Statistics of Random Graphs on Clustering Point Sets

Joe Yukich

Lehigh University

Random Geometric Graphs and Their Applications to Complex Networks, Banff November 6-11, 2016

Based on joint work with B. Błaszczyszyn and D. Yogeshwaran

Questions pertaining to geometric statistics on input (data) $\mathcal{X} \subset \mathbb{R}^d$ often involve analyzing sums

$$\sum_{x \in \mathcal{X}} \xi(x, \mathcal{X}),$$

where the \mathbb{R} -valued score function ξ , defined on pairs (x, \mathcal{X}) , represents the interaction of x with respect to \mathcal{X} . The sums describe some global feature of the data in terms of local contributions $\xi(x, \mathcal{X})$, $x \in \mathcal{X}$.

Questions pertaining to geometric statistics on input (data) $\mathcal{X} \subset \mathbb{R}^d$ often involve analyzing sums

$$\sum_{x \in \mathcal{X}} \xi(x, \mathcal{X}),$$

where the \mathbb{R} -valued score function ξ , defined on pairs (x, \mathcal{X}) , represents the interaction of x with respect to \mathcal{X} . The sums describe some global feature of the data in terms of local contributions $\xi(x, \mathcal{X})$, $x \in \mathcal{X}$.

When \mathcal{X} is random the scores $\xi(x, \mathcal{X})$ are spatially correlated.

・聞き ・ 聞き ・ 聞き …… 耳

Clique counts. $\mathcal{X} \subset \mathbb{R}^d$ finite, $r \in (0, \infty)$.

· Join two points of \mathcal{X} iff they are at distance at most r. Vietoris-Rips complex (with parameter r) is simplicial complex whose k-simplices correspond to unordered (k + 1)-tuples of points in \mathcal{X} all pairwise within r of each other. For $k \in \mathbb{N}$ and $x \in \mathcal{X}$ put

 $\cdot \ \xi_k(x,\mathcal{X}) := \frac{\text{number of }k\text{-simplices in V-R complex containing }x}{k+1}$

・聞き ・ 聞き ・ 聞き …… 耳

Clique counts. $\mathcal{X} \subset \mathbb{R}^d$ finite, $r \in (0, \infty)$.

· Join two points of \mathcal{X} iff they are at distance at most r. Vietoris-Rips complex (with parameter r) is simplicial complex whose k-simplices correspond to unordered (k + 1)-tuples of points in \mathcal{X} all pairwise within r of each other. For $k \in \mathbb{N}$ and $x \in \mathcal{X}$ put

$$\cdot \ \xi_k(x,\mathcal{X}) := \frac{\text{number of }k\text{-simplices in V-R complex containing }x}{k+1}$$

· Total number of k-simplices in V-R complex: $\sum_{x \in \mathcal{X}} \xi_k(x, \mathcal{X})$.

 \cdot Chatterjee; Decreusefond et al.; Kahle + Meckes; Lachièze-Rey + Peccati; Penrose; Penrose + Y; Reitzner + Schulte; Thäle; Yogeshwaran + Adler.

- 木田 ト 木田 ト 一田

Ex. 2: Statistics of nearest neighbor graphs

Total edge length. $\mathcal{X} \subset \mathbb{R}^d$ finite. Given $x \in \mathcal{X}$, let $x^{NN} \in \mathcal{X}$ be the nearest neighbor of x.

 \cdot Undirected nearest neighbor graph on \mathcal{X} : include an edge $\{x,y\}$ if $y=x^{NN}$ and/or $x=y^{NN}.$

 \cdot For $x \in \mathcal{X}$, put

$$\xi_{NN}(x,\mathcal{X}) := \begin{cases} \frac{1}{2} ||x - x^{NN}|| & \text{if } x, x^{NN} \text{ are mutual n.n.} \\ ||x - x^{NN}|| & \text{otherwise.} \end{cases}$$

通 ト イヨ ト イヨト

Ex. 2: Statistics of nearest neighbor graphs

Total edge length. $\mathcal{X} \subset \mathbb{R}^d$ finite. Given $x \in \mathcal{X}$, let $x^{NN} \in \mathcal{X}$ be the nearest neighbor of x.

 \cdot Undirected nearest neighbor graph on \mathcal{X} : include an edge $\{x,y\}$ if $y=x^{NN}$ and/or $x=y^{NN}.$

 \cdot For $x \in \mathcal{X}$, put

$$\xi_{NN}(x,\mathcal{X}) := \begin{cases} \frac{1}{2} ||x - x^{NN}|| & \text{if } x, x^{NN} \text{ are mutual n.n.} \\ ||x - x^{NN}|| & \text{otherwise.} \end{cases}$$

· Total edge length of NN graph on \mathcal{X} : $\sum_{x \in \mathcal{X}} \xi_{NN}(x, \mathcal{X})$.

 \cdot Bickel + Breiman; Barbour + Xia; Chatterjee; Last, Peccati + Schulte; Penrose + Y; Quiroz; Steele.

- 米田 ト 米田 ト 米田 ト 一田

 $\mathcal{X} \subset \mathbb{R}^d$ finite. $\mathcal{E}(x) :=$ edges in $MST(\mathcal{X})$ containing x. \cdot For $x \in \mathcal{X}$, put

$$\xi_{MST}(x,\mathcal{X}) := \frac{1}{2} \sum_{e \in \mathcal{E}(x)} |e|.$$

イロト イ団ト イヨト イヨト 三日

 $\mathcal{X} \subset \mathbb{R}^d \text{ finite. } \mathcal{E}(x) := \text{edges } \text{ in } MST(\mathcal{X}) \text{ containing } x.$

 \cdot For $x \in \mathcal{X}$, put

$$\xi_{MST}(x,\mathcal{X}) := \frac{1}{2} \sum_{e \in \mathcal{E}(x)} |e|.$$

- · Total edge length of MST: $L_{MST}(\mathcal{X}) := \sum_{x \in \mathcal{X}} \xi_{MST}(x, \mathcal{X}).$
- \cdot Aldous + Steele; Chatterjee + Sen; Kesten + Lee; Penrose + Y; Steele.

(本部) (本語) (本語) (二百

· When $\mathcal{P} \subset \mathbb{R}^d$ is a random pt configuration, the sums $\sum_{x \in \mathcal{P}} \xi(x, \mathcal{P})$ describe a global feature of the data.

· When $\mathcal{P} \subset \mathbb{R}^d$ is a random pt configuration, the sums $\sum_{x \in \mathcal{P}} \xi(x, \mathcal{P})$ describe a global feature of the data.

 \cdot **Question.** What is the distribution of these sums for large pt configurations \mathcal{P} ? LLN? CLT? Second order asymptotics?

 \cdot We describe a methodology for answering these questions.

(本語) (本語) (本語) (二語

Goals

\mathcal{P} : a stationary point process on \mathbb{R}^d

Restrict to windows: $\mathcal{P}_n := \mathcal{P} \cap [-\frac{n^{1/d}}{2}, \frac{n^{1/d}}{2}]^d.$

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへの

Goals

 \mathcal{P} : a stationary point process on \mathbb{R}^d

Restrict to windows: $\mathcal{P}_n := \mathcal{P} \cap [-\frac{n^{1/d}}{2}, \frac{n^{1/d}}{2}]^d$.

Goal. Given a score function $\xi(\cdot, \cdot)$ defined on pairs (x, \mathcal{X}) , given a pt process \mathcal{P} , we seek the limit theory (LLN, CLT, variance asymptotics) for the total score

$$\sum_{x \in \mathcal{P}_n} \xi(x, \mathcal{P}_n)$$

and total measure

$$\mu_n^{\xi} := \sum_{x \in \mathcal{P}_n} \xi(x, \mathcal{P}_n) \delta_{n^{-1/d}x}.$$

《曰》 《國》 《臣》 《臣》 三臣

Goals

 \mathcal{P} : a stationary point process on \mathbb{R}^d

Restrict to windows: $\mathcal{P}_n := \mathcal{P} \cap [-\frac{n^{1/d}}{2}, \frac{n^{1/d}}{2}]^d$.

Goal. Given a score function $\xi(\cdot, \cdot)$ defined on pairs (x, \mathcal{X}) , given a pt process \mathcal{P} , we seek the limit theory (LLN, CLT, variance asymptotics) for the total score

$$\sum_{x \in \mathcal{P}_n} \xi(x, \mathcal{P}_n)$$

and total measure

$$\mu_n^{\xi} := \sum_{x \in \mathcal{P}_n} \xi(x, \mathcal{P}_n) \delta_{n^{-1/d}x}.$$

Tractable problems must be *local* in the sense that points far away from x should not play a role in the evaluation of the score $\xi(x, \mathcal{P}_n)$.

ロト (個) (目) (目) (目) (の)の

We assume translation invariant scores: $\xi(x, \mathcal{X}) = \xi(\mathbf{0}, \mathcal{X} - x).$ Recall $\mathcal{P}_n := \mathcal{P} \cap [-\frac{n^{1/d}}{2}, \frac{n^{1/d}}{2}]^d$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ― 圖 - 釣�?

We assume translation invariant scores: $\xi(x, \mathcal{X}) = \xi(\mathbf{0}, \mathcal{X} - x)$. Recall $\mathcal{P}_n := \mathcal{P} \cap [-\frac{n^{1/d}}{2}, \frac{n^{1/d}}{2}]^d$

Key Definition. ξ is *stabilizing* wrt pt process \mathcal{P} on \mathbb{R}^d if for all $x \in \mathbb{R}^d$ there is $R := R^{\xi}(x, \mathcal{P}) < \infty$ a.s. (a 'radius of stabilization') such that

$$\xi(x, \mathcal{P} \cap B_R(x)) = \xi(x, (\mathcal{P} \cap B_R(x)) \cup \mathcal{A})$$

for any locally finite $\mathcal{A} \subset \mathbb{R}^d \setminus B_R(x)$.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ― 臣

We assume translation invariant scores: $\xi(x, \mathcal{X}) = \xi(\mathbf{0}, \mathcal{X} - x)$. Recall $\mathcal{P}_n := \mathcal{P} \cap [-\frac{n^{1/d}}{2}, \frac{n^{1/d}}{2}]^d$

Key Definition. ξ is *stabilizing* wrt pt process \mathcal{P} on \mathbb{R}^d if for all $x \in \mathbb{R}^d$ there is $R := R^{\xi}(x, \mathcal{P}) < \infty$ a.s. (a 'radius of stabilization') such that

$$\xi(x, \mathcal{P} \cap B_R(x)) = \xi(x, (\mathcal{P} \cap B_R(x)) \cup \mathcal{A})$$

for any locally finite $\mathcal{A} \subset \mathbb{R}^d \setminus B_R(x)$. ξ is *exponentially stabilizing* wrt \mathcal{P} if there is a constant c > 0 such that

$$\sup_{x \in \mathbb{R}^d} \sup_{n \in \mathbb{N}} P[R^{\xi}(x, \mathcal{P}_n) \ge r] \le c \exp(\frac{-r}{c}), \quad r \in [1, \infty).$$

ヘロン 不聞と 不良と 不良と 一度

 $\mathcal{P} \text{: a pt process on } \mathbb{R}^d \text{; } \mathcal{P}_n := \mathcal{P} \cap [-\frac{n^{1/d}}{2}, \frac{n^{1/d}}{2}]^d.$

Definition. Let $p \in [1, \infty)$. ξ satisfies the p moment condition wrt \mathcal{P} if

$$\sup_{n\in\mathbb{N}}\sup_{x,y\in\mathbb{R}^d}\mathbb{E}\left|\xi(x,\mathcal{P}_n\cup\{y\})\right|^p<\infty.$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 二副 - 釣Aの

Weak law of large numbers for Poisson input ${\mathcal H}$

Let \mathcal{H} be a rate 1 Poisson pt process on \mathbb{R}^d ; $\mathcal{H}_n := \mathcal{H} \cap [\frac{-n^{1/d}}{2}, \frac{n^{1/d}}{2}]^d$.

$$\mu_n^{\xi} := \sum_{x \in \mathcal{H}_n} \xi(x, \mathcal{H}_n) \delta_{n^{-1/d}x}.$$

Thm (WLLN): If ξ is stabilizing wrt \mathcal{H} , if ξ satisfies the p moment condition for some $p \in (1, \infty)$, then for all $f \in B([-\frac{1}{2}, \frac{1}{2}]^d)$ we have

$$|n^{-1}\mathbb{E}\langle \mu_n^{\xi}, f\rangle - \mathbb{E}\xi(\mathbf{0}, \mathcal{H} \cup \{\mathbf{0}\}) \int_{[-\frac{1}{2}, \frac{1}{2}]^d} f(x)dx| \le \epsilon_n.$$

・聞き ・ 聞き ・ 聞き …… 耳

Let \mathcal{H} be a rate 1 Poisson pt process on \mathbb{R}^d ; $\mathcal{H}_n := \mathcal{H} \cap [\frac{-n^{1/d}}{2}, \frac{n^{1/d}}{2}]^d$.

$$\mu_n^{\xi} := \sum_{x \in \mathcal{H}_n} \xi(x, \mathcal{H}_n) \delta_{n^{-1/d}x}.$$

Thm (WLLN): If ξ is stabilizing wrt \mathcal{H} , if ξ satisfies the p moment condition for some $p \in (1, \infty)$, then for all $f \in B([-\frac{1}{2}, \frac{1}{2}]^d)$ we have

$$|n^{-1}\mathbb{E}\langle \mu_n^{\xi}, f\rangle - \mathbb{E}\,\xi(\mathbf{0}, \mathcal{H}\cup\{\mathbf{0}\})\int_{[-\frac{1}{2}, \frac{1}{2}]^d} f(x)dx| \le \epsilon_n.$$

Penrose and Y (2003): $\epsilon_n = o(1)$.

Schulte + Y (2016): $\epsilon_n = O(n^{-1/d})$ if ξ is exponentially stabilizing wrt \mathcal{H} .

(本部) (本語) (本語) (二百

Gaussian fluctuations for Poisson input \mathcal{H} on \mathbb{R}^d

Recall
$$\mu_n^{\xi} := \sum_{x \in \mathcal{H}_n} \xi(x, \mathcal{H}_n) \delta_{n^{-1/d}x}.$$

Thm (CLT): Assume ξ is exponentially stabilizing wrt \mathcal{H} and that ξ satisfies the p moment condition for some $p \in (4, \infty)$. If $f \in B([-\frac{1}{2}, \frac{1}{2}]^d)$ satisfies $\operatorname{Var}\langle \mu_n^{\xi}, f \rangle = \Omega(n)$, then

$$\sup_{t \in \mathbb{R}} \left| P\left[\frac{\langle \mu_n^{\xi}, f \rangle - \mathbb{E} \langle \mu_n^{\xi}, f \rangle}{\sqrt{\operatorname{Var} \langle \mu_n^{\xi}, f \rangle}} \le t \right] - P[N \le t] \right| \le \epsilon_n.$$

・ 四 ト ・ 王 ト ・ 王 ト …

Gaussian fluctuations for Poisson input \mathcal{H} on \mathbb{R}^d

Recall
$$\mu_n^{\xi} := \sum_{x \in \mathcal{H}_n} \xi(x, \mathcal{H}_n) \delta_{n^{-1/d}x}.$$

Thm (CLT): Assume ξ is exponentially stabilizing wrt \mathcal{H} and that ξ satisfies the p moment condition for some $p \in (4, \infty)$. If $f \in B([-\frac{1}{2}, \frac{1}{2}]^d)$ satisfies $\operatorname{Var}\langle \mu_n^{\xi}, f \rangle = \Omega(n)$, then

$$\sup_{t \in \mathbb{R}} \left| P\left[\frac{\langle \mu_n^{\xi}, f \rangle - \mathbb{E} \langle \mu_n^{\xi}, f \rangle}{\sqrt{\operatorname{Var}\langle \mu_n^{\xi}, f \rangle}} \le t \right] - P[N \le t] \right| \le \epsilon_n.$$

Penrose + Y (2005), Penrose (2007): $\epsilon_n = O((\log n)^{3d} n^{-1/2}).$

Last, Peccati + Schulte (2016): $\epsilon_n = \gamma_1 + \dots + \gamma_5$.

Lachièze-Rey, Schulte + Y (2016): $\epsilon_n = O(n^{-1/2})$.

く 同 ト く ヨ ト く ヨ ト

Variance asymptotics for Poisson input; volume order fluctuations

Given homogenous rate 1 Poisson pt process $\mathcal H$ on $\mathbb R^d$, and a score ξ , put

$$\sigma^{2}(\xi) = \mathbb{E}\,\xi^{2}(\mathbf{0},\mathcal{H}) + \int_{\mathbb{R}^{d}} \mathbb{E}\,\xi(\mathbf{0},\mathcal{H}\cup\{x\})\xi(x,\mathcal{H}\cup\{\mathbf{0}\}) - \mathbb{E}\,\xi(\mathbf{0},\mathcal{H})\mathbb{E}\,\xi(x,\mathcal{H})dx.$$

通 ト イヨ ト イヨト

Variance asymptotics for Poisson input; volume order fluctuations

Given homogenous rate 1 Poisson pt process ${\mathcal H}$ on ${\mathbb R}^d$, and a score ξ , put

$$\sigma^{2}(\xi) = \mathbb{E}\xi^{2}(\mathbf{0},\mathcal{H}) + \int_{\mathbb{R}^{d}} \mathbb{E}\xi(\mathbf{0},\mathcal{H}\cup\{x\})\xi(x,\mathcal{H}\cup\{\mathbf{0}\}) - \mathbb{E}\xi(\mathbf{0},\mathcal{H})\mathbb{E}\xi(x,\mathcal{H})dx.$$

Thm (variance asymptotics): If ξ is exponentially stabilizing wrt \mathcal{H} , if ξ satisfies the p moment condition for some $p \in (2, \infty)$, then for all $f \in B([-\frac{1}{2}, \frac{1}{2}]^d)$ we have

$$\lim_{n \to \infty} n^{-1} \operatorname{Var} \langle \mu_n^{\xi}, f \rangle = \sigma^2(\xi) \int_{\left[-\frac{1}{2}, \frac{1}{2}\right]^d} f^2(x) dx \in [0, \infty).$$

Baryshnikov + Y (2005); Penrose (2007)

- 木田 ト 木田 ト 一田

 \cdot **Question.** If the input pt process is neither a Poisson nor a binomial pt process, when do we get results which are qualitatively similar?

 \cdot Soshnikov (2002) and Shirai + Takahashi (2003): establish CLT for the *linear* statistics

$$\sum_{x \in \mathcal{P}_n} \delta_{n^{-1/d}x}$$

where \mathcal{P} is determinantal pt process, $\mathcal{P}_n := \mathcal{P} \cap [\frac{-n^{1/d}}{2}, \frac{n^{1/d}}{2}]^d$.

《曰》《圖》《문》《문》 등

 \cdot **Question.** If the input pt process is neither a Poisson nor a binomial pt process, when do we get results which are qualitatively similar?

 \cdot Soshnikov (2002) and Shirai + Takahashi (2003): establish CLT for the *linear* statistics

$$\sum_{x\in\mathcal{P}_n}\delta_{n^{-1/d}x}$$

where \mathcal{P} is determinantal pt process, $\mathcal{P}_n := \mathcal{P} \cap [\frac{-n^{1/d}}{2}, \frac{n^{1/d}}{2}]^d$.

· Nazarov and Sodin (2012): establish CLT for the linear statistics

$$\sum_{x \in \mathcal{P}_n} \delta_{n^{-1/d}x}$$

where \mathcal{P} is zero set of Gaussian analytic function, $\mathcal{P}_n := \mathcal{P} \cap [\frac{-n^{1/d}}{2}, \frac{n^{1/d}}{2}]^d$.

 \cdot We want to extend these results to non-linear statistics

$$\mu_n^{\xi} := \sum_{x \in \mathcal{P}_n} \xi(x, \mathcal{P}_n) \delta_{n^{-1/d}x}.$$

・ロト・雪ト・雪ト・雪・ 今日や

Def. Given a pt process \mathcal{P} on \mathbb{R}^d , the k pt correlation function $\rho^{(k)}: (\mathbb{R}^d)^k \to [0,\infty)$ is defined via

$$\mathbb{E}\left[\Pi_{i=1}^{k} \operatorname{card}(\mathcal{P} \cap B_{i})\right] = \int_{B_{1}} \dots \int_{B_{k}} \rho^{(k)}(x_{1}, \dots, x_{k}) dx_{1} \dots dx_{k},$$

where $B_1, ..., B_k$ are disjoint subsets of \mathbb{R}^d .

(本部) (本語) (本語) (二語)

Def. Given a pt process \mathcal{P} on \mathbb{R}^d , the k pt correlation function $\rho^{(k)}: (\mathbb{R}^d)^k \to [0,\infty)$ is defined via

$$\mathbb{E}\left[\Pi_{i=1}^{k} \operatorname{card}(\mathcal{P} \cap B_{i})\right] = \int_{B_{1}} \dots \int_{B_{k}} \rho^{(k)}(x_{1}, \dots, x_{k}) dx_{1} \dots dx_{k},$$

where $B_1, ..., B_k$ are disjoint subsets of \mathbb{R}^d .

Rk. $\rho^{(k)}(x_1,...,x_k) = \prod_{i=1}^k \rho^{(1)}(x_i)$ characterizes the Poisson pt process

(ロト (個) (注) (主) (三) ののの

Key Definition. A pt process \mathcal{P} on \mathbb{R}^d clusters if there is a fast decreasing function $\phi : \mathbb{R}^+ \to \mathbb{R}^+$ such that for all $k \in \mathbb{N}$ there are constants c_k and C_k such that for all $x_1, ..., x_{p+q} \in \mathbb{R}^d$,

$$|\rho^{(p+q)}(x_1, ..., x_{p+q}) - \rho^{(p)}(x_1, ..., x_p)\rho^{(q)}(x_{p+1}, ..., x_{p+q})| \le C_{p+q}\phi(-c_{p+q}s),$$

where $s := \inf_{i \in \{1,...,p\}, j \in \{p+1,...,p+q\}} ||x_i - x_j||.$

- 本間 ト 本 ヨ ト - オ ヨ ト - ヨ

Key Definition. A pt process \mathcal{P} on \mathbb{R}^d clusters if there is a fast decreasing function $\phi : \mathbb{R}^+ \to \mathbb{R}^+$ such that for all $k \in \mathbb{N}$ there are constants c_k and C_k such that for all $x_1, ..., x_{p+q} \in \mathbb{R}^d$,

$$|\rho^{(p+q)}(x_1, ..., x_{p+q}) - \rho^{(p)}(x_1, ..., x_p)\rho^{(q)}(x_{p+1}, ..., x_{p+q})| \le C_{p+q}\phi(-c_{p+q}s),$$

where
$$s := \inf_{i \in \{1,...,p\}, j \in \{p+1,...,p+q\}} ||x_i - x_j||.$$

Remarks.

- $\cdot\,$ 'fast decreasing' means ϕ decays faster than any (negative) power,
- $\cdot\,$ clustering does not imply 'clumping'. Better to replace 'clustering' with 'weakly correlated'

・ 御 ト ・ ヨ ト ・ ヨ ト ・ ヨ

A pt process is determinantal (DPP) if its correlation functions satisfy

$$\rho^{(k)}(x_1, ..., x_k) = \det(K(x_i, x_j))_{1 \le i \le j \le k},$$

where $K(\cdot,\cdot)$ is Hermitian kernel of locally trace class integral operator from $L^2(\mathbb{R}^d)$ to itself.

< 個 → < 注 → < 注 → … 注

A pt process is determinantal (DPP) if its correlation functions satisfy

$$\rho^{(k)}(x_1, ..., x_k) = \det(K(x_i, x_j))_{1 \le i \le j \le k},$$

where $K(\cdot,\cdot)$ is Hermitian kernel of locally trace class integral operator from $L^2(\mathbb{R}^d)$ to itself.

Fact (Błaszczyszyn, Yogeshwaran + Y (2016)). If

$$|K(x,y)| \le \phi(||x-y||), \quad x,y \in \mathbb{R}^d,$$

with ϕ fast decreasing, then the associated DPP clusters.

▲御♪ ▲ ヨ♪ ▲ ヨ♪ ― ヨ

Infinite Ginibre ensemble on complex plane clusters with kernel

$$K(z_1, z_2) = \exp\left(i \operatorname{Im}(z_1 \bar{z}_2) - \frac{1}{2} ||z_1 - z_2||^2\right), \quad z_1, z_2 \in \mathbb{C}.$$

Infinite Ginibre ensemble on complex plane clusters with kernel

$$K(z_1, z_2) = \exp\left(i \operatorname{Im}(z_1 \bar{z}_2) - \frac{1}{2} ||z_1 - z_2||^2\right), \ z_1, z_2 \in \mathbb{C}.$$

Ghosh, Khrishnapur, Peres (2016): Hole probabilities decay exponentially fast.

See also Błaszczyszyn, Yogeshwaran + Y (2016)

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ …

· Let $X_j, j \ge 1$, be i.i.d. standard complex Gaussians. Consider the Gaussian analytic function

$$F(z) := \sum_{j=1}^{\infty} \frac{X_j}{\sqrt{j!}} z^j, \quad z \in \mathbb{C}.$$

· Gaussian zero process $GAF := F^{-1}(\{0\})$ is trans. invariant

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

· Let $X_j, j \ge 1$, be i.i.d. standard complex Gaussians. Consider the Gaussian analytic function

$$F(z) := \sum_{j=1}^{\infty} \frac{X_j}{\sqrt{j!}} z^j, \quad z \in \mathbb{C}.$$

- · Gaussian zero process $GAF := F^{-1}(\{0\})$ is trans. invariant
- \cdot GAF exhibits local repulsivity.
- \cdot GAF clusters (Nazarov and Sodin (2012)).
- · Hole probabilities (Nishry (2010)):

$$\frac{-\log P(B(0,r) \cap GAF = \emptyset)}{r^4} \to c \in (0,\infty).$$

- · Permanental pt processes with fast decreasing kernel,
- \cdot Certain rarified Gibbs pt processes (Schreiber + Y, 2013),

· Convex geometry: Let $X_i, 1 \le i \le n$, be i.i.d. uniform on unit ball in \mathbb{R}^d . The angular coordinates of the extreme points, after re-scaling, converge to a clustering pt process on \mathbb{R}^{d-1} .

▲御▶ ★ 御▶ ★ 御▶ … 海

Weak law of large numbers for clustering input

Let \mathcal{P} be clustering pt process on \mathbb{R}^d . Recall $\mathcal{P}_n := \mathcal{P} \cap [\frac{-n^{1/d}}{2}, \frac{n^{1/d}}{2}]^d$ and

$$\mu_n^{\xi} := \sum_{x \in \mathcal{P}_n} \xi(x, \mathcal{P}_n) \delta_{n^{-1/d}x}.$$

Thm (BYY '16): Assume

- $\cdot \xi$ is stabilizing wrt ${\mathcal P}$
- · ξ satisfies the p moment condition for some $p \in (1, \infty)$.

- 木田 ト 木田 ト 一田

Let \mathcal{P} be clustering pt process on \mathbb{R}^d . Recall $\mathcal{P}_n := \mathcal{P} \cap [\frac{-n^{1/d}}{2}, \frac{n^{1/d}}{2}]^d$ and

$$\mu_n^{\xi} := \sum_{x \in \mathcal{P}_n} \xi(x, \mathcal{P}_n) \delta_{n^{-1/d}x}.$$

Thm (BYY '16): Assume

- $\cdot \ \xi$ is stabilizing wrt $\mathcal P$
- · ξ satisfies the p moment condition for some $p \in (1, \infty)$. Then for all $f \in B([-\frac{1}{2}, \frac{1}{2}]^d)$ we have

 $(1 2, 2)) \text{ for all } f \in \mathcal{D}([2, 2]) \text{ for all } f$

$$\lim_{n \to \infty} n^{-1} \mathbb{E} \langle \mu_n^{\xi}, f \rangle = \mathbb{E}_{\mathbf{0}} \xi(\mathbf{0}, \mathcal{P} \cup \{\mathbf{0}\}) \int_{[-\frac{1}{2}, \frac{1}{2}]^d} f(x) dx \cdot \rho^{(1)}(\mathbf{0}).$$

- 米田 と 米 田 と 米 田 と 一 田

Variance asymptotics for clustering input ${\cal P}$

· Given clustering input \mathcal{P} on \mathbb{R}^d and a score ξ , put

•

$$\sigma^2(\xi) := \mathbb{E}\,\xi^2(\mathbf{0},\mathcal{P})\rho^{(1)}(\mathbf{0}) +$$

$$\int_{\mathbb{R}^d} \mathbb{E}\,\xi(\mathbf{0},\mathcal{P}\cup x)\xi(x,\mathcal{P}\cup\mathbf{0})\rho^{(2)}(\mathbf{0},x) - \mathbb{E}\,\xi(\mathbf{0},\mathcal{P})\rho^{(1)}(\mathbf{0})\mathbb{E}\,\xi(x,\mathcal{P})\rho^{(1)}(x)dx.$$

通 ト イ ヨ ト イ ヨ ト

Variance asymptotics for clustering input ${\cal P}$

· Given clustering input \mathcal{P} on \mathbb{R}^d and a score ξ , put

$$\sigma^2(\xi) := \mathbb{E}\,\xi^2(\mathbf{0},\mathcal{P})\rho^{(1)}(\mathbf{0}) +$$

 $\int_{\mathbb{R}^d} \mathbb{E}\,\xi(\mathbf{0},\mathcal{P}\cup x)\xi(x,\mathcal{P}\cup\mathbf{0})\rho^{(2)}(\mathbf{0},x) - \mathbb{E}\,\xi(\mathbf{0},\mathcal{P})\rho^{(1)}(\mathbf{0})\mathbb{E}\,\xi(x,\mathcal{P})\rho^{(1)}(x)dx.$

• Thm (BYY '16): If ξ is exponentially stabilizing wrt \mathcal{P} , if ξ satisfies the p moment condition for some $p \in (2, \infty)$, then for all $f \in B([-\frac{1}{2}, \frac{1}{2}]^d)$ we have

$$\lim_{n \to \infty} n^{-1} \operatorname{Var} \langle \mu_n^{\xi}, f \rangle = \sigma^2(\xi) \int_{[-\frac{1}{2}, \frac{1}{2}]^d} f^2(x) dx \in [0, \infty).$$

• **Rk.** When \mathcal{P} is determinantal with fast decreasing kernel this extends Soshnikov (2002), who assumes $\xi \equiv 1$.

- 本部 と 本語 と 本語 と 二語

We say that ξ obeys a power growth condition if

$$|\xi(x, \mathcal{X} \cap B_r(x))| \le c(r \lor 1)^{\operatorname{card}(\mathcal{X} \cap B_r(x))}, \quad r > 0, \ x \in \mathcal{X}.$$

We formulate two central limit theorems according to the localization properties of ξ .

留 とく ヨ とく ヨ と

Thm (BYY '16) $\mu_n^\xi := \sum_{x \in \mathcal{P}_n} \xi(x, \mathcal{P}_n) \delta_{n^{-1/d}x}$. Assume

- $\cdot \ \xi$ has deterministic radius of stabilization wrt \mathcal{P} ,
- $\cdot \ \xi$ satisfies the power growth condition, p moment condition for some $p \in (2,\infty),$ and
- · given $f \in B([-\frac{1}{2}, \frac{1}{2}]^d)$, $\operatorname{Var}\langle \mu_n^{\xi}, f \rangle = \Omega(n^{\alpha})$ for some $\alpha > 0$. Then as $n \to \infty$, we have

$$\frac{\langle \mu_n^{\xi}, f \rangle - \mathbb{E} \langle \mu_n^{\xi}, f \rangle}{\sqrt{\operatorname{Var} \langle \mu_n^{\xi}, f \rangle}} \xrightarrow{\mathcal{D}} N.$$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ 二 国

Gaussian fluctuations for clustering input $\ensuremath{\mathcal{P}}$

Thm (BYY '16) $\mu_n^\xi:=\sum_{x\in \mathcal{P}_n}\xi(x,\mathcal{P}_n)\delta_{n^{-1/d}x}.$ Assume

- $\cdot \ \xi$ has deterministic radius of stabilization wrt \mathcal{P} ,
- $\cdot \ \xi$ satisfies the power growth condition, p moment condition for some $p \in (2,\infty),$ and
- · given $f \in B([-\frac{1}{2}, \frac{1}{2}]^d)$, $\operatorname{Var}\langle \mu_n^{\xi}, f \rangle = \Omega(n^{\alpha})$ for some $\alpha > 0$. Then as $n \to \infty$, we have

$$\frac{\langle \mu_n^{\xi}, f \rangle - \mathbb{E} \langle \mu_n^{\xi}, f \rangle}{\sqrt{\operatorname{Var} \langle \mu_n^{\xi}, f \rangle}} \xrightarrow{\mathcal{D}} N.$$

Remarks. (a) When \mathcal{P} is determinantal with fast decreasing kernel, this extends Soshnikov (2002) and Shirai + Takahashi (2003) who restrict to linear statistics $\sum_{x \in \mathcal{P}_n} \delta_{n^{-1/d}x}$, i.e., they put $\xi \equiv 1$.

ヘロン 不聞と 不良と 不良と 一度

Thm (BYY '16) $\mu_n^\xi := \sum_{x \in \mathcal{P}_n} \xi(x,\mathcal{P}_n) \delta_{n^{-1/d}x}.$ Assume

- $\cdot \ \xi$ has deterministic radius of stabilization wrt $\mathcal P$,
- $\cdot \ \xi$ satisfies the power growth condition, p moment condition for some $p \in (2,\infty),$ and
- · given $f \in B([-\frac{1}{2}, \frac{1}{2}]^d)$, $\operatorname{Var}\langle \mu_n^{\xi}, f \rangle = \Omega(n^{\alpha})$ for some $\alpha > 0$. Then as $n \to \infty$, we have

$$\frac{\langle \mu_n^{\xi}, f \rangle - \mathbb{E} \langle \mu_n^{\xi}, f \rangle}{\sqrt{\operatorname{Var} \langle \mu_n^{\xi}, f \rangle}} \xrightarrow{\mathcal{D}} N.$$

Remarks. (a) When \mathcal{P} is determinantal with fast decreasing kernel, this extends Soshnikov (2002) and Shirai + Takahashi (2003) who restrict to linear statistics $\sum_{x \in \mathcal{P}_n} \delta_{n^{-1/d_x}}$, i.e., they put $\xi \equiv 1$. (b) When \mathcal{P} is the Gaussian zero process GAF, this extends Nazarov and Sodin (2012), who also restrict to linear statistics.

Thm (BYY '16) $\mu_n^\xi := \sum_{x \in \mathcal{P}_n} \xi(x, \mathcal{P}_n) \delta_{n^{-1/d}x}$. Assume

- $\cdot \ \mathcal{P}$ clusters and clustering coeff. satisfy mild growth condition
- $\cdot \ \xi$ is exponentially stabilizing wrt \mathcal{P} ,
- $\cdot \ \xi$ satisfies the power growth condition, p moment condition for some $p \in (2,\infty),$ and

 \cdot given $f \in B([-\frac{1}{2},\frac{1}{2}]^d)$, $\operatorname{Var}\langle \mu_n^{\xi}, f \rangle = \Omega(n^{\alpha})$ for some $\alpha > 0$. Then

$$\frac{\langle \mu_n^{\xi}, f \rangle - \mathbb{E} \langle \mu_n^{\xi}, f \rangle}{\sqrt{\operatorname{Var} \langle \mu_n^{\xi}, f \rangle}} \xrightarrow{\mathcal{D}} N.$$

(本語) (本語) (本語) (二語

Thm (BYY '16) $\mu_n^\xi := \sum_{x \in \mathcal{P}_n} \xi(x, \mathcal{P}_n) \delta_{n^{-1/d}x}$. Assume

- $\cdot \ \mathcal{P}$ clusters and clustering coeff. satisfy mild growth condition
- $\cdot \ \xi$ is exponentially stabilizing wrt \mathcal{P} ,
- $\cdot \; \xi$ satisfies the power growth condition, p moment condition for some $p \in (2,\infty),$ and
- \cdot given $f \in B([-\frac{1}{2},\frac{1}{2}]^d)$, $\operatorname{Var}\langle \mu_n^{\xi}, f \rangle = \Omega(n^{\alpha})$ for some $\alpha > 0$. Then

$$\frac{\langle \mu_n^{\xi}, f \rangle - \mathbb{E} \langle \mu_n^{\xi}, f \rangle}{\sqrt{\operatorname{Var} \langle \mu_n^{\xi}, f \rangle}} \xrightarrow{\mathcal{D}} N.$$

Rk. If \mathcal{P} is determinantal with fast decreasing kernel (e.g. Ginibre) then \mathcal{P} satisfies stated condition.

ヘロン 不聞と 不良と 不良と 一度

Proof idea for CLT - cf Malyshev (1975)

· For k large, show that kth order cumulant for $\langle \mu_n^{\xi}, f \rangle / \sqrt{\operatorname{Var}\langle \mu_n^{\xi}, f \rangle}$ vanishes as $n \to \infty$.

· Given ξ , consider k mixed moment functions $m_{(k)}: (\mathbb{R}^d)^k \to \mathbb{R}$ given by

$$m_{(k)}(x_1, ..., x_k; \mathcal{P}_n) := \mathbb{E} \prod_{i=1}^k \xi(x_i, \mathcal{P}_n) \rho^{(k)}(x_1, ..., x_k).$$

▲圖▶ ▲ 国▶ ▲ 国▶ …

Proof idea for CLT - cf Malyshev (1975)

· For k large, show that kth order cumulant for $\langle \mu_n^{\xi}, f \rangle / \sqrt{\operatorname{Var} \langle \mu_n^{\xi}, f \rangle}$ vanishes as $n \to \infty$.

· Given ξ , consider k mixed moment functions $m_{(k)}: (\mathbb{R}^d)^k \to \mathbb{R}$ given by

$$m_{(k)}(x_1, ..., x_k; \mathcal{P}_n) := \mathbb{E} \prod_{i=1}^k \xi(x_i, \mathcal{P}_n) \rho^{(k)}(x_1, ..., x_k).$$

· Need to show that the mixed moments 'cluster', that is for all $k \in \mathbb{N}$ there are constants c_k and C_k s.t. for all $x_1, ..., x_{p+q} \in \mathbb{R}^d$,

$$|m_{(p+q)}(x_1, ..., x_{p+q}) - m_{(p)}(x_1, ..., x_p)m_{(q)}(x_{p+1}, ..., x_{p+q})| \le C_{p+q}\varphi(-c_{p+q}s_{p+q})$$

where φ is fast decreasing and

$$s := \inf_{i \in \{1, \dots, p\}, \ j \in \{p+1, \dots, p+q\}} ||x_i - x_j||.$$

· \mathcal{P} clusters and ξ exp. stabilizing \Rightarrow mixed moments cluster.

1. Clique counts in geometric graph $G(\mathcal{X}, r)$.

 $\cdot \ \xi_k(x,\mathcal{X}) := \frac{\text{number of }k\text{-simplices in V-R complex containing }x}{k+1}$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ― 圖 - 釣�?

1. Clique counts in geometric graph $G(\mathcal{X}, r)$.

 $\cdot \ \xi_k(x,\mathcal{X}) := \frac{\text{number of }k\text{-simplices in V-R complex containing }x}{k+1}$

· k-simplex count: $N_k(\mathcal{X}) := \sum_{x \in \mathcal{X}} \xi_k(x, \mathcal{X}).$

▲ロト ▲圖 ト ▲ 画 ト ▲ 画 ト の Q @

1. Clique counts in geometric graph $G(\mathcal{X}, r)$.

 $\cdot \ \xi_k(x,\mathcal{X}) := \frac{\text{number of }k\text{-simplices in V-R complex containing }x}{k+1}$

· k-simplex count: $N_k(\mathcal{X}) := \sum_{x \in \mathcal{X}} \xi_k(x, \mathcal{X}).$

Theorem. Let \mathcal{P} be any clustering point process (e.g., Ginibre ensemble, Gaussian zero process, permamental point process with fast decreasing kernel,...). Let $\mathcal{P}_n := \mathcal{P} \cap [-\frac{n^{1/d}}{2}, \frac{n^{1/d}}{2}]^d$. Then

$$\lim_{n \to \infty} n^{-1} \mathbb{E} N_k(\mathcal{P}_n) = \mathbb{E}_{\mathbf{0}}[\xi_k(\mathbf{0}, \mathcal{P})] \rho^{(1)}(\mathbf{0}),$$

$$\lim_{n \to \infty} n^{-1} \operatorname{Var} N_k(\mathcal{P}_n) = \sigma^2(\xi_k) \in [0, \infty),$$

and, provided $\mathrm{Var}N_k(\mathcal{P}_n)=\Omega(n^{lpha}),\ \alpha>0$, we have

$$\frac{N_k(\mathcal{P}_n) - \mathbb{E} N_k(\mathcal{P}_n)}{\sqrt{\operatorname{Var} N_k(\mathcal{P}_n)}} \xrightarrow{\mathcal{D}} N.$$

(ロ) (四) (ヨ) (ヨ) (日)

2. Total edge length in geometric graph $G(\mathcal{X}, r)$. $\mathcal{P} \subset \mathbb{R}^d$ clustering pt process. $\mathcal{P}_n := \mathcal{P} \cap \left[-\frac{n^{1/d}}{2}, \frac{n^{1/d}}{2}\right]^d$. $\mathcal{E}(x) :=$ edges in $RGG(\mathcal{P}_n)$ containing $x \in \mathcal{P}_n$.

 \cdot For $x\in \mathcal{P}_n$, put $\xi_{RGG}(x,\mathcal{P}_n):=rac{1}{2}\sum_{e\in \mathcal{E}(x)}|e|.$

· Total edge length: $L_{RGG}(\mathcal{P}_n) := \sum_{x \in \mathcal{P}_n} \xi_{RGG}(x, \mathcal{P}_n).$

- 木田 ト 木田 ト 一田

2. Total edge length in geometric graph $G(\mathcal{X}, r)$. $\mathcal{P} \subset \mathbb{R}^d$ clustering pt process. $\mathcal{P}_n := \mathcal{P} \cap \left[-\frac{n^{1/d}}{2}, \frac{n^{1/d}}{2}\right]^d$. $\mathcal{E}(x) :=$ edges in $RGG(\mathcal{P}_n)$ containing $x \in \mathcal{P}_n$.

 \cdot For $x\in \mathcal{P}_n$, put $\xi_{RGG}(x,\mathcal{P}_n):=rac{1}{2}\sum_{e\in \mathcal{E}(r)}|e|.$

· Total edge length: $L_{RGG}(\mathcal{P}_n) := \sum_{x \in \mathcal{P}_n} \xi_{RGG}(x, \mathcal{P}_n).$

Theorem. Let \mathcal{P} be any clustering pt process. Then

 $\lim_{n \to \infty} n^{-1} \mathbb{E} L_{RGG}(\mathcal{P}_n) = \mathbb{E}_{\mathbf{0}}[\xi_k(\mathbf{0}, \mathcal{P})]\rho^{(1)}(\mathbf{0}),$ $\lim_{n \to \infty} n^{-1} \operatorname{Var} L_{RGG}(\mathcal{P}_n) = \sigma^2(\xi_k) \in [0, \infty),$ and, provided $\operatorname{Var} L_{RGG}(\mathcal{P}_n) = \Omega(n^{\alpha}), \ \alpha > 0$, we have $\frac{L_{RGG}(\mathcal{P}_n) - \mathbb{E} L_{RGG}(\mathcal{P}_n)}{\sqrt{\operatorname{Var} L_{RGG}(\mathcal{P}_n)}} \xrightarrow{\mathcal{D}} N.$

3. Total edge length in nearest neighbor graph.

 \cdot For $x \in \mathcal{X}$, put

$$\xi_{NN}(x,\mathcal{X}) := \begin{cases} \frac{1}{2} ||x - x^{NN}|| & \text{if } x, x^{NN} \text{ are mutual n.n.} \\ ||x - x^{NN}|| & \text{otherwise.} \end{cases}$$
$$\cdot L_{NN}(\mathcal{X}) := \sum_{x \in \mathcal{X}} \xi_{NN}(x, \mathcal{X}).$$

3. Total edge length in nearest neighbor graph.

 \cdot For $x \in \mathcal{X}$, put

 $\xi_{NN}(x,\mathcal{X}) := \begin{cases} \frac{1}{2} ||x - x^{NN}|| & \text{if } x, x^{NN} \text{ are mutual n.n.} \\ ||x - x^{NN}|| & \text{otherwise.} \end{cases}$ $\cdot L_{NN}(\mathcal{X}) := \sum_{x \in \mathcal{X}} \xi_{NN}(x,\mathcal{X}).$

Theorem. Let \mathcal{P} be Ginibre ensemble $\mathcal{P}_n := \mathcal{P} \cap [-\frac{n^{1/d}}{2}, \frac{n^{1/d}}{2}]^d$. Then

 $\lim_{n \to \infty} n^{-1} \mathbb{E} L_{NN}(\mathcal{P}_n) = \mathbb{E}_{\mathbf{0}}[\xi_{NN}(\mathbf{0}, \mathcal{P})]\rho^{(1)}(\mathbf{0}),$ $\lim_{n \to \infty} n^{-1} \operatorname{Var} L_{NN}(\mathcal{P}_n) = \sigma^2(\xi_{NN}) \in [0, \infty),$ and, provided $\operatorname{Var} L_{NN}(\mathcal{P}_n) = \Omega(n^{\alpha}), \ \alpha > 0$, we have $\frac{L_{NN}(\mathcal{P}_n) - \mathbb{E} L_{NN}(\mathcal{P}_n)}{\sqrt{\operatorname{Var} L_{NN}(\mathcal{P}_n)}} \xrightarrow{\mathcal{D}} N.$

(ロトス個人ス語)を語り、語

THANK YOU

イロト 不屈下 不屈下 不屈下 一座