var L
(τ)
t

,N

)
≤ Ct−1/2 max{1, (tθdt )−1/2}, t ≥ 1.
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Stable limit theorems

Theorem: Decreusefond/S./Thäle (2016), Reitzner/S./Thäle
(2016+)

Let limt→∞ t2θdt =∞ and ζ be unit-intensity Poisson process on R+.

If τ ∈ (−d ,−d/2) and limt→∞ t3+4τ/dθ
2(τ+d)
t = 0,

t2τ/d(L
(τ)
t − EL(τ)t )

d−→ (2/κd)τ/d lim
a→∞

∑
x∈ζ∩[0,a]

xτ/d − a1+τ/d

1 + τ/d
.

If τ = −d ,

t−2(L
(−d)
t − E

1

2

∑
(x1,x2)∈η2t,6=

1{
(

2

κd t2

)1/d

≤ ‖x1 − x2‖ ≤ δt}‖x1 − x2‖−d)

d−→ κd
2

lim
a→∞

∑
x∈ζ∩[0,a]

x−1 − log(a).

If τ < −d ,

t2τ/dL
(τ)
t

d−→ (2/κd)τ/d
∑
x∈ζ

xτ/d .
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Summary

For limt→∞ t2θdt =∞ and γ := limt→∞ t3+4τ/dθ
2(τ+d)
t :

γ = 0 γ ∈ (0,∞) γ =∞
τ ≥ −d/2 Gaussian Gaussian Gaussian

τ ∈ (−d ,−d/2) d
|τ | -stable d

|τ | -stable + Gaussian (?) Gaussian

τ ≤ −d d
|τ | -stable d

|τ | -stable d
|τ | -stable

There are multivariate Compound-Poisson, Gaussian and stable limit
theorems.

For the multivariate Gaussian case the covariance structure is known.

In some situations rates of convergence are available.
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Poisson process approximation

Define the point process

ξt :=
1

2

∑
(x1,x2)∈η2t, 6=

1{‖x1 − x2‖ ≤ θt} δ‖x1−x2‖d ,

where δu denotes the unit Dirac measure concentrated at the point u ∈ R.
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where δu denotes the unit Dirac measure concentrated at the point u ∈ R.

Theorem: S./Thäle (2012), Reitzner/S./Thäle (2016+)

Let ζ be a Poisson process on R+ with intensity κd/2.

If limt→∞ t2θdt = λ, t2ξt
d−→ ζ ∩ [0, λ] as t →∞.

If limt→∞ t2θdt =∞, t2ξt
d−→ ζ as t →∞.
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Theorem: Decreusefond/S./Thäle (2016)

There is a constant CW > 0 depending on W such that for 0 ≤ a ≤ t2θdt
and t ≥ 1,

dKR
(
(t2ξt)|[0,a], ζ|[0,a]

)
≤ CW (t−2/da1+1/d + t−1(a + a2)).

The Kantorovich-Rubinstein distance of two finite point processes φ, ψ is

dKR(φ, ψ) := sup
h:N→R,

|h(x)−h(y)|≤dTV (x ,y)

∣∣Eh(φ)− Eh(ψ)
∣∣.
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Proof of stable and compound Poisson limit theorems

Corollary: Reitzner/S./Thäle (2016+)

Let τ ∈ R and a ∈ R with 0 ≤ a ≤ limt→∞ t2/dθt and let ζ be a Poisson
process on R+ with intensity κd/2. Then,

1

2

∑
(x1,x2)∈η2t,6=

1{‖x1 − x2‖ ≤ min{t−2/da, θt}}‖x1 − x2‖τ
d−→

∑
x∈ζ∩[0,ad ]

xτ/d

as t →∞.

This yields the compound Poisson limit theorem.

Approximating L
(τ)
t by the left hand side and the stable random

variable by the left hand side and letting a→∞ and t →∞ in the
right way proves the limit theorem with the stable random variables.
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variable by the left hand side and letting a→∞ and t →∞ in the
right way proves the limit theorem with the stable random variables.
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Proof of the central limit theorem

Consider the random variables

U
(τ)
t,a :=

1

2

∑
(x1,x2)∈η2t,6=

1{t−2/da ≤ ‖x1 − x2‖ ≤ θt}‖x1 − x2‖τ ,

which have for a > 0 and τ < 0 better moment properties than L
(τ)
t .

Central limit theorem with Berry-Esseen bounds for U
(τ)
t,a via

Malliavin-Stein bounds for Poisson-U-statistics

Approximate L
(τ)
t by U

(τ)
t,a
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The end

Thank you!

L. Decreusefond, M. Schulte and Ch. Thäle (2016):
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