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Introduction

Questions pertaining to geometric statistics on input (data) X ⊂ Rd often
involve analyzing sums ∑

x∈X
ξ(x,X ),

where the R-valued score function ξ, defined on pairs (x,X ), represents
the interaction of x with respect to X . The sums describe some global
feature of the data in terms of local contributions ξ(x,X ), x ∈ X .

When X is random the scores ξ(x,X ) are spatially correlated.
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Ex. 1: Statistics of geometric graphs

Clique counts. X ⊂ Rd finite, r ∈ (0,∞).

· Join two points of X iff they are at distance at most r. Vietoris-Rips
complex (with parameter r) is simplicial complex whose k-simplices
correspond to unordered (k + 1)-tuples of points in X all pairwise within r
of each other. For k ∈ N and x ∈ X put

· ξk(x,X ) := number of k-simplices in V-R complex containing x
k+1

· Total number of k-simplices in V-R complex:
∑

x∈X ξk(x,X ).

· Chatterjee; Decreusefond et al.; Kahle + Meckes; Lachièze-Rey +
Peccati; Penrose; Penrose + Y; Reitzner + Schulte; Thäle; Yogeshwaran
+ Adler.
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Ex. 2: Statistics of nearest neighbor graphs

Total edge length. X ⊂ Rd finite. Given x ∈ X , let xNN ∈ X be the
nearest neighbor of x.

· Undirected nearest neighbor graph on X : include an edge {x, y} if
y = xNN and/or x = yNN .

· For x ∈ X , put

ξNN (x,X ) :=

{
1
2 ||x− x

NN || if x, xNN are mutual n.n.

||x− xNN || otherwise.

· Total edge length of NN graph on X :
∑

x∈X ξNN (x,X ).

· Bickel + Breiman; Barbour + Xia; Chatterjee; Last, Peccati + Schulte;
Penrose + Y; Quiroz; Steele.
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Ex. 3: Minimal spanning tree

X ⊂ Rd finite. E(x) := edges in MST (X ) containing x.

· For x ∈ X , put

ξMST (x,X ) :=
1

2

∑
e∈E(x)

|e|.

· Total edge length of MST: LMST (X ) :=
∑

x∈X ξMST (x,X ).

· Aldous + Steele; Chatterjee + Sen; Kesten + Lee; Penrose + Y; Steele.
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General questions

· When P ⊂ Rd is a random pt configuration, the sums
∑

x∈P ξ(x,P)
describe a global feature of the data.

· Question. What is the distribution of these sums for large pt
configurations P? LLN? CLT? Second order asymptotics?

· We describe a methodology for answering these questions.
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Goals

P: a stationary point process on Rd

Restrict to windows: Pn := P ∩ [−n1/d

2 , n
1/d

2 ]d.

Goal. Given a score function ξ(·, ·) defined on pairs (x,X ), given a pt
process P, we seek the limit theory (LLN, CLT, variance asymptotics) for
the total score ∑

x∈Pn

ξ(x,Pn)

and total measure
µξn :=

∑
x∈Pn

ξ(x,Pn)δn−1/dx.

Tractable problems must be local in the sense that points far away from x
should not play a role in the evaluation of the score ξ(x,Pn).
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Stabilization

We assume translation invariant scores: ξ(x,X ) = ξ(0,X − x).

Recall Pn := P ∩ [−n1/d

2 , n
1/d

2 ]d

Key Definition. ξ is stabilizing wrt pt process P on Rd if for all x ∈ Rd
there is R := Rξ(x,P) <∞ a.s. (a ‘radius of stabilization’) such that

ξ(x,P ∩BR(x)) = ξ(x, (P ∩BR(x)) ∪ A)

for any locally finite A ⊂ Rd \BR(x). ξ is exponentially stabilizing wrt P
if there is a constant c > 0 such that

sup
x∈Rd

sup
n∈N

P [Rξ(x,Pn) ≥ r] ≤ c exp(
−r
c

), r ∈ [1,∞).
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Moment condition

P: a pt process on Rd; Pn := P ∩ [−n1/d

2 , n
1/d

2 ]d.

Definition. Let p ∈ [1,∞). ξ satisfies the p moment condition wrt P if

sup
n∈N

sup
x,y∈Rd

E |ξ(x,Pn ∪ {y})|p <∞.
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Weak law of large numbers for Poisson input H

Let H be a rate 1 Poisson pt process on Rd; Hn := H ∩ [−n
1/d

2 , n
1/d

2 ]d.

µξn :=
∑
x∈Hn

ξ(x,Hn)δn−1/dx.

Thm (WLLN): If ξ is stabilizing wrt H, if ξ satisfies the p moment
condition for some p ∈ (1,∞), then for all f ∈ B([−1

2 ,
1
2 ]d) we have

|n−1E 〈µξn, f〉 − E ξ(0,H ∪ {0})
∫
[− 1

2
, 1
2
]d
f(x)dx| ≤ εn.

Penrose and Y (2003): εn = o(1).

Schulte + Y (2016): εn = O(n−1/d) if ξ is exponentially stabilizing wrt H.
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Gaussian fluctuations for Poisson input H on Rd

Recall µξn :=
∑

x∈Hn
ξ(x,Hn)δn−1/dx.

Thm (CLT): Assume ξ is exponentially stabilizing wrt H and that ξ
satisfies the p moment condition for some p ∈ (4,∞). If f ∈ B([−1

2 ,
1
2 ]d)

satisfies Var〈µξn, f〉 = Ω(n), then

sup
t∈R

∣∣∣∣∣∣P
〈µξn, f〉 − E 〈µξn, f〉√

Var〈µξn, f〉
≤ t

− P [N ≤ t]

∣∣∣∣∣∣ ≤ εn.

Penrose + Y (2005), Penrose (2007): εn = O((log n)3dn−1/2).

Last, Peccati + Schulte (2016): εn = γ1 + ....+ γ5.

Lachièze-Rey, Schulte + Y (2016): εn = O(n−1/2).
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Variance asymptotics for Poisson input; volume order
fluctuations

Given homogenous rate 1 Poisson pt process H on Rd, and a score ξ, put

σ2(ξ) = E ξ2(0,H)+

∫
Rd

E ξ(0,H∪{x})ξ(x,H∪{0})−E ξ(0,H)E ξ(x,H)dx.

Thm (variance asymptotics): If ξ is exponentially stabilizing wrt H, if ξ
satisfies the p moment condition for some p ∈ (2,∞), then for all
f ∈ B([−1

2 ,
1
2 ]d) we have

lim
n→∞

n−1Var〈µξn, f〉 = σ2(ξ)

∫
[− 1

2
, 1
2
]d
f2(x)dx ∈ [0,∞).

Baryshnikov + Y (2005); Penrose (2007)
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· Question. If the input pt process is neither a Poisson nor a binomial pt
process, when do we get results which are qualitatively similar?

· Soshnikov (2002) and Shirai + Takahashi (2003): establish CLT for the
linear statistics ∑

x∈Pn

δn−1/dx

where P is determinantal pt process, Pn := P ∩ [−n
1/d

2 , n
1/d

2 ]d.

· Nazarov and Sodin (2012): establish CLT for the linear statistics∑
x∈Pn

δn−1/dx

where P is zero set of Gaussian analytic function, Pn := P ∩ [−n
1/d

2 , n
1/d

2 ]d.

· We want to extend these results to non-linear statistics

µξn :=
∑
x∈Pn

ξ(x,Pn)δn−1/dx.

Joe Yukich (Lehigh University ) Statistics of Random Graphs on Clustering Point Sets
Random Geometric Graphs and Their Applications to Complex Networks, Banff November 6-11, 2016 13

/ 29



· Question. If the input pt process is neither a Poisson nor a binomial pt
process, when do we get results which are qualitatively similar?

· Soshnikov (2002) and Shirai + Takahashi (2003): establish CLT for the
linear statistics ∑

x∈Pn

δn−1/dx

where P is determinantal pt process, Pn := P ∩ [−n
1/d

2 , n
1/d

2 ]d.

· Nazarov and Sodin (2012): establish CLT for the linear statistics∑
x∈Pn

δn−1/dx

where P is zero set of Gaussian analytic function, Pn := P ∩ [−n
1/d

2 , n
1/d

2 ]d.

· We want to extend these results to non-linear statistics

µξn :=
∑
x∈Pn

ξ(x,Pn)δn−1/dx.

Joe Yukich (Lehigh University ) Statistics of Random Graphs on Clustering Point Sets
Random Geometric Graphs and Their Applications to Complex Networks, Banff November 6-11, 2016 13

/ 29



Clustering pt processes

Def. Given a pt process P on Rd, the k pt correlation function
ρ(k) : (Rd)k → [0,∞) is defined via

E [Πk
i=1card(P ∩Bi)] =

∫
B1

...

∫
Bk

ρ(k)(x1, ..., xk)dx1...dxk,

where B1, ..., Bk are disjoint subsets of Rd.

Rk. ρ(k)(x1, ..., xk) = Πk
i=1ρ

(1)(xi) characterizes the Poisson pt process
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Clustering pt processes

Key Definition. A pt process P on Rd clusters if there is a fast
decreasing function φ : R+ → R+ such that for all k ∈ N there are
constants ck and Ck such that for all x1, ..., xp+q ∈ Rd,

|ρ(p+q)(x1, ..., xp+q)−ρ(p)(x1, ..., xp)ρ(q)(xp+1, ..., xp+q)| ≤ Cp+qφ(−cp+qs),

where s := infi∈{1,...,p}, j∈{p+1,...,p+q} ||xi − xj ||.

Remarks.

· ‘fast decreasing’ means φ decays faster than any (negative) power,

· clustering does not imply ‘clumping’. Better to replace ‘clustering’ with
‘weakly correlated’
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Ex. 1: Determinantal pt process

A pt process is determinantal (DPP) if its correlation functions satisfy

ρ(k)(x1, ..., xk) = det(K(xi, xj))1≤i≤j≤k,

where K(·, ·) is Hermitian kernel of locally trace class integral operator
from L2(Rd) to itself.

Fact (B laszczyszyn, Yogeshwaran + Y (2016)). If

|K(x, y)| ≤ φ(||x− y||), x, y ∈ Rd,

with φ fast decreasing, then the associated DPP clusters.
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Infinite Ginibre ensemble

Infinite Ginibre ensemble on complex plane clusters with kernel

K(z1, z2) = exp

(
iIm(z1z̄2)−

1

2
||z1 − z2||2

)
, z1, z2 ∈ C.

Ghosh, Khrishnapur, Peres (2016): Hole probabilities decay exponentially
fast.

See also B laszczyszyn, Yogeshwaran + Y (2016)
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Ex. 2: Gaussian zero pt process

· Let Xj , j ≥ 1, be i.i.d. standard complex Gaussians. Consider the
Gaussian analytic function

F (z) :=

∞∑
j=1

Xj√
j!
zj , z ∈ C.

· Gaussian zero process GAF := F−1({0}) is trans. invariant

· GAF exhibits local repulsivity.

· GAF clusters (Nazarov and Sodin (2012)).

· Hole probabilities (Nishry (2010)):

− logP (B(0, r) ∩GAF = ∅)
r4

→ c ∈ (0,∞).
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Ex. 2: Gaussian zero pt process

· Let Xj , j ≥ 1, be i.i.d. standard complex Gaussians. Consider the
Gaussian analytic function

F (z) :=

∞∑
j=1

Xj√
j!
zj , z ∈ C.

· Gaussian zero process GAF := F−1({0}) is trans. invariant

· GAF exhibits local repulsivity.

· GAF clusters (Nazarov and Sodin (2012)).

· Hole probabilities (Nishry (2010)):

− logP (B(0, r) ∩GAF = ∅)
r4

→ c ∈ (0,∞).

Joe Yukich (Lehigh University ) Statistics of Random Graphs on Clustering Point Sets
Random Geometric Graphs and Their Applications to Complex Networks, Banff November 6-11, 2016 18

/ 29



Other examples of clustering pt processes

· Permanental pt processes with fast decreasing kernel,

· Certain rarified Gibbs pt processes (Schreiber + Y, 2013),

· Convex geometry: Let Xi, 1 ≤ i ≤ n, be i.i.d. uniform on unit ball in
Rd. The angular coordinates of the extreme points, after re-scaling,
converge to a clustering pt process on Rd−1.
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Weak law of large numbers for clustering input

Let P be clustering pt process on Rd. Recall Pn := P ∩ [−n
1/d

2 , n
1/d

2 ]d and

µξn :=
∑
x∈Pn

ξ(x,Pn)δn−1/dx.

Thm (BYY ’16): Assume

· ξ is stabilizing wrt P
· ξ satisfies the p moment condition for some p ∈ (1,∞).

Then for all f ∈ B([−1
2 ,

1
2 ]d) we have

lim
n→∞

n−1E 〈µξn, f〉 = E 0ξ(0,P ∪ {0})
∫
[− 1

2
, 1
2
]d
f(x)dx · ρ(1)(0).
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Variance asymptotics for clustering input P

· Given clustering input P on Rd and a score ξ, put

σ2(ξ) := E ξ2(0,P)ρ(1)(0)+∫
Rd

E ξ(0,P∪x)ξ(x,P∪0)ρ(2)(0, x)−E ξ(0,P)ρ(1)(0)E ξ(x,P)ρ(1)(x)dx.

· Thm (BYY ’16): If ξ is exponentially stabilizing wrt P, if ξ satisfies
the p moment condition for some p ∈ (2,∞), then for all f ∈ B([−1

2 ,
1
2 ]d)

we have

lim
n→∞

n−1Var〈µξn, f〉 = σ2(ξ)

∫
[− 1

2
, 1
2
]d
f2(x)dx ∈ [0,∞).

· Rk. When P is determinantal with fast decreasing kernel this extends
Soshnikov (2002), who assumes ξ ≡ 1.
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Gaussian fluctuations for clustering input P

We say that ξ obeys a power growth condition if

|ξ(x,X ∩Br(x))| ≤ c(r ∨ 1)card(X∩Br(x)), r > 0, x ∈ X .

We formulate two central limit theorems according to the localization
properties of ξ.

Joe Yukich (Lehigh University ) Statistics of Random Graphs on Clustering Point Sets
Random Geometric Graphs and Their Applications to Complex Networks, Banff November 6-11, 2016 22

/ 29



Gaussian fluctuations for clustering input P

Thm (BYY ’16) µξn :=
∑

x∈Pn
ξ(x,Pn)δn−1/dx. Assume

· ξ has deterministic radius of stabilization wrt P,

· ξ satisfies the power growth condition, p moment condition for some
p ∈ (2,∞), and

· given f ∈ B([−1
2 ,

1
2 ]d), Var〈µξn, f〉 = Ω(nα) for some α > 0.

Then as n→∞, we have

〈µξn, f〉 − E 〈µξn, f〉√
Var〈µξn, f〉

D−→ N.

Remarks. (a) When P is determinantal with fast decreasing kernel, this
extends Soshnikov (2002) and Shirai + Takahashi (2003) who restrict to
linear statistics

∑
x∈Pn

δn−1/dx, i.e., they put ξ ≡ 1.
(b) When P is the Gaussian zero process GAF , this extends Nazarov and
Sodin (2012), who also restrict to linear statistics.
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Gaussian fluctuations for clustering input P

Thm (BYY ’16) µξn :=
∑

x∈Pn
ξ(x,Pn)δn−1/dx. Assume

· P clusters and clustering coeff. satisfy mild growth condition

· ξ is exponentially stabilizing wrt P,

· ξ satisfies the power growth condition, p moment condition for some
p ∈ (2,∞), and

· given f ∈ B([−1
2 ,

1
2 ]d), Var〈µξn, f〉 = Ω(nα) for some α > 0. Then

〈µξn, f〉 − E 〈µξn, f〉√
Var〈µξn, f〉

D−→ N.

Rk. If P is determinantal with fast decreasing kernel (e.g. Ginibre) then P
satisfies stated condition.
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Proof idea for CLT - cf Malyshev (1975)

· For k large, show that kth order cumulant for 〈µξn, f〉/
√

Var〈µξn, f〉
vanishes as n→∞.

· Given ξ, consider k mixed moment functions m(k) : (Rd)k → R given by

m(k)(x1, ..., xk;Pn) := EΠk
i=1ξ(xi,Pn)ρ(k)(x1, ..., xk).

· Need to show that the mixed moments ‘cluster’, that is for all k ∈ N
there are constants ck and Ck s.t. for all x1, ..., xp+q ∈ Rd,

|m(p+q)(x1, ..., xp+q)−m(p)(x1, ..., xp)m(q)(xp+1, ..., xp+q)| ≤ Cp+qϕ(−cp+qs),

where ϕ is fast decreasing and

s := inf
i∈{1,...,p}, j∈{p+1,...,p+q}

||xi − xj ||.

· P clusters and ξ exp. stabilizing ⇒ mixed moments cluster.
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Corollaries

1. Clique counts in geometric graph G(X , r).

· ξk(x,X ) := number of k-simplices in V-R complex containing x
k+1

· k-simplex count: Nk(X ) :=
∑

x∈X ξk(x,X ).

Theorem. Let P be any clustering point process (e.g., Ginibre ensemble,
Gaussian zero process, permamental point process with fast decreasing

kernel,...). Let Pn := P ∩ [−n1/d

2 , n
1/d

2 ]d. Then

lim
n→∞

n−1ENk(Pn) = E 0[ξk(0,P)]ρ(1)(0),

lim
n→∞

n−1VarNk(Pn) = σ2(ξk) ∈ [0,∞),

and, provided VarNk(Pn) = Ω(nα), α > 0, we have

Nk(Pn)− ENk(Pn)√
VarNk(Pn)

D−→ N.
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Corollaries

2. Total edge length in geometric graph G(X , r).
P ⊂ Rd clustering pt process. Pn := P ∩ [−n1/d

2 , n
1/d

2 ]d.
E(x) := edges in RGG(Pn) containing x ∈ Pn.

· For x ∈ Pn, put

ξRGG(x,Pn) :=
1

2

∑
e∈E(x)

|e|.

· Total edge length: LRGG(Pn) :=
∑

x∈Pn
ξRGG(x,Pn).

Theorem. Let P be any clustering pt process. Then

lim
n→∞

n−1ELRGG(Pn) = E 0[ξk(0,P)]ρ(1)(0),

lim
n→∞

n−1VarLRGG(Pn) = σ2(ξk) ∈ [0,∞),

and, provided VarLRGG(Pn) = Ω(nα), α > 0, we have

LRGG(Pn)− ELRGG(Pn)√
VarLRGG(Pn)

D−→ N.
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Corollaries

3. Total edge length in nearest neighbor graph.

· For x ∈ X , put

ξNN (x,X ) :=

{
1
2 ||x− x

NN || if x, xNN are mutual n.n.

||x− xNN || otherwise.

· LNN (X ) :=
∑

x∈X ξNN (x,X ).

Theorem. Let P be Ginibre ensemble Pn := P ∩ [−n1/d

2 , n
1/d

2 ]d. Then

lim
n→∞

n−1ELNN (Pn) = E 0[ξNN (0,P)]ρ(1)(0),

lim
n→∞

n−1VarLNN (Pn) = σ2(ξNN ) ∈ [0,∞),

and, provided VarLNN (Pn) = Ω(nα), α > 0, we have

LNN (Pn)− ELNN (Pn)√
VarLNN (Pn)

D−→ N.
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