Packing Edge-disjoint Spanning Trees in Random Geometric Graphs

Jane Gao

Monash University

6-11 November, 2016
Random Geometric Graphs and Their Applications to Complex Networks

The STP number

Trivial upper bounds

- $\operatorname{STP}(G) \leq \delta(G)$;
- $\operatorname{STP}(G) \leq\lfloor m(G) /(n-1)\rfloor$.

Trivial upper bounds

- $\operatorname{STP}(G) \leq \delta(G)$;
- $\operatorname{STP}(G) \leq\lfloor m(G) /(n-1)\rfloor$.

Theorem (G., Pérez-Giménez and Sato '14)

For any $0 \leq m \leq\binom{ n}{2}$, a.a.s.

$$
\operatorname{STP}(G(n, m))=\min \{\delta, m /(n-1)\}
$$

where

$$
\delta=\delta(G(n, m))
$$

Trivial upper bounds

- $\operatorname{STP}(G) \leq \delta(G)$;
- $\operatorname{STP}(G) \leq\lfloor m(G) /(n-1)\rfloor$.

Theorem (G., Pérez-Giménez and Sato '14)

For any $0 \leq m \leq\binom{ n}{2}$, a.a.s.

$$
\operatorname{STP}(G(n, m))=\min \{\delta, m /(n-1)\}
$$

where

$$
\delta=\delta(G(n, m))
$$

- We also determined $A(G(n, m))$.

Previously existing gap

- Palmer and Spencer '95 - the STP number for $G(n, m)$ where $\delta=O(1)$;
- Catlin, Chen and Palmer '93 - the STP number and the arboricity when $m \approx n^{4 / 3}$;
- Chen, Li and Lian '13 - the STP number for $m \leq(1.1 / 2) n \log n$.

Tools

Theorem (Tutte '61, Nash-Williams '61)

G contains k edge-disjoint spanning trees if and only if

$$
\frac{m(\mathcal{P})}{|\mathcal{P}|-1} \geq k, \quad \forall \mathcal{P} .
$$

Tools

Theorem (Tutte '61, Nash-Williams '61)

G contains k edge-disjoint spanning trees if and only if

$$
\frac{m(\mathcal{P})}{|\mathcal{P}|-1} \geq k, \quad \forall \mathcal{P}
$$

$$
\operatorname{STP}(G)=\min _{\mathcal{P}}\left\{\frac{m(\mathcal{P})}{|\mathcal{P}|-1}\right\}
$$

Tools

Theorem (Tutte '61, Nash-Williams '61)

G contains k edge-disjoint spanning trees if and only if

$$
\frac{m(\mathcal{P})}{|\mathcal{P}|-1} \geq k, \quad \forall \mathcal{P} .
$$

$$
\operatorname{STP}(G)=\min _{\mathcal{P}}\left\{\frac{m(\mathcal{P})}{|\mathcal{P}|-1}\right\}
$$

Random geometric graphs

- 1×1 torus;
- n vertices chosen uniformly from $[0,1] \times[0,1]$;
- two vertices adjacent if their Euclidean distance is at most r;
- $G(n ; r)$.

Random geometric graphs

- 1×1 torus;
- n vertices chosen uniformly from $[0,1] \times[0,1]$;
- two vertices adjacent if their Euclidean distance is at most r;
- $G(n ; r)$.
- $\operatorname{STP}(G(n ; r))$?
- $A(G(n ; r))$?

Nice properties of $G(n, m)$ that helped:

Nice properties of $G(n, m)$ that helped:

- Small sets of vertices induce sparse subgraphs;
- Large set S has large ∂S.

Nice properties of $G(n, m)$ that helped:

- Small sets of vertices induce sparse subgraphs;
- Large set S has large ∂S.

What's different about $G(n ; r)$?

What's different about $G(n ; r)$?

- Small cliques;

What's different about $G(n ; r)$?

- Small cliques;
- Small sets can induce "rather dense" subgraphs;

What's different about $G(n ; r)$?

- Small cliques;
- Small sets can induce "rather dense" subgraphs;
- Large sets can have small ∂S.

What's different about $G(n ; r)$?

- Small cliques;
- Small sets can induce "rather dense" subgraphs;
- Large sets can have small ∂S.
- We cannot reduce to simple partitions.

Main result

Let $p(r)=\pi r^{2}$. Then $d_{u} \sim \operatorname{Binomial}(n, p(r))$. So the degree distribution of $G(n ; r)$ is almost the same as that of $G(n, p(r))$.

Main result

Let $p(r)=\pi r^{2}$. Then $d_{u} \sim \operatorname{Binomial}(n, p(r))$. So the degree distribution of $G(n ; r)$ is almost the same as that of $G(n, p(r))$.

Theorem (G., Pérez-Giménez and Sato '16+)

Assume $\epsilon_{0}>0$ is a sufficiently small constant. Then, for any r where $p(r) \leq\left(1+\epsilon_{0}\right) \log n / n$, a.a.s.

$$
\operatorname{STP}(G(n ; r))=\delta
$$

Connected partitions suffice

Connected partitions \mathcal{P} :

- Each part $S \in \mathcal{P}$ induces a connected subgraph;
- If $S_{1}, S_{2} \in \mathcal{P}$ and $S_{1} \cup S_{2}$ induces a clique then $\left|S_{1}\right|\left|S_{2}\right|=1$.

Connected partitions suffice

Connected partitions \mathcal{P} :

- Each part $S \in \mathcal{P}$ induces a connected subgraph;
- If $S_{1}, S_{2} \in \mathcal{P}$ and $S_{1} \cup S_{2}$ induces a clique then $\left|S_{1}\right|\left|S_{2}\right|=1$.

Lemma

Considering connected partitions suffices.

Subgraph induced by light vertices

Light vertices are those with degree $\leq 6 \delta$.

Subgraph induced by light vertices

Light vertices are those with degree $\leq 6 \delta$.

Lemma

- G_{L} is a union of cliques; each clique is composed of a set of vertices inside a ball of radius r/4;
- Every clique in G_{L} has order at most 4δ;
- All cliques in G_{L} are pair-wise far apart.

Subgraph induced by light vertices

Light vertices are those with degree $\leq 6 \delta$.

Lemma

- G_{L} is a union of cliques; each clique is composed of a set of vertices inside a ball of radius r/4;
- Every clique in G_{L} has order at most 4δ;
- All cliques in G_{L} are pair-wise far apart.

Sensitive parts

- F are parts in \mathcal{P} containing only one vertex, and the vertex is light.

Necessary conditions for $T(G)=\delta$

- No adjacent vertices both with minimum degree;

Necessary conditions for $T(G)=\delta$

- No adjacent vertices both with minimum degree;
- No sets S with $|\partial S|<\delta$;

Necessary conditions for $T(G)=\delta$

- No adjacent vertices both with minimum degree;
- No sets S with $|\partial S|<\delta$;
- No sets S such that
- S induces a clique;
- the average degree of vertices in S is less than $\delta+(|S|-1) / 2$.

Necessary conditions for $T(G)=\delta$

- No adjacent vertices both with minimum degree;
- No sets S with $|\partial S|<\delta$;
- No sets S such that
- S induces a clique;
- the average degree of vertices in S is less than $\delta+(|S|-1) / 2$.

$$
\begin{aligned}
|P|= & |s|+1 \\
m(P) & =\sigma_{s} \cdot|s|-\frac{|s|(|s|-1)}{2} \\
& <\left(\delta+\frac{|s|-1}{2}\right)|s|-\frac{|s| \cdot(|s|-1)}{2} \\
& =\delta \cdot|s| . \\
\frac{m(P)}{|P|-1} & <\frac{\delta|s|}{|s|}=\delta .
\end{aligned}
$$

Necessary conditions for $T(G)=\delta$

- No adjacent vertices both with minimum degree; If v has degree δ, all its neighbours have degree at least $\delta+2$.
- No sets S with $|\partial S|<\delta$;
- No sets S such that
- S induces a clique;
- the average degree of vertices in S is less than $\delta+(|S|-1) / 2$.

$$
\begin{aligned}
|p|= & |s|+1 \\
m(P) & =\bar{J}_{s} \cdot|s|-\frac{|s|(|s|-1)}{2} \\
& <\left(\delta+\frac{|s|-1}{2}\right)|s|-\frac{|s| \cdot(|s|-1)}{2} \\
& =\delta \cdot|s| . \\
\frac{m(p)}{|P|-1} & <\frac{\delta|s|}{|s|}=\delta .
\end{aligned}
$$

Necessary conditions for $T(G)=\delta$

- No adjacent vertices both with minimum degree; If v has degree δ, all its neighbours have degree at least $\delta+2$.
- No sets S with $|\partial S|<\delta$; For all but at most one $S \in \mathcal{P} \backslash F$, $|\partial S \backslash \partial F| \geq 2 \delta$ for connected \mathcal{P}.
- No sets S such that
- S induces a clique;
- the average degree of vertices in S is less than $\delta+(|S|-1) / 2$.

$$
\begin{aligned}
|p|= & |s|+1 \\
m(P) & =\bar{d}_{s} \cdot|s|-\frac{|s|(|s|-1)}{2} \\
& <\left(\delta+\frac{|s|-1}{2}\right)|s|-\frac{|s| \cdot(|s|-1)}{2} \\
& =\delta \cdot|s| . \\
\frac{m(p)}{|P|-1} & <\frac{\delta|s|}{|s|}=\delta .
\end{aligned}
$$

Necessary conditions for $T(G)=\delta$

- No adjacent vertices both with minimum degree; If v has degree δ, all its neighbours have degree at least $\delta+2$.
- No sets S with $|\partial S|<\delta$; For all but at most one $S \in \mathcal{P} \backslash F$, $|\partial S \backslash \partial F| \geq 2 \delta$ for connected \mathcal{P}.
- No sets S such that - True!
- S induces a clique;
- the average degree of vertices in S is less than $\delta+(|S|-1) / 2$.

$$
\begin{aligned}
|p|= & |s|+1 \\
m(P) & =\bar{d}_{s} \cdot|s|-\frac{|s|(|s|-1)}{2} \\
& <\left(\delta+\frac{|s|-1}{2}\right)|s|-\frac{|s| \cdot(|s|-1)}{2} \\
& =\delta \cdot|s| . \\
\frac{m(p)}{|P|-1} & <\frac{\delta|s|}{|s|}=\delta .
\end{aligned}
$$

$\operatorname{STP}(G(n ; r))=\delta$

$\operatorname{STP}(G(n ; r))=\delta$

- F are parts in \mathcal{P} containing only one vertex, and the vertex is light.

$\operatorname{STP}(G(n ; r))=\delta$

- F are parts in \mathcal{P} containing only one vertex, and the vertex is light.
- $|\partial F| \geq \delta|F|$.

$\operatorname{STP}(G(n ; r))=\delta$

- F are parts in \mathcal{P} containing only one vertex, and the vertex is light.
- $|\partial F| \geq \delta|F|$.

$\operatorname{STP}(G(n ; r))=\delta$

- F are parts in \mathcal{P} containing only one vertex, and the vertex is light.
- $|\partial F| \geq \delta|F|$.
- $m(\mathcal{P}) \geq \delta(|\mathcal{P}|-1)$.

$|\partial S \backslash \partial F| \geq 2 \delta$

(1) if $|s|=1 . \quad v$ is not light. $\Rightarrow \operatorname{deg}(\nu) \geqslant 6 \delta$.

$$
|\partial S| \partial F \mid \geqslant 6 \delta-4 \delta=2 \delta .
$$

(2) diameter $(s)<\alpha r$.

We can show $|\partial s| \geqslant 2 \delta$.
Either $\partial S \cap \partial F=\phi . \rightarrow$ done.
or

$$
\begin{aligned}
& \in F\{\stackrel{9}{0} \overbrace{S} \\
& \geqslant \frac{r}{2} \text { apart. } \Rightarrow \operatorname{deg}(\nu) \geqslant \gamma \log \eta \text {. }
\end{aligned}
$$

α was chosen so that $\left|B_{\alpha r}(\nu)\right|<\frac{\gamma}{2} \log n \Rightarrow|s|<\frac{\gamma}{2} \log n$
Then,

$$
|\partial S| \partial F\left|\geqslant \operatorname{deg}(\nu)-|S|-4 \delta \geqslant \frac{\gamma}{2} \log n-4 \delta \geqslant 2 \delta .\right.
$$

(3) diameter $(s) \geqslant \alpha r$

When $p(r)=\Omega(\log n / n)$.

S

$$
\frac{m}{n-1} \approx \frac{1}{2} \bar{d} \cdot \quad|S| \approx \pi y^{2} \cdot n
$$

$$
|\partial s|=\theta(2 \pi y \cdot r \cdot n \cdot \bar{d})
$$

If $d(s)=d \cdot|s|+O_{p}(\sqrt{\bar{d} \cdot|s|})$

$$
\dot{d} \approx \pi r^{2} n
$$

$|E(s)|=\frac{1}{2}\left(\bar{d}_{s} \cdot|s|-|\partial s|\right)$
$P \rightarrow P^{\prime}$ by splitting S.

$$
\begin{aligned}
& \frac{m\left(P^{\prime}\right)}{\left|P^{\prime}\right|-1}=\frac{m(P)+|E(s)|}{|P|-1+(|s|-1)} \\
& I_{0} \frac{|E(s)|}{|s|-1} \leqslant \frac{m}{n-1} ?
\end{aligned}
$$

Then $\frac{|E(s)|}{|s|-1} \approx \frac{1}{2}\left(\frac{\bar{d}|s|+O_{p}(\sqrt{d}|s|}{|s|}-\theta(y r n \bar{d})\right)$

$$
=\frac{1}{2}\left(\bar{d}+O_{p}\left(\frac{r}{y}\right)-\theta\left(\frac{r^{3} n}{y}\right)\right)
$$

We have $\frac{r}{y} \ll \frac{r^{3} n}{y}$, as $r_{n}^{2}=\Omega(\log n)$.

Open problems

- Concentration of $\bar{d}(S)$?
- $\operatorname{STP}(G(n ; r))=\lfloor m /(n-1)\rfloor$, for $r \geq C \sqrt{\log n / n}$?
- $\operatorname{STP}(G(n ; r))=\min \{\delta,\lfloor m /(n-1)\rfloor\}$ for any r ?
- $A(G(n ; r))$?

