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Introduction

Questions pertaining to geometric statistics on input (data) X C R? often

involve analyzing sums
> &, ),
TEX

where the R-valued score function £, defined on pairs (x, X'), represents
the interaction of x with respect to X'. The sums describe some global
feature of the data in terms of local contributions {(x, X), = € X.
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Introduction

Questions pertaining to geometric statistics on input (data) X C R? often

involve analyzing sums
> &, ),
TEX

where the R-valued score function £, defined on pairs (x, X'), represents
the interaction of x with respect to X'. The sums describe some global
feature of the data in terms of local contributions {(x, X), = € X.

When X is random the scores £(z, X') are spatially correlated.
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Ex. 1: Statistics of geometric graphs

Clique counts. X C R? finite, r € (0, 00).

- Join two points of X iff they are at distance at most r. Vietoris-Rips
complex (with parameter ) is simplicial complex whose k-simplices
correspond to unordered (k + 1)-tuples of points in X" all pairwise within r
of each other. For k € N and z € X put

.__ number of k-simplices in V-R complex containing =
: ‘gk(xu‘)() T k+1
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Ex. 1: Statistics of geometric graphs

Clique counts. X C R? finite, r € (0, 00).

- Join two points of X iff they are at distance at most r. Vietoris-Rips
complex (with parameter ) is simplicial complex whose k-simplices
correspond to unordered (k + 1)-tuples of points in X" all pairwise within r
of each other. For k € N and z € X put

.__ number of k-simplices in V-R complex containing =
: ‘gk(xu‘)() T k+1

- Total number of k-simplices in V-R complex: >, & (z, ).

- Chatterjee; Decreusefond et al.; Kahle + Meckes; Lachieze-Rey +
Peccati; Penrose; Penrose + Y; Reitzner 4+ Schulte; Théle; Yogeshwaran
+ Adler.
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Ex. 2: Statistics of nearest neighbor graphs

Total edge length. X C R finite. Given z € X, let zVV € X be the
nearest neighbor of z.

- Undirected nearest neighbor graph on X": include an edge {z,y} if
y = ¥V and/or x = yV V.

- For x € X, put

e (z, X) = {;HI‘ — 2NN if z,2VY are mutual n.n.
) A

l|z — 2VN||  otherwise.
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Ex. 2: Statistics of nearest neighbor graphs

Total edge length. X C R finite. Given z € X, let zVV € X be the
nearest neighbor of z.

- Undirected nearest neighbor graph on X": include an edge {z,y} if
y = ¥V and/or x = yV V.

- For x € X, put

Enn(z, X) %”fﬂ — 2NN if z,2VY are mutual n.n.
X =
AR l|z — 2VN||  otherwise.

- Total edge length of NN graph on X: > . &vn(z, X).

- Bickel + Breiman; Barbour + Xia; Chatterjee; Last, Peccati + Schulte;
Penrose + Y; Quiroz; Steele.
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Ex. 3: Minimal spanning tree

X C R? finite. £(x) := edges in MST(X) containing .

- For x € X, put
1
Emvsr(z, X) = 3 Z lel.
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Ex. 3: Minimal spanning tree

X C R? finite. £(x) := edges in MST(X) containing .

- For x € X, put
Emst(z, X) Z lel.

eES (z)

- Total edge length of MST:  Lys7(X) := > cx Smst(z, X).

- Aldous + Steele; Chatterjee + Sen; Kesten + Lee; Penrose + Y; Steele.
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General questions

- When P C R? is a random pt configuration, the sums > wep&(x,P)
describe a global feature of the data.
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General questions

- When P C R? is a random pt configuration, the sums > wep&(x,P)
describe a global feature of the data.

- Question. What is the distribution of these sums for large pt
configurations P? LLN? CLT? Second order asymptotics?

- We describe a methodology for answering these questions.
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Goals

P: a stationary point process on R?

nl/d nl/d]d

Restrict to windows: P, := P N [-"5—, "5
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Goals

P: a stationary point process on R?

nl/d nl/d]d

Restrict to windows: P, := P N [-"5—, "5

Goal. Given a score function (-, -) defined on pairs (z, X), given a pt
process P, we seek the limit theory (LLN, CLT, variance asymptotics) for

the total score
D &, Pn)
TEPn,

and total measure

i 3 € P e

z€Pn
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Goals

P: a stationary point process on R?

nl/d nl/d]d

Restrict to windows: P, := P N [-"5—, "5

Goal. Given a score function (-, -) defined on pairs (z, X), given a pt
process P, we seek the limit theory (LLN, CLT, variance asymptotics) for

the total score
D &, Pn)
TEPn,

and total measure

i 3 € P e

z€Pn

Tractable problems must be local in the sense that points far away from x
should not play a role in the evaluation of the score &(x, Py,).
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Stabilization

We assume translation invariant scores: {(z, X) = £(0, X — z).
,nl/d nl/d]d

Recall P, :=P N |[-"5—, "5
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Stabilization

We assume translation invariant scores: {(z, X) = £(0, X — z).

1/d 1/d
Recall P, := PN |15, 25-]?

Key Definition. ¢ is stabilizing wrt pt process P on R? if for all z € R?
there is R := R(z,P) < o0 a.s. (a ‘radius of stabilization’) such that

§(x, PN Br(x)) = &(x, (PN Br(z)) UA)

for any locally finite A C R%\ Bg(x).
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Stabilization

We assume translation invariant scores: {(z, X) = £(0, X — z).

1/d 1/d
Recall P, := PN |15, 25-]?

Key Definition. ¢ is stabilizing wrt pt process P on R? if for all z € R?
there is R := R(z,P) < o0 a.s. (a ‘radius of stabilization’) such that

§(x, PN Br(x)) = &(x, (PN Br(z)) UA)

for any locally finite A C R?\ Bg(z). ¢ is exponentially stabilizing wrt P
if there is a constant ¢ > 0 such that

sup sup PRS(e, Py) > 1] < coxp( L), 7 € [Lso).
zeRI neN c
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Moment condition

nl/d nl/d]d

P: a pt process on R, P, :=P N[ R
Definition. Let p € [1,00). ¢ satisfies the p moment condition wrt P if

sup sup E[{(z, P, U{y})]P < occ.
neN g ycRd
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Weak law of large numbers for Poisson input H

l/d nl/diq

Let H be a rate 1 Poisson pt process on RY; H,, := H N [, 2],

= ) &, Hn)6p1/dy

xE€EHn

Thm (WLLN): If £ is stabilizing wrt #, if £ satisfies the p moment

condition for some p € (1,00), then for all f € B([—3,1]%) we have

nUE () ~BEOHU(O) [ | fla)de] < e
—23l?
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Weak law of large numbers for Poisson input H

Let 7 be a rate 1 Poisson pt process on R%; H,, := H N [= l/d, ;/d]d.

= ) &, Hn)6p1/dy

xE€EHn

Thm (WLLN): If £ is stabilizing wrt #, if £ satisfies the p moment
condition for some p € (1,00), then for all f € B([—3,1]%) we have

nUE () ~BEOHU(O) [ | fla)de] < e
—23l?

Penrose and Y (2003): €, = o(1).
Schulte + Y (2016): €, = O(n~'/%) if £ is exponentially stabilizing wrt H.
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Gaussian fluctuations for Poisson input # on R?

Recall & = > eer, §(@, Hn)dp—1/a,.

Thm (CLT): Assume ¢ is exponentially stabilizing wrt A and that f
satisfies the p moment condition for some p € (4,00). If f € B([—3,1]%)
satisfies Var(u$, f) = Q(n), then

1 _ &
supP </1'n7f> E(:U'nvf>§t —P[Ngt] an

telk Var(ub, f)
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Gaussian fluctuations for Poisson input # on R?

Recall 1 := > eer, §(@, Hn)dp—1/a,.

Thm (CLT): Assume ¢ is exponentially stabilizing wrt A and that f
satisfies the p moment condition for some p € (4,00). If f € B([—3,1]%)

satisfies Var(u$, f) = Q(n), then

€ _ 1
sup P <Mn7f> E(ﬂn7f>
teR Var (i, f)

<t| — P[N <{]| < €.

Penrose 4 Y (2005), Penrose (2007): €, = O((logn)*¥n=1/2).
Last, Peccati + Schulte (2016): €, = 1 + .... + 5.
Lachieze-Rey, Schulte 4 Y (2016): €, = O(n~/?).
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Variance asymptotics for Poisson input; volume order

fluctuations

Given homogenous rate 1 Poisson pt process H on R%, and a score &, put

o?(¢) = E£2(O,H)+/Rd}EE(O,HU{x})&(m,HU{O})—Eg(O,H)]E&(m,?—l)d:n.
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Variance asymptotics for Poisson input; volume order

fluctuations

Given homogenous rate 1 Poisson pt process H on R%, and a score &, put

o?(¢) = E£2(0,7{)+/Rd]E&(O,HU{x})&(m,HU{O})—Eg(O,H)]EE(m,H)d:n

Thm (variance asymptotics): If £ is exponentially stabilizing wrt #H, if £
satisfies the p moment condition for some p € (2, c0), then for all
f € B([-3. 3]%) we have

lim n~'Var(us, f) = 02(5)/ f2(x)dz € [0,00).

n—o0 [_5’2]

Baryshnikov + Y (2005); Penrose (2007)
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- Question. If the input pt process is neither a Poisson nor a binomial pt
process, when do we get results which are qualitatively similar?

- Soshnikov (2002) and Shirai + Takahashi (2003): establish CLT for the

linear statistics
>
zGPn

_npl/d nl/d]d

where P is determinantal pt process, P, := P N [~5—, "5
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- Question. If the input pt process is neither a Poisson nor a binomial pt
process, when do we get results which are qualitatively similar?

- Soshnikov (2002) and Shirai + Takahashi (2003): establish CLT for the

linear statistics
>
zGPn

. . _nl/d 1/d
where P is determinantal pt process, P, := P N[ ”2/ , ”2/ 1¢.

- Nazarov and Sodin (2012): establish CLT for the linear statistics

Z 571*1/‘155

zEPn

. . . . _pl/d 1/d
where P is zero set of Gaussian analytic function, P, := PN | ”2/ , %]d

- We want to extend these results to non-linear statistics

pb, = Z &(z,Pn)d,,—1/dy-

zEPn
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Clustering pt processes

Def. Given a pt process P on R¢, the k pt correlation function
p*) - (RHE — [0, 00) is defined via

E [IT%_, card(P N By)] :/ / p ¥y, .., ) day .. day,,
B JB,

where By, ..., By, are disjoint subsets of R?.
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Clustering pt processes

Def. Given a pt process P on R¢, the k pt correlation function
p*) - (RHE — [0, 00) is defined via

E [IT%_, card(P N By)] :/ / p ¥y, .., ) day .. day,,
B JB,

where By, ..., By, are disjoint subsets of R?.

Rk. p®) (1, ..., x) = II*_, p™) (2;) characterizes the Poisson pt process
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Clustering pt processes

Key Definition. A pt process P on R? clusters if there is a fast
decreasing function ¢ : R™ — R™ such that for all £ € N there are
constants ¢ and Cj, such that for all 1, ..., 244 € RY,

PPt (@1, ., wp+q)_p(p) (21, 0y xp)p(q)(a:pH, o Tprg)| < CpigP(—Cpigs),

where s := infie{l,...,p}, je{p+1,....p+q} ||@; — ;]|
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Clustering pt processes

Key Definition. A pt process P on R? clusters if there is a fast
decreasing function ¢ : R™ — R™ such that for all £ € N there are
constants ¢ and Cj, such that for all 1, ..., 244 € RY,

PPt (@1, ., wp+q)_p(p) (21, 0y xp)p(q)(a:pH, o Tprg)| < CpigP(—Cpigs),

where s := lnfz'e{l,...,p}, je{p+1,....p+q} ||@; — ;]|
Remarks.

‘fast decreasing’ means ¢ decays faster than any (negative) power,

clustering does not imply ‘clumping’. Better to replace ‘clustering’ with
‘weakly correlated’
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Ex. 1: Determinantal pt process

A pt process is determinantal (DPP) if its correlation functions satisfy
p* (@1, oy mp) = det(K (w5, 25))1<i<j<hs

where K (-,-) is Hermitian kernel of locally trace class integral operator
from L2(R?) to itself.
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Ex. 1: Determinantal pt process

A pt process is determinantal (DPP) if its correlation functions satisfy
p* (@1, oy mp) = det(K (w5, 25))1<i<j<hs

where K (-,-) is Hermitian kernel of locally trace class integral operator
from L2(R?) to itself.

Fact (Btaszczyszyn, Yogeshwaran + Y (2016)). If
K (z,9)| < 6(llz —yl), =,y €RY,

with ¢ fast decreasing, then the associated DPP clusters.
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Infinite Ginibre ensemble

Infinite Ginibre ensemble on complex plane clusters with kernel

. 3 1
K(21,22) = exp (zIm(zle) — §|]21 — 22||2> , 21,729 € C.
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Infinite Ginibre ensemble

Infinite Ginibre ensemble on complex plane clusters with kernel
. _ 1 9
K(z1,29) = exp | ilm(z122) — §|]21 — 2], 21,22 €C.

Ghosh, Khrishnapur, Peres (2016): Hole probabilities decay exponentially
fast.

See also Btaszczyszyn, Yogeshwaran + Y (2016)
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Ex. 2: Gaussian zero pt process

- Let X;,7 > 1, bei.i.d. standard complex Gaussians. Consider the
Gaussian analytic function

eC.

- Gaussian zero process GAF := F~1({0}) is trans. invariant

aw
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Ex. 2: Gaussian zero pt process

- Let X;,7 > 1, bei.i.d. standard complex Gaussians. Consider the
Gaussian analytic function

- Gaussian zero process GAF := F~1({0}) is trans. invariant
- GAF exhibits local repulsivity.

- GAF clusters (Nazarov and Sodin (2012)).

- Hole probabilities (Nishry (2010)):

aw

—log P(B(0,7) N GAF = () .

1 € (0,00).

r
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Other examples of clustering pt processes

- Permanental pt processes with fast decreasing kernel,
- Certain rarified Gibbs pt processes (Schreiber + Y, 2013),
- Convex geometry: Let X;,1 < ¢ <n, bei.i.d. uniform on unit ball in

R?. The angular coordinates of the extreme points, after re-scaling,
converge to a clustering pt process on R4,
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Weak law of large numbers for clustering input

Let P be clustering pt process on R%. Recall P, :=P N [*"Ql/d, ";/d]d and

e Y 6w Pl
zEPn
Thm (BYY ’16): Assume
- & is stabilizing wrt P
- ¢ satisfies the p moment condition for some p € (1, c0).
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Weak law of large numbers for clustering input

Let P be clustering pt process on RY. Recall P, := PN [= Ud, ;/d]d and

= > &, Pu)b, /4,

z€Pn

Thm (BYY ’16): Assume
- & is stabilizing wrt P

- ¢ satisfies the p moment condition for some p € (1, c0).
Then for all f € B([—3, 3]%) we have

Jim B (i, 1) = Ba€0.PULO)) [ f@)de- 0 (0)
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Variance asymptotics for clustering input P

- Given clustering input P on R? and a score &, put

o2(€) == E&*(0,P)pM(0)+

/ E£(0, PUz)E(z, PUO) D (0,2)—E£(0,P)p™M (0)E &(z, P)p™Y () da.
]Rd
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Variance asymptotics for clustering input P

- Given clustering input P on R? and a score &, put
(€)= E&(0,P)p (0)+

/RdEg(o,mx)g(a:,PUO)p@)(o,x) E£(0, 7)) (0)E&(z, P)pD (z)da

- Thm (BYY ’16): If £ is exponentially stabilizing wrt P, if £ satisfies
the p moment condition for some p € (2, 00), then for all f € B([—1,1]%)
we have

lim n~'Var(us, f) = 02(5)/ L f2(x)dx € [0,00).

n—oQ 1 7}d
272

- Rk. When P is determinantal with fast decreasing kernel this extends
Soshnikov (2002), who assumes £ = 1.
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Gaussian fluctuations for clustering input P

We say that £ obeys a power growth condition if

£(x, X N By(2))] < e(r v 1)@dXNB) 5 0 e X

We formulate two central limit theorems according to the localization
properties of &.
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Gaussian fluctuations for clustering input P

Thm (BYY '16) 65 := 3", cp, £(2,Pp)0,-1/a,. Assume
- & has deterministic radius of stabilization wrt P,

- £ satisfies the power growth condition, p moment condition for some
p € (2,00), and

- given f € B([-1,1]%), Var(u$, f) = Q(n®) for some o > 0.
Then as n — oo, we have
(5, £) — E (i, f) D,
Var (i, f)

N.
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Gaussian fluctuations for clustering input P

Thm (BYY '16) 65 := 3", cp, £(2,Pp)0,-1/a,. Assume
- & has deterministic radius of stabilization wrt P,

- £ satisfies the power growth condition, p moment condition for some
p € (2,00), and

- given f € B([-1,1]%), Var(u$, f) = Q(n®) for some o > 0.
Then as n — oo, we have

(s ) — E (b, f) D,
Var (s, f)

N.

Remarks. (a) When P is determinantal with fast decreasing kernel, this
extends Soshnikov (2002) and Shirai + Takahashi (2003) who restrict to
linear statistics » o 0,-1/d,, i.€., they put { = 1.

Joe Yukich (Lehigh University ) Statistics of Random Graphs on Clustering Pc



Gaussian fluctuations for clustering input P

Thm (BYY '16) 65 := 3", cp, £(2,Pp)0,-1/a,. Assume
- & has deterministic radius of stabilization wrt P,

- £ satisfies the power growth condition, p moment condition for some
p € (2,00), and

- given f € B([-1,1]%), Var(u$, f) = Q(n®) for some o > 0.
Then as n — oo, we have
(5, £) — E (i, f) D,
Var (i, f)

N.

Remarks. (a) When P is determinantal with fast decreasing kernel, this
extends Soshnikov (2002) and Shirai + Takahashi (2003) who restrict to
linear statistics » o 0,-1/d,, i.€., they put { = 1.

(b) When P is the Gaussian zero process GAF', this extends Nazarov and
Sodin (2012), who also restrict to linear statistics.
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Gaussian fluctuations for clustering input P

Thm (BYY '16) uf, =Y, cp (2, Pn)d,—1/a,. Assume
- P clusters and clustering coeff. satisfy mild growth condition
- £ is exponentially stabilizing wrt P,

- £ satisfies the power growth condition, p moment condition for some
p € (2,00), and

- given f € B([-1,119), Var (i, f) = Q(n®) for some a > 0. Then

Var(u%,ﬁ

N.
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Gaussian fluctuations for clustering input P

Thm (BYY '16) uf, =Y, cp (2, Pn)d,—1/a,. Assume
- P clusters and clustering coeff. satisfy mild growth condition
- £ is exponentially stabilizing wrt P,

- £ satisfies the power growth condition, p moment condition for some
p € (2,00), and

- given f € B([-1,119), Var (i, f) = Q(n®) for some a > 0. Then

Var(u%,ﬁ

Rk. If P is determinantal with fast decreasing kernel (e.g. Ginibre) then P
satisfies stated condition.
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Proof idea for CLT - cf Malyshev (1975)

- For k large, show that kth order cumulant for (5, f)/+/ Var(us, f)
vanishes as n — oco.

- Given &, consider k mixed moment functions my) : (RHYF — R given by

M) (T15 s T Pr) 1= EIF_ &(xi, Po)p™ (21, ..., 1),
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Proof idea for CLT - cf Malyshev (1975)

- For k large, show that kth order cumulant for (5, f)/+/ Var(us, f)
vanishes as n — oco.

- Given &, consider k mixed moment functions my) : (RHYF — R given by
M (@1, ooy 03 Pr) 1= ETE (@i, Pr)p® (@1, oy ).

- Need to show that the mixed moments ‘cluster’, that is for all K € N
there are constants c;, and Cj, s.t. for all z1,...,2p44 € R,

[Mpg) (T s Tptg) =) (T1, o0y Tp) M) (Tp1s ooy Tptg) | < Cprgp(—Cpigs

where ¢ is fast decreasing and

5:= inf [z — ]|
ie{l7"'7p}7 je{p+17"'7p+q}

- P clusters and & exp. stabilizing = mixed moments cluster. [
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Corollaries

1. Clique counts in geometric graph G(X, 7).

.__ number of k-simplices in V-R complex containing =
- k(w, X) = E+1
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Corollaries

1. Clique counts in geometric graph G(X, 7).

.__ number of k-simplices in V-R complex containing =
- k(w, X) = E+1

- k-simplex count: Ny (&) := >y &(z,X).
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Corollaries

1. Clique counts in geometric graph G(X, 7).

.__ number of k-simplices in V-R complex containing =
k(z, X) = E+1

- k-simplex count: Ny (&) := >y &(z,X).

Theorem. Let P be any clustering point process (e.g., Ginibre ensemble,

Gaussian zero process, permamental point process with fast decreasing
pl/d pl/dog

kernel,...). Let P, :=P N [—25—, 2.=]% Then
lim n™'E Ny(P,) = Eo[& (0, P)]p'(0),

lim n~'VarNy(P,) = o2(&) € [0, 00),

n—oo

and, provided VarNy(P,) = Q(n®), a > 0, we have

Ni(Py) ~ENu(P) D
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Corollaries

2. Total edge length in geometric graph G(X,r).

P C R? clustering pt process. P, := P N[~ ";/d, ”;/d]d
E(x) :=edges in RGG(P,) containing x € P,,.

- For x € P, put
§rac(x, Pn) Z le].
665(30)

- Total edge length:  Lraa(Pn) := > ,ep, Erca (T, Pr).
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Corollaries

2. Total edge length in geometric graph G(X,r).

P C R clustering pt process. P, := P N[— ";/d, ”;/d]d
E(x) :=edges in RGG(P,) containing x € P,,.

- For x € P, put
§rac(x, Pn) Z le].
665(30)
Lrcc(Pn) =3 sep, $rca (@, Pn).
Theorem. Let P be any clustering pt process. Then

hrn n- ELRGG( n) = Eo[€k(0,P)]p (1)(0)7

- Total edge length:

lim n~'VarLpee(Pn) = 0%(é) € [0,00),
and, provided VarLrga(Prn) = 2(n%), a > 0, we have

LrcG(Pn) —ELrac(Py) o,
VarL rae(Pn)

Joe Yukich (Lehigh University )
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Corollaries

3. Total edge length in nearest neighbor graph.

- For x € X, put

NN

V| are mutual n.n.

3z — if z,x
VN[ otherwise.

fNN(.I',X) = {

|z —

“LnN(X) =3 cx énn(z, X).
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Corollaries

3. Total edge length in nearest neighbor graph.

- For x € X, put

xNNH NN

3l —
xNNH

if z,z are mutual n.n.

otherwise.

fNN(m,X) = {

||z —
“LnN(X) =3 cx énn(z, X).

Theorem. Let P be Ginibre ensemble P,, :=P N [—”l/d ”l/d]d. Then

2 v 2
nlg& n~'E LN (Pn) = EO[&NN(OaP)]P(l)(O)a
li_)m n_lVarLNN(Pn) = 02(§NN) € [0, 00),

and, provided VarLyn(Pp) = Q(n%), a > 0, we have

LynN(Pn) —ELnN(Pr) D, N

Joe Yukich (Lehigh University ) Statistics of Random Graphs on Clustering Pc
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