Packing Edge-disjoint Spanning Trees in Random Geometric Graphs

Jane Gao

Monash University

6-11 November, 2016

Random Geometric Graphs and Their Applications to Complex Networks

The STP number

Trivial upper bounds

Theorem (**G.**, Pérez-Giménez and Sato '14

For any $0 \le m \le \binom{n}{2}$, a.a.s.

$$STP(G(n,m)) = \min\{\delta, m/(n-1)\},\$$

where

 $\delta = \delta(G(n,m)).$

• We also determined A(G(n, m)).

Random Geomet

Trivial upper bounds

Theorem (G., Pérez-Giménez and Sato '14)

For any
$$0 \le m \le \binom{n}{2}$$
, a.a.s.

$$STP(G(n,m)) = \min\{\delta, m/(n-1)\},\$$

where

$$\delta = \delta(G(n,m)).$$

We also determined A(G(n, m)).

Jane Gao Monash University

<□ > < □ > < □ > < □ > < □ > < □ > < □ > Random Geome

Trivial upper bounds

Theorem (G., Pérez-Giménez and Sato '14)

For any
$$0 \le m \le \binom{n}{2}$$
, a.a.s.

$$STP(G(n,m)) = \min\{\delta, m/(n-1)\},\$$

where

$$\delta = \delta(G(n,m)).$$

• We also determined A(G(n, m)).

< □ > < □ > < □ > < □ > < □ > < □ > ...Random Geom

- Palmer and Spencer '95 the STP number for G(n, m) where $\delta = O(1)$;
- Catlin, Chen and Palmer '93 the STP number and the arboricity when $m \approx n^{4/3}$;
- Chen, Li and Lian '13 the STP number for $m \leq (1.1/2) n \log n$.

Theorem (Tutte '61, Nash-Williams '61)

G contains k edge-disjoint spanning trees if and only if

$$\frac{m(\mathcal{P})}{|\mathcal{P}|-1} \geq k, \quad \forall \mathcal{P}.$$

$$STP(G) = \min_{\mathcal{P}} \left\{ \frac{m(\mathcal{P})}{|\mathcal{P}| - 1} \right\}$$

Theorem (Tutte '61, Nash-Williams '61)

G contains k edge-disjoint spanning trees if and only if

$$\frac{m(\mathcal{P})}{|\mathcal{P}|-1} \geq k, \quad \forall \mathcal{P}.$$

$$STP(G) = \min_{\mathcal{P}} \left\{ \frac{m(\mathcal{P})}{|\mathcal{P}| - 1} \right\}$$

Theorem (Tutte '61, Nash-Williams '61)

G contains k edge-disjoint spanning trees if and only if

$$\frac{m(\mathcal{P})}{|\mathcal{P}|-1} \geq k, \quad \forall \mathcal{P}.$$

$$STP(G) = \min_{\mathcal{P}} \left\{ \frac{m(\mathcal{P})}{|\mathcal{P}| - 1} \right\}$$

- 1×1 torus;
- *n* vertices chosen uniformly from $[0, 1] \times [0, 1]$;
- two vertices adjacent if their Euclidean distance is at most r;
- G(n; r).

STP(G(n; r))?
A(G(n; r))?

- 1×1 torus;
- *n* vertices chosen uniformly from $[0,1] \times [0,1]$;
- two vertices adjacent if their Euclidean distance is at most r;
- G(n; r).
- *STP*(*G*(*n*; *r*))?
- A(G(n; r))?

Nice properties of G(n, m) that helped:

- Small sets of vertices induce sparse subgraphs;
- Large set S has large ∂S .

< □ > < □ > < □ > Random Geomet

Nice properties of G(n, m) that helped:

- Small sets of vertices induce sparse subgraphs;
- Large set S has large ∂S .

< ⊕ > < ≣ > < ≣ > ≡ Random Geo

Nice properties of G(n, m) that helped:

- Small sets of vertices induce sparse subgraphs;
- Large set S has large ∂S .

- Small cliques;
- Small sets can induce "rather dense" subgraphs;
- Large sets can have small ∂S .
- We cannot reduce to simple partitions.

< □ > < □ > < □ > Random Geome

Small cliques;

- Small sets can induce "rather dense" subgraphs;
- Large sets can have small ∂S .
- We cannot reduce to simple partitions.

- Small cliques;
- Small sets can induce "rather dense" subgraphs;
- Large sets can have small ∂S .
- We cannot reduce to simple partitions.

- Small cliques;
- Small sets can induce "rather dense" subgraphs;
- Large sets can have small ∂S .
- We cannot reduce to simple partitions.

- Small cliques;
- Small sets can induce "rather dense" subgraphs;
- Large sets can have small ∂S .
- We cannot reduce to simple partitions.

Let $p(r) = \pi r^2$. Then $d_u \sim Binomial(n, p(r))$. So the degree distribution of G(n; r) is almost the same as that of G(n, p(r)).

Theorem (**G.**, Pérez-Giménez and Sato '16⁺

Assume $\epsilon_0 > 0$ is a sufficiently small constant. Then, for any r where $p(r) \leq (1 + \epsilon_0) \log n/n$, a.a.s.

 $STP(G(n;r)) = \delta.$

<ロ><日><日><日><日</th>日日日

Let $p(r) = \pi r^2$. Then $d_u \sim Binomial(n, p(r))$. So the degree distribution of G(n; r) is almost the same as that of G(n, p(r)).

Theorem (G., Pérez-Giménez and Sato '16⁺)

Assume $\epsilon_0 > 0$ is a sufficiently small constant. Then, for any r where $p(r) \leq (1 + \epsilon_0) \log n/n$, a.a.s.

 $STP(G(n; r)) = \delta.$

Connected partitions \mathcal{P} :

- Each part $S \in \mathcal{P}$ induces a connected subgraph;
- If $S_1, S_2 \in \mathcal{P}$ and $S_1 \cup S_2$ induces a clique then $|S_1||S_2| = 1$.

Lemma

Considering connected partitions suffices.

Connected partitions \mathcal{P} :

- Each part $S \in \mathcal{P}$ induces a connected subgraph;
- If $S_1, S_2 \in \mathcal{P}$ and $S_1 \cup S_2$ induces a clique then $|S_1||S_2| = 1$.

Lemma

Considering connected partitions suffices.

Subgraph induced by light vertices

Light vertices are those with degree $\leq 6\delta$.

Lemma

- G_L is a union of cliques; each clique is composed of a set of vertices inside a ball of radius r/4;
- Every clique in G_L has order at most 4δ;
- All cliques in G_L are pair-wise far apart.

< □ > < E > < E > E Random Ge

Subgraph induced by light vertices

Light vertices are those with degree $\leq 6\delta$.

Lemma

- *G_L* is a union of cliques; each clique is composed of a set of vertices inside a ball of radius *r*/4;
- Every clique in G_L has order at most 4δ ;
- All cliques in G_L are pair-wise far apart.

Subgraph induced by light vertices

Light vertices are those with degree $\leq 6\delta$.

Lemma

- *G_L* is a union of cliques; each clique is composed of a set of vertices inside a ball of radius *r*/4;
- Every clique in G_L has order at most 4δ ;
- All cliques in G_L are pair-wise far apart.

< ≣ ► < ≣ ► Pandom

• F are parts in \mathcal{P} containing only one vertex, and the vertex is light.

- No adjacent vertices both with minimum degree;
- No sets *S* with $|\partial S| < \delta$;
- No sets S such that
 - S induces a clique;
 - the average degree of vertices in S is less than $\delta + (|S| 1)/2$.

- No adjacent vertices both with minimum degree;
- No sets *S* with $|\partial S| < \delta$;
- No sets S such that
 - S induces a clique;
 - the average degree of vertices in S is less than $\delta + (|S| 1)/2$.

- No adjacent vertices both with minimum degree;
- No sets *S* with $|\partial S| < \delta$;
- No sets S such that
 - S induces a clique;
 - the average degree of vertices in S is less than $\delta + (|S| 1)/2$.

- No adjacent vertices both with minimum degree;
- No sets *S* with $|\partial S| < \delta$;
- No sets S such that
 - S induces a clique;
 - the average degree of vertices in S is less than $\delta + (|S|-1)/2$.

$$\begin{split} |\mathcal{P}| &= |S| + l \\ m(\mathcal{P}) &= \bar{o}_{S} \cdot |S| - \frac{|S|(|S| - l)|}{2} \\ &< \left(\delta + \frac{|S| - l}{2}\right) |S| - \frac{|S| \cdot (|S| - l)}{2} \\ &= \delta \cdot |S|. \\ \frac{m(\mathcal{P})}{|\mathcal{P}| - l} &< \frac{\delta |S|}{|S|} = \delta. \end{split}$$

- No adjacent vertices both with minimum degree; If v has degree δ , all its neighbours have degree at least $\delta + 2$.
- No sets *S* with $|\partial S| < \delta$;
- No sets S such that
 - S induces a clique;
 - the average degree of vertices in S is less than $\delta + (|S|-1)/2$.

$$\begin{aligned} |\Psi| &= |S| + 1 \\ m(\Psi) &= |\delta| + 1 \\ &= |\delta| + |S| - \frac{|S|(|S| - 1)|^2}{2} \\ &= |S| + \frac{|S| - 1}{2} |S| - \frac{|S| + (|S| - 1)}{2} \\ &= |S| + |S| \\ \frac{m(P)}{|P| - 1} &\leq \frac{|S| + 1}{|S|} = |S|. \end{aligned}$$

- No adjacent vertices both with minimum degree; If v has degree δ , all its neighbours have degree at least $\delta + 2$.
- No sets *S* with $|\partial S| < \delta$; For all but at most one $S \in \mathcal{P} \setminus F$, $|\partial S \setminus \partial F| \ge 2\delta$ for connected \mathcal{P} .
- No sets S such that
 - S induces a clique;
 - the average degree of vertices in S is less than $\delta + (|S|-1)/2$.

$$\begin{split} |\mathcal{P}| &= |S| + l \\ m(\mathcal{P}) &= |\overline{o}|_{S} \cdot |S| - \frac{|S|(|S| - l)|_{2}}{2} \\ &< \left(\delta + \frac{|S| - l}{2}\right) |S| - \frac{|S| \cdot (|S| - l)}{2} \\ &= \delta \cdot |S| . \\ \frac{m(\mathcal{P})}{|\mathcal{P}| - l} &< \frac{\delta |S|}{|S|} = \delta . \end{split}$$

- No adjacent vertices both with minimum degree; If v has degree δ , all its neighbours have degree at least $\delta + 2$.
- No sets *S* with $|\partial S| < \delta$; For all but at most one $S \in \mathcal{P} \setminus F$, $|\partial S \setminus \partial F| \ge 2\delta$ for connected \mathcal{P} .
- No sets S such that True!
 - S induces a clique;
 - the average degree of vertices in S is less than $\delta + (|S|-1)/2$.

$$\begin{split} |\mathcal{P}| &= |S| + l \\ m(\mathcal{P}) &= |\overline{o}|_{S} \cdot |S| - \frac{|S|(|S| - l)|_{2}}{2} \\ &< \left(\delta + \frac{|S| - l}{2}\right) |S| - \frac{|S| \cdot (|S| - l)}{2} \\ &= \delta \cdot |S| . \\ \frac{m(\mathcal{P})}{|\mathcal{P}| - l} &< \frac{\delta |S|}{|S|} = \delta . \end{split}$$

$STP(G(n;r)) = \delta$

F are parts in *P* containing only one vertex, and the vertex is light. |∂*F*| ≥ δ|*F*|.

<□ > < □ > < □ > < □ > < □ > < □ > Random Geometric

F are parts in *P* containing only one vertex, and the vertex is light. |∂*F*| ≥ δ|*F*|

< D > < D > < D > < D > < D > < D > < D > < D > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C > < C >

F are parts in P containing only one vertex, and the vertex is light.
|∂F| ≥ δ|F|.

F are parts in P containing only one vertex, and the vertex is light.
|∂F| ≥ δ|F|.

$$\left| \begin{array}{c} \left| \delta F \right| = \sum_{i=1}^{k} \left(\overline{d_i} \cdot k_i - \binom{k_i}{2} \right) \\ \Rightarrow \sum_{i=1}^{k} \delta k_i = \delta |F| \\ m(P) = \left| \Im F \right| + \frac{1}{2} \sum_{s \in F} \left| \Im S \setminus \Im F \right| \Rightarrow \left| \Im F \right| + \frac{1}{2} (IP) - |F| - 1 \right) \Im S = S(IPI-1) \\ & k_i \text{ vertices} \\ \text{overage degree} = \overline{d_i} \end{array}$$

< □ > < □ > < □ > < □ > < □ > < □ > Random Geomet • F are parts in \mathcal{P} containing only one vertex, and the vertex is light.

- $|\partial F| \ge \delta |F|$.
- $m(\mathcal{P}) \geq \delta(|\mathcal{P}| 1).$

$$|\delta F| = \sum_{i=1}^{k} \left(\overline{d_i} \cdot k_i - \binom{k_i}{2} \right) \xrightarrow{d_i} = \delta + (k_i - 1)/2$$

$$\Rightarrow \sum_{i=1}^{k} \delta k_i = \delta |F|$$

$$m(P) = |\partial F| + \frac{1}{2} \sum_{s \notin F} |\partial S| \partial F| \Rightarrow |\partial F| + \frac{1}{2} (IP| - |F| - 1) \cdot 2\delta = \delta(IP| - 1)$$

$$k_i \text{ vertices}$$
we rage degree = $\overline{d_i}$

$$\Rightarrow 2\delta \text{ except for out most one } S.$$

$|\partial S \setminus \partial F| \ge 2\delta$

D if
$$|S|=1$$
. v is not light. \Rightarrow deg $(v) \ge 6\delta$.
 $|\partial S| \partial F| \ge 6\delta - 4\delta = 2\delta$.
D diameter $(S) < dr$.
We can show $|\partial S| \ge 2\delta$.
Either $\partial S \cap \partial F = \Phi$. \rightarrow done.
 σr
 $\in F \{ \begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array} \\ \stackrel{\circ}{\Rightarrow} S \\ \ge \frac{1}{2} \text{ apart.} \Rightarrow deg(v) \ge \partial Eg \mathcal{P}.$
 $< vos chosen so that $|B_{or}(v)| < \frac{v}{2} \log n. \Rightarrow |S| < \frac{v}{2} \log n.$
Then,
 $|\partial S| \partial F| \ge deg(v) - |S| - 4\delta \ge \frac{v}{2} \log n - 4\delta \ge 2\delta.$
(3) diameter $(S) \ge dv$$

When $p(r) = \Omega(\log n/n)$.

 $|E(S)| = \frac{1}{2} \left(\overline{a}_{S} \cdot |S| - |\partial S| \right)$ P-> P' by splitting S. $\frac{m(p')}{|P'|-1} = \frac{m(P) + |E(S)|}{|P|-1| + (|S|-1)}$ $I_{s} \frac{|E(s)|}{|s|-1} \leq \frac{m}{n-1}$? Then $\frac{|E(s)|}{|s|-1} \approx \frac{1}{2} \left(\frac{\overline{d} |s| + Q_{f}(\sqrt{d} |s|) - O(yrn\overline{d})}{|s|} \right)$ $\frac{m}{n-1} \approx \frac{1}{2} d$ $|S| \approx \pi \chi^2 n$ $=\frac{1}{2}\left(\overline{d}+O_{p}\left(\frac{r}{y}\right)-\Theta\left(\frac{r^{3}n}{y}\right)\right)$ $|\partial s| = \Theta(2\pi y \cdot r \cdot n \cdot \overline{d})$ If $d(s) = \overline{d} \cdot |s| + O_{e}(\sqrt{d} \cdot |s|)$ We have $\frac{r}{y} \sim \frac{r^3n}{r}$ as $r^2 = \Omega(logn)$ $d \approx \pi r^{*} n$

- Concentration of $\bar{d}(S)$?
- $STP(G(n; r)) = \lfloor m/(n-1) \rfloor$, for $r \ge C \sqrt{\log n/n}$?
- $STP(G(n; r)) = \min\{\delta, \lfloor m/(n-1) \rfloor\}$ for any r?
- A(G(n; r))?

<ロ>・・・・ 日子・ (日子・) 日子 (日子・) 日子・ (日子・) (日子