Percolation by cumulative merging and phase transition of the contact process

Laurent Ménard (Paris Nanterre)

joint work with Arvind Singh (Paris Orsay)

Outline

- 1. Cumulative merging
- 2. Phase transition for cumulative merging percolation
- 3. The contact process
- 4. Heuristics for the contact process
- 5. Link with cumulative merging

Take G=(V,E,r) any locally finite connected weighted graph with $r:V\to [0,+\infty]$

Take G = (V, E, r) any locally finite connected weighted graph with $r: V \to [0, +\infty]$

- 1. Start with the finest partition $\mathscr{P} = \{\{x\}\}_{x \in V}$.
- 2. Pick $x \neq y \in V$. Denote \mathscr{P}_x the element of \mathscr{P} containing x.
- 3. If $d_G(\mathscr{P}_x, \mathscr{P}_y) \leq \min\{r(\mathscr{P}_x), r(\mathscr{P}_y)\}$, merge \mathscr{P}_x and \mathscr{P}_y 4. Go back to 2.

Take G = (V, E, r) any locally finite connected weighted graph with $r: V \to [0, +\infty]$

- 1. Start with the finest partition $\mathscr{P} = \{\{x\}\}_{x \in V}$.
- 2. Pick $x \neq y \in V$. Denote \mathscr{P}_x the element of \mathscr{P} containing x.
- 3. If $d_G(\mathscr{P}_x, \mathscr{P}_y) \leq \min\{r(\mathscr{P}_x), r(\mathscr{P}_y)\}$, merge \mathscr{P}_x and \mathscr{P}_y 4. Go back to 2.

Take G = (V, E, r) any locally finite connected weighted graph with $r: V \to [0, +\infty]$

- 1. Start with the finest partition $\mathscr{P} = \{\{x\}\}_{x \in V}$.
- 2. Pick $x \neq y \in V$. Denote \mathscr{P}_x the element of \mathscr{P} containing x.
- 3. If $d_G(\mathscr{P}_x, \mathscr{P}_y) \leq \min\{r(\mathscr{P}_x), r(\mathscr{P}_y)\}$, merge \mathscr{P}_x and \mathscr{P}_y 4. Go back to 2.

Take G=(V,E,r) any locally finite connected weighted graph with $r:V\to [0,+\infty]$

- 1. Start with the finest partition $\mathscr{P} = \{\{x\}\}_{x \in V}$.
- 2. Pick $x \neq y \in V$. Denote \mathscr{P}_x the element of \mathscr{P} containing x.
- 3. If $d_G(\mathscr{P}_x, \mathscr{P}_y) \leq \min\{r(\mathscr{P}_x), r(\mathscr{P}_y)\}$, merge \mathscr{P}_x and \mathscr{P}_y 4. Go back to 2.

Take G = (V, E, r) any locally finite connected weighted graph with $r: V \to [0, +\infty]$

- 1. Start with the finest partition $\mathscr{P} = \{\{x\}\}_{x \in V}$.
- 2. Pick $x \neq y \in V$. Denote \mathscr{P}_x the element of \mathscr{P} containing x.
- 3. If $d_G(\mathscr{P}_x, \mathscr{P}_y) \leq \min\{r(\mathscr{P}_x), r(\mathscr{P}_y)\}$, merge \mathscr{P}_x and \mathscr{P}_y 4. Go back to 2.

Take G=(V,E,r) any locally finite connected weighted graph with $r:V\to [0,+\infty]$

- 1. Start with the finest partition $\mathscr{P} = \{\{x\}\}_{x \in V}$.
- 2. Pick $x \neq y \in V$. Denote \mathscr{P}_x the element of \mathscr{P} containing x.
- 3. If $d_G(\mathscr{P}_x, \mathscr{P}_y) \leq \min\{r(\mathscr{P}_x), r(\mathscr{P}_y)\}$, merge \mathscr{P}_x and \mathscr{P}_y 4. Go back to 2.

Take G = (V, E, r) any locally finite connected weighted graph with $r: V \to [0, +\infty]$

Construct a partition \mathscr{P} of V with the following algorithm:

- 1. Start with the finest partition $\mathscr{P} = \{\{x\}\}_{x \in V}$.
- 2. Pick $x \neq y \in V$. Denote \mathscr{P}_x the element of \mathscr{P} containing x.
- 3. If $d_G(\mathscr{P}_x, \mathscr{P}_y) \leq \min\{r(\mathscr{P}_x), r(\mathscr{P}_y)\}$, merge \mathscr{P}_x and \mathscr{P}_y

4. Go back to 2.

Take G = (V, E, r) any locally finite connected weighted graph with $r: V \to [0, +\infty]$

Construct a partition \mathscr{P} of V with the following algorithm:

- 1. Start with the finest partition $\mathscr{P} = \{\{x\}\}_{x \in V}$.
- 2. Pick $x \neq y \in V$. Denote \mathscr{P}_x the element of \mathscr{P} containing x.
- 3. If $d_G(\mathscr{P}_x, \mathscr{P}_y) \leq \min\{r(\mathscr{P}_x), r(\mathscr{P}_y)\}$, merge \mathscr{P}_x and \mathscr{P}_y

4. Go back to 2.

Take G = (V, E, r) any locally finite connected weighted graph with $r: V \to [0, +\infty]$

Construct a partition \mathscr{P} of V with the following algorithm:

1. Start with the finest partition $\mathscr{P} = \{\{x\}\}_{x \in V}$.

2. Pick $x \neq y \in V$. Denote \mathscr{P}_x the element of \mathscr{P} containing x.

3. If $d_G(\mathscr{P}_x, \mathscr{P}_y) \leq \min\{r(\mathscr{P}_x), r(\mathscr{P}_y)\}$, merge \mathscr{P}_x and \mathscr{P}_y 4. Go back to 2.

Take G = (V, E, r) any locally finite connected weighted graph with $r: V \to [0, +\infty]$

- 1. Start with the finest partition $\mathscr{P} = \{\{x\}\}_{x \in V}$.
- 2. Pick $x \neq y \in V$. Denote \mathscr{P}_x the element of \mathscr{P} containing x.
- 3. If $d_G(\mathscr{P}_x, \mathscr{P}_y) \leq \min\{r(\mathscr{P}_x), r(\mathscr{P}_y)\}$, merge \mathscr{P}_x and \mathscr{P}_y 4. Go back to 2.

Take G = (V, E, r) any locally finite connected weighted graph with $r: V \to [0, +\infty]$

- 1. Start with the finest partition $\mathscr{P} = \{\{x\}\}_{x \in V}$.
- 2. Pick $x \neq y \in V$. Denote \mathscr{P}_x the element of \mathscr{P} containing x.
- 3. If $d_G(\mathscr{P}_x, \mathscr{P}_y) \leq \min\{r(\mathscr{P}_x), r(\mathscr{P}_y)\}$, merge \mathscr{P}_x and \mathscr{P}_y 4. Go back to 2.

Take G = (V, E, r) any locally finite connected weighted graph with $r: V \to [0, +\infty]$

Construct a partition \mathscr{P} of V with the following algorithm:

- 1. Start with the finest partition $\mathscr{P} = \{\{x\}\}_{x \in V}$.
- 2. Pick $x \neq y \in V$. Denote \mathscr{P}_x the element of \mathscr{P} containing x.
- 3. If $d_G(\mathscr{P}_x, \mathscr{P}_y) \leq \min\{r(\mathscr{P}_x), r(\mathscr{P}_y)\}$, merge \mathscr{P}_x and \mathscr{P}_y

4. Go back to 2.

Take G=(V,E,r) any locally finite connected weighted graph with $r:V\to [0,+\infty]$

- 1. Start with the finest partition $\mathscr{P} = \{\{x\}\}_{x \in V}$.
- 2. Pick $x \neq y \in V$. Denote \mathscr{P}_x the element of \mathscr{P} containing x.
- 3. If $d_G(\mathscr{P}_x, \mathscr{P}_y) \leq \min\{r(\mathscr{P}_x), r(\mathscr{P}_y)\}$, merge \mathscr{P}_x and \mathscr{P}_y 4. Go back to 2.

Take G=(V,E,r) any locally finite connected weighted graph with $r:V\to [0,+\infty]$

- 1. Start with the finest partition $\mathscr{P} = \{\{x\}\}_{x \in V}$.
- 2. Pick $x \neq y \in V$. Denote \mathscr{P}_x the element of \mathscr{P} containing x.
- 3. If $d_G(\mathscr{P}_x, \mathscr{P}_y) \leq \min\{r(\mathscr{P}_x), r(\mathscr{P}_y)\}$, merge \mathscr{P}_x and \mathscr{P}_y 4. Go back to 2.

Take G = (V, E, r) any locally finite connected weighted graph with $r: V \to [0, +\infty]$

- 1. Start with the finest partition $\mathscr{P} = \{\{x\}\}_{x \in V}$.
- 2. Pick $x \neq y \in V$. Denote \mathscr{P}_x the element of \mathscr{P} containing x.
- 3. If $d_G(\mathscr{P}_x, \mathscr{P}_y) \leq \min\{r(\mathscr{P}_x), r(\mathscr{P}_y)\}$, merge \mathscr{P}_x and \mathscr{P}_y 4. Go back to 2.

Take G = (V, E, r) any locally finite connected weighted graph with $r: V \to [0, +\infty]$

- 1. Start with the finest partition $\mathscr{P} = \{\{x\}\}_{x \in V}$.
- 2. Pick $x \neq y \in V$. Denote \mathscr{P}_x the element of \mathscr{P} containing x.
- 3. If $d_G(\mathscr{P}_x, \mathscr{P}_y) \leq \min\{r(\mathscr{P}_x), r(\mathscr{P}_y)\}$, merge \mathscr{P}_x and \mathscr{P}_y 4. Go back to 2.

Take G = (V, E, r) any locally finite connected weighted graph with $r: V \to [0, +\infty]$

- 1. Start with the finest partition $\mathscr{P} = \{\{x\}\}_{x \in V}$.
- 2. Pick $x \neq y \in V$. Denote \mathscr{P}_x the element of \mathscr{P} containing x.
- 3. If $d_G(\mathscr{P}_x, \mathscr{P}_y) \leq \min\{r(\mathscr{P}_x), r(\mathscr{P}_y)\}$, merge \mathscr{P}_x and \mathscr{P}_y 4. Go back to 2.

Take G = (V, E, r) any locally finite connected weighted graph with $r: V \to [0, +\infty]$

- 1. Start with the finest partition $\mathscr{P} = \{\{x\}\}_{x \in V}$.
- 2. Pick $x \neq y \in V$. Denote \mathscr{P}_x the element of \mathscr{P} containing x.
- 3. If $d_G(\mathscr{P}_x, \mathscr{P}_y) \leq \min\{r(\mathscr{P}_x), r(\mathscr{P}_y)\}$, merge \mathscr{P}_x and \mathscr{P}_y 4. Go back to 2.

Cumulative Merging: Admissible partitions

Consider a weighted graph G = (V, E, r) with $r: V \to [0, \infty]$.

Definition a partition \mathscr{P} of V is **admissible** *iff* $\forall A \neq B \in \mathscr{P}$: $d_G(A, B) > r(A) \land r(B).$

Cumulative Merging: Admissible partitions

Consider a weighted graph G = (V, E, r) with $r: V \to [0, \infty]$.

Definition

a partition \mathscr{P} of V is admissible iff $\forall A \neq B \in \mathscr{P}$:

 $d_G(A,B) > r(A) \wedge r(B).$

- $\{V\}$ is admissible.
- If \mathscr{P}_1 and \mathscr{P}_2 are admissible, then

 $\mathscr{P}_1 \land \mathscr{P}_2 := \{C_1 \cap C_2 : C_1 \in \mathscr{P}_1, C_2 \in \mathscr{P}_2\}$

is admissible.

Cumulative Merging: Admissible partitions

Consider a weighted graph G = (V, E, r) with $r: V \to [0, \infty]$.

Definition

a partition \mathscr{P} of V is admissible iff $\forall A \neq B \in \mathscr{P}$:

P

 $d_G(A,B) > r(A) \wedge r(B).$

- $\{V\}$ is admissible.
- If \mathscr{P}_1 and \mathscr{P}_2 are admissible, then

$$\mathscr{P}_1 \land \mathscr{P}_2 := \{ C_1 \cap C_2 : C_1 \in \mathscr{P}_1, C_2 \in \mathscr{P}_2 \}$$

is admissible.

Definition

$$\mathscr{C}(G,r):=\bigwedge_{\text{admissible }\mathscr{P}}$$

(finest admissible partition)

Merging operators

Definition: Merging operators

For $x \neq y \in V$, $M_{x,y}$: {partitions of V} \rightarrow {partitions of V} defined by

 $M_{x,y}(\mathscr{P}) := \begin{cases} (\mathscr{P} \setminus \{\mathscr{P}_x, \mathscr{P}_y\}) \cup \{\mathscr{P}_x \cup \mathscr{P}_y\} & \text{if } \mathscr{P}_x \neq \mathscr{P}_y \text{ and} \\ d(x, y) \leq r(\mathscr{P}_x) \wedge r(\mathscr{P}_y), \\ \mathscr{P} & \text{otherwise.} \end{cases}$ for every partition \mathscr{P} , where \mathscr{P}_x is the **cluster** of x in \mathscr{P} .

Merging operators

Definition: Merging operators

For $x \neq y \in V$, $M_{x,y} : \{ \text{partitions of } V \} \rightarrow \{ \text{partitions of } V \}$ defined by

 $M_{x,y}(\mathscr{P}) := \begin{cases} (\mathscr{P} \setminus \{\mathscr{P}_x, \mathscr{P}_y\}) \cup \{\mathscr{P}_x \cup \mathscr{P}_y\} & \text{if } \mathscr{P}_x \neq \mathscr{P}_y \text{ and} \\ d(x, y) \leq r(\mathscr{P}_x) \wedge r(\mathscr{P}_y), \\ \mathscr{P} & \text{otherwise.} \end{cases}$ for every partition \mathscr{P} , where \mathscr{P}_x is the **cluster** of x in \mathscr{P} .

Proposition:

The merging operators are monotone: for every $x \neq y \in V$ and every partitions \mathscr{P} and \mathscr{P}'

- \mathscr{P} is finer than $M_{x,y}(\mathscr{P})$;
- If \mathscr{P} is finer than $\widetilde{\mathscr{P}}'$, then $M_{x,y}(\mathscr{P})$ is finer than $M_{x,y}(\mathscr{P}')$.

Proposition: Take $(x_n, y_n) \in V^{\mathbb{N}} \times V^{\mathbb{N}}$ such that for every $x \neq y \in V$: $\{x_n, y_n\} = \{x, y\}$ for infinitely many n. Then $\mathscr{C}(V, E, r) = \lim_{n \to \infty} \uparrow M_{x_n, y_n} \circ \cdots \circ M_{x_1, y_1}(\bar{V})$ where $\bar{V} = \{\{x\}\}_{x \in V}$ is the finest partition of V.

Proposition: Take $(x_n, y_n) \in V^{\mathbb{N}} \times V^{\mathbb{N}}$ such that for every $x \neq y \in V$: $\{x_n, y_n\} = \{x, y\}$ for infinitely many n. Then $\underbrace{(V, E, r)}_{n \to \infty} = \lim_{n \to \infty} \uparrow M_{x_n, y_n} \circ \cdots \circ M_{x_1, y_1}(\bar{V})$ where $\bar{V} = \{\{x\}\}_{x \in V}$ is the finest partition of V.

Proof: Monotonicity of the merging operators.

Cumulative Merging: Basic observations

- Clusters in \mathscr{C} are not necessarily connected sets!
- If r(x) < 1, then $\{x\} \in \mathscr{C}$.
- $\bullet~$ If ${\mathscr C}$ has an infinite cluster, it has infinite weight and is unique.
- For any $C \in \mathscr{C}$, one has $|C| \leq \max\{1, r(C)\}$.

CMP: Stable sets

Vertices inside that box will never merge again.

CMP: Stable sets

Vertices inside that box will never merge again.

Definition: Fix $H \subset V$. We say that H is a **stable set** *iff*: $\forall C \in \mathscr{C}(H, E_H, r)$ one has $B(C, r(C)) \subset H$.

Remark:

- Unions and intersections of stable sets are stable.
- Being stable is a **local** porperty.
- If H is stable, then

$$\mathscr{C}(G) = \mathscr{C}(H) \sqcup \mathscr{C}(G \setminus H).$$

Definition

Definition

Definition

Definition

Definition

Let $H \subset V$ the **stabiliser** of H, S_H , is the smallest stable set of vertices containing H.

Definition

Let $H \subset V$ the **stabiliser** of H, S_H , is the smallest stable set of vertices containing H.

- Stabilisers are connected sets in G.
- Stabilisers are **nested**.
- Nice oriented graph structure on clusters and on stabilisers.

- Stabilisers are connected sets in G.
- Stabilisers are **nested**.
- Nice oriented graph structure on clusters and on stabilisers.

Theorem

Suppose G infinite:

1.
$$\forall x \in V : |\mathscr{C}_x| = \infty \Leftrightarrow |\mathcal{S}_x| = \infty \Leftrightarrow \mathcal{S}_x = V.$$

2. \mathscr{C} has no infinite cluster *iff* there exists an increasing sequence of stable sets S_n *s.t.* $\lim \uparrow S_n = V$.

Several natural choices of weights for a locally finite connected graph (V,E):

Several natural choices of weights for a locally finite connected graph (V,E):

• $(r(x))_{x \in V}$ *i.i.d.* Bernoulli *r.v.* with parameter *p*.

Several natural choices of weights for a locally finite connected graph (V,E):

- $(r(x))_{x \in V}$ *i.i.d.* Bernoulli *r.v.* with parameter *p*.
- $(r(x))_{x \in V}$ *i.i.d. r.v.* with law $\lambda \times Z$, $\lambda \ge 0$ deterministic.

Several natural choices of weights for a locally finite connected graph (V,E):

- $(r(x))_{x \in V}$ *i.i.d.* Bernoulli *r.v.* with parameter *p*.
- $(r(x))_{x \in V}$ *i.i.d. r.v.* with law $\lambda \times Z$, $\lambda \ge 0$ deterministic.

•
$$\forall x \in V, r(x) = \begin{cases} \deg(x) & \text{if } \deg(x) > \Delta; \\ 0 & \text{otherwise.} \end{cases}$$

Several natural choices of weights for a locally finite connected graph (V,E):

- $(r(x))_{x \in V}$ *i.i.d.* Bernoulli *r.v.* with parameter *p*.
- $(r(x))_{x \in V}$ *i.i.d. r.v.* with law $\lambda \times Z$, $\lambda \ge 0$ deterministic.

•
$$\forall x \in V, r(x) = \begin{cases} \deg(x) & \text{if } \deg(x) > \Delta; \\ 0 & \text{otherwise.} \end{cases}$$

Critical parameters for the existence of an infinite cluster in $\mathscr{C}(V, E, r)$.

Several natural choices of weights for a locally finite connected graph (V,E):

- $(r(x))_{x \in V}$ *i.i.d.* Bernoulli *r.v.* with parameter *p*.
- $(r(x))_{x \in V}$ *i.i.d. r.v.* with law $\lambda \times Z$, $\lambda \ge 0$ deterministic.

•
$$\forall x \in V, r(x) = \begin{cases} \deg(x) & \text{if } \deg(x) > \Delta; \\ 0 & \text{otherwise.} \end{cases}$$

Critical parameters for the existence of an infinite cluster in $\mathscr{C}(V, E, r)$.

Theorem: 1. CMP on \mathbb{Z}^d : $p_c \in (0, 1)$. 2. CMP on \mathbb{Z}^d : if $E[Z^\beta] < \infty$ for $\beta > (4d)^2$, then $\lambda_c \in (0, \infty)$. 3. CMP on *d*-dimensional Delaunay triangulation or geometric graph: $\Delta_c < \infty$.

Several natural choices of weights for a locally finite connected graph (V,E):

- $(r(x))_{x \in V}$ *i.i.d.* Bernoulli *r.v.* with parameter *p*.
- $(r(x))_{x \in V}$ *i.i.d. r.v.* with law $\lambda \times Z$, $\lambda \ge 0$ deterministic.

•
$$\forall x \in V, r(x) = \begin{cases} \deg(x) & \text{if } \deg(x) > \Delta; \\ 0 & \text{otherwise.} \end{cases}$$

Critical parameters for the existence of an infinite cluster in $\mathscr{C}(V, E, r)$.

Theorem:

- 1. CMP on \mathbb{Z}^d : $p_c \in (0, 1)$. 2. CMP on \mathbb{Z}^d : if $E[Z^\beta] < \infty$ for $\beta > (4d)^2$, then $\lambda_c \in (0, \infty)$.
- 3. CMP on *d*-dimensional Delaunay triangulation or geometric graph: $\Delta_c < \infty$.

Proofs: Multiscale analysis

Cumulative Merging: Open questions

• Bernoulli CMP on \mathbb{Z}^d : Compute p_c ?

(For d = 1 we know $p_c \ge 1/2$.)

Cumulative Merging: Open questions

• Bernoulli CMP on \mathbb{Z}^d : Compute p_c ? (For d = 1 we know $p_c \ge 1/2$.)

• CMP on \mathbb{Z}^d : if $E[Z^{\beta}] < \infty$ for $\beta > d + \varepsilon$, then $\lambda_c \in (0, \infty)$?

Cumulative Merging: Open questions

- Bernoulli CMP on \mathbb{Z}^d : Compute p_c ? (For d = 1 we know $p_c \ge 1/2$.)
- CMP on \mathbb{Z}^d : if $E\left[Z^{\beta}\right] < \infty$ for $\beta > d + \varepsilon$, then $\lambda_c \in (0, \infty)$?
- Phase transition for CMP on a **tree**?
 - 1. Binary tree;
 - 2. Galton-Watson tree with light tails.

$$G=(V,E) \text{ locally finite graph, } \lambda>0.$$

- Vertices are either **healthy** or **infected**.
- An infected site **recovers** at rate 1.
- A healthy site is infected at rate $\lambda \times$ nbr of infected neighbors.

$$G = (V, E)$$
 locally finite graph, $\lambda > 0$.

- Vertices are either **healthy** or **infected**.
- An infected site **recovers** at rate 1.
- A healthy site is infected at rate $\lambda \times$ nbr of infected neighbors.

$$G = (V, E)$$
 locally finite graph, $\lambda > 0$.

- Vertices are either **healthy** or **infected**.
- An infected site **recovers** at rate 1.
- A healthy site is infected at rate $\lambda \times$ nbr of infected neighbors.

$$G = (V, E)$$
 locally finite graph, $\lambda > 0$.

- Vertices are either **healthy** or **infected**.
- An infected site **recovers** at rate 1.
- A healthy site is infected at rate $\lambda \times$ nbr of infected neighbors.

$$G = (V, E)$$
 locally finite graph, $\lambda > 0$.

- Vertices are either **healthy** or **infected**.
- An infected site **recovers** at rate 1.
- A healthy site is infected at rate $\lambda \times$ nbr of infected neighbors.

$$G = (V, E)$$
 locally finite graph, $\lambda > 0$.

- Vertices are either **healthy** or **infected**.
- An infected site **recovers** at rate 1.
- A healthy site is infected at rate $\lambda \times$ nbr of infected neighbors.

$$G = (V, E)$$
 locally finite graph, $\lambda > 0$.

- Vertices are either **healthy** or **infected**.
- An infected site **recovers** at rate 1.
- A healthy site is infected at rate $\lambda \times$ nbr of infected neighbors.

Epidemic model on graphs introduced by [Harris 74]

G = (V, E) locally finite graph, $\lambda > 0$.

- Vertices are either **healthy** or **infected**.
- An infected site **recovers** at rate 1.
- A healthy site is infected at rate $\lambda \times$ nbr of infected neighbors.

Epidemic model on graphs introduced by [Harris 74]

G = (V, E) locally finite graph, $\lambda > 0$.

- Vertices are either **healthy** or **infected**.
- An infected site **recovers** at rate 1.
- A healthy site is infected at rate $\lambda \times$ nbr of infected neighbors.

On an infinite graph, phase transition: there is $\lambda_c \in [0, \infty[$ such that

- if $\lambda < \lambda_c$, the infection **dies out** *a.s.*;
- if $\lambda > \lambda_c$, the infection survives *a.s.*.

Epidemic model on graphs introduced by [Harris 74]

G = (V, E) locally finite graph, $\lambda > 0$.

- Vertices are either **healthy** or **infected**.
- An infected site **recovers** at rate 1.
- A healthy site is infected at rate $\lambda \times$ nbr of infected neighbors.

On an infinite graph, phase transition: there is $\lambda_c \in [0, \infty[$ such that

- if $\lambda < \lambda_c$, the infection **dies out** *a.s.*;
- if $\lambda > \lambda_c$, the infection survives *a.s.*.

Question: condition on G to ensure $\lambda_c > 0$?

If G has **bounded** degrees, then $\lambda_c > 0$.

Compare with **branching random walk**:

- No interaction between particles;
- particles die at rate 1;
- particles give birth to new particles on neighboring sites at rate λ .

If G has **bounded** degrees, then $\lambda_c > 0$.

Compare with **branching random walk**:

- No interaction between particles;
- particles die at rate 1;
- particles give birth to new particles on neighboring sites at rate λ .

For this process: $\lambda_c \geq 1/d_{max}$.

If G has **bounded** degrees, then $\lambda_c > 0$.

Compare with **branching random walk**:

- No interaction between particles;
- particles die at rate 1;
- particles give birth to new particles on neighboring sites at rate λ .

For this process: $\lambda_c \geq 1/d_{max}$.

Comparison gives nothing for graphs with **unbounded** degrees: BRW survives locally on large degree star-graphs.

If G has **bounded** degrees, then $\lambda_c > 0$.

Compare with **branching random walk**:

- No interaction between particles;
- particles die at rate 1;
- particles give birth to new particles on neighboring sites at rate λ .

For this process: $\lambda_c \geq 1/d_{max}$.

Comparison gives nothing for graphs with **unbounded** degrees: BRW survives locally on large degree star-graphs.

- No other method to prove that contact process dies out.
- No example of graph with unbounded degrees for which we know $\lambda_c > 0$.

Contact process on geometric graphs

Theorem

Let G be either a

- (supercritical) random geometric graph
- Delaunay triangulation constructed from a Poisson point process on \mathbb{R}^d with Lebesgue intensity. Then one has $\lambda_c > 0$.

Proof:

Criterion on G for $\lambda_c > 0$ in terms of Cumulative Merging Percolation.

Contact process on a star graph of large degree d:

- start with only infected.
- If $\lambda > \lambda_c(d)$, survival time of the process is $\approx \exp(d)$.

Contact process on a star graph of large degree d:

- start with only infected.
- If $\lambda > \lambda_c(d)$, survival time of the process is $\approx \exp(d)$.

Now fix $\lambda > 0$ and consider contact process on a gaph G s.t.

- One vertex (•) has large degree d_0 with $\lambda > \lambda_c(d_0)$;
- all other vertices have small degrees d with $\lambda \ll \lambda_c(d)$.

Contact process on a star graph of large degree d:

- start with only infected.
- If $\lambda > \lambda_c(d)$, survival time of the process is $\approx \exp(d)$.

Now fix $\lambda > 0$ and consider contact process on a gaph G s.t.

- One vertex (•) has large degree d_0 with $\lambda > \lambda_c(d_0)$;
- all other vertices have small degrees d with $\lambda \ll \lambda_c(d)$.

- Start with only infected.
- Force to stay infected a time $\exp(d_0)$.
- After that time, force the whole star around
 to recover.

Contact process on a star graph of large degree d:

- start with only infected.
- If $\lambda > \lambda_c(d)$, survival time of the process is $\approx \exp(d)$.

Now fix $\lambda > 0$ and consider contact process on a gaph G s.t.

- One vertex (•) has large degree d_0 with $\lambda > \lambda_c(d_0)$;
- all other vertices have small degrees d with $\lambda \ll \lambda_c(d)$.

- Start with only infected.
- Force to stay infected a time $\exp(d_0)$.
- After that time, force the whole star around
 to recover.

Maximal distance reached by infection is $\approx d_0$.

Same as before for • and start of the infection.

Same as before for <a>o and start of the infection.

In addition suppose:

- At distance < d₀ from ●, there is another vertex (●) with large degree d₁ s.t. λ > λ_c(d₁).
- Suppose also $d_1 \ll d_0$.

Same as before for <a>o and start of the infection.

In addition suppose:

- At distance $< d_0$ from •, there is another vertex (•) with large degree d_1 s.t. $\lambda > \lambda_c(d_1)$.
- Suppose also $d_1 \ll d_0$.

• cannot send infections to • and the survival time of the process is $\approx \exp(d_0) + \exp(d_1) \approx \exp(d_0).$
Same as before for <a>o and start of the infection.

Now suppose:

- another vertex (•) with large degree d_2 s.t. $\lambda > \lambda_c(d_2)$.
- And a last one (•) with large degree d_3 s.t. $\lambda > \lambda_c(d_3)$.
- dist(•,•) < $d_2 \wedge d_3$

Same as before for <a>o and start of the infection.

Now suppose:

- another vertex (•) with large degree d_2 s.t. $\lambda > \lambda_c(d_2)$.
- And a last one (•) with large degree d_3 s.t. $\lambda > \lambda_c(d_3)$.

• dist(•,•) < $d_2 \wedge d_3$

Same as before for <a>o and start of the infection.

Now suppose:

- another vertex (•) with large degree d_2 s.t. $\lambda > \lambda_c(d_2)$.
- And a last one (●) with large degree d₃ s.t. λ > λ_c(d₃).

• dist(•,•) <
$$d_2 \wedge d_3$$

• and • interact and their combined survival time is $\approx \exp(d_2) \times \exp(d_3) = \exp(d_2 + d_3)$

Same as before for <a>o and start of the infection.

Now suppose:

- another vertex (•) with large degree d_2 s.t. $\lambda > \lambda_c(d_2)$.
- And a last one (•) with large degree d_3 s.t. $\lambda > \lambda_c(d_3)$.

• dist(•,•) <
$$d_2 \wedge d_3$$

• and • interact and their combined survival time is $\approx \exp(d_2) \times \exp(d_3) = \exp(d_2 + d_3)$

Same as before for • and start of the infection.

Now suppose:

- another vertex (•) with large degree d_2 s.t. $\lambda > \lambda_c(d_2)$.
- And a last one (•) with large degree d_3 s.t. $\lambda > \lambda_c(d_3)$.

• dist(•,•) <
$$d_2 \wedge d_3$$

• and • interact and their combined survival time is $\approx \exp(d_2) \times \exp(d_3) = \exp(d_2 + d_3)$

Now • and • can reach • or • !

Same as before for <a>o and start of the infection.

Now suppose:

- another vertex (•) with large degree d_2 s.t. $\lambda > \lambda_c(d_2)$.
- And a last one (•) with large degree d_3 s.t. $\lambda > \lambda_c(d_3)$.

• dist(•,•) <
$$d_2 \wedge d_3$$

• and • interact and their combined survival time is $\approx \exp(d_2) \times \exp(d_3) = \exp(d_2 + d_3)$

Now • and • can reach • or • !
• • , • and • are all in interaction.

Same as before for <a>o and start of the infection.

Now suppose:

- another vertex (•) with large degree d_2 s.t. $\lambda > \lambda_c(d_2)$.
- And a last one (•) with large degree d_3 s.t. $\lambda > \lambda_c(d_3)$.

• dist(•,•) <
$$d_2 \wedge d_3$$

• and • interact and their combined survival time is $\approx \exp(d_2) \times \exp(d_3) = \exp(d_2 + d_3)$

Now • and • can reach • or • !
•, • and • are all in interaction.

Same as before for • and start of the infection.

Now suppose:

- another vertex (•) with large degree d_2 s.t. $\lambda > \lambda_c(d_2)$.
- And a last one (•) with large degree d_3 s.t. $\lambda > \lambda_c(d_3)$.

• dist(•,•) <
$$d_2 \wedge d_3$$

• and • interact and their combined survival time is $\approx \exp(d_2) \times \exp(d_3) = \exp(d_2 + d_3)$

Now • and • can reach • or • !

, • and • are all in interaction.

→ ● still cannot reach the other 3 vertices to interact.

Need to change the definition of admissible partitions: \mathcal{P} is admissible iff $\forall A, B \in \mathcal{P}$ $d_G(A, B) > r(A) \wedge r(B)$.

Need to change the definition of admissible partitions: Fix $\alpha > 1$, \mathcal{P} is **admissible** *iff* $\forall A, B \in \mathcal{P}$

 $d_G(A,B) > (r(A) \wedge r(B))^{\alpha}.$

Need to change the definition of admissible partitions: Fix $\alpha > 1$, \mathcal{P} is admissible *iff* $\forall A, B \in \mathcal{P}$ $d_G(A, B) > (r(A) \wedge r(B))^{\alpha}$.

Theorem:

Let G = (V, E) be **any** locally finite graph. Suppose that, for $\alpha > 2.5$, CMP on G with weights given by:

$$\forall x \in V, r(x) = \begin{cases} \deg(x) & \text{if } \deg(x) > \Delta; \\ 0 & \text{otherwise.} \end{cases}$$

has a non-trivial phase transition (*i.e.* $\Delta_c < \infty$).

Then the contact process on G has a non trivial phase transition (*i.e.* it dies out for small infection rates).

Need to change the definition of admissible partitions: Fix $\alpha > 1$, \mathcal{P} is admissible iff $\forall A, B \in \mathcal{P}$ $d_G(A, B) > (r(A) \wedge r(B))^{\alpha}$.

Theorem:

Let G = (V, E) be **any** locally finite graph. Suppose that, for $\alpha > 2.5$, CMP on G with weights given by:

$$\forall x \in V, \ r(x) = \begin{cases} \deg(x) & \text{if } \deg(x) > \Delta; \\ 0 & \text{otherwise.} \end{cases}$$

has a non-trivial phase transition (*i.e.* $\Delta_c < \infty$).

Then the contact process on G has a non trivial phase transition (*i.e.* it dies out for small infection rates).

Question: true for $\alpha = 1$?

Conference **Dynamics on random graphs and random planar maps** October 23 to 27, 2017 in Marseille France

Org. LM, Pierre Nolin, Bruno Schapira and Arvind Singh

Thank you for your attention!