Connections between collocation (convolution spline) and Galerkin methods for TDBIEs

Dugald Duncan
Maxwell institute for Mathematical Sciences, Heriot-Watt University

Joint work with Penny Davies (Strathclyde)

Jan 2016

Acoustic scattering - notation

Problem: $\mathrm{a}^{\mathrm{i}}(\mathrm{x}, \mathrm{t})$ is incident on Γ for $t>0-$ find the scattered field $\mathrm{a}^{\mathrm{s}}(\mathrm{x}, \mathrm{t})$

scattered field a^{s}

incident field a^{i}

- PDE: $a_{\mathrm{tt}}^{\mathrm{s}}=\Delta \mathrm{a}^{\mathrm{s}}$ in Ω (wave speed is $c=1$);
- BC: $\mathbf{a}^{\mathrm{s}}+a^{i}=0$ on Γ IC: a^{i} reaches Γ at $t>0$
- TDBIE: a^{s} can be obtained from surface potential u :

$$
\frac{1}{4 \pi} \int_{\Gamma} \frac{u\left(\mathbf{x}^{\prime}, t-\left|\mathbf{x}^{\prime}-\mathbf{x}\right|\right)}{\left|\mathbf{x}^{\prime}-\mathbf{x}\right|} d \sigma_{\mathbf{x}^{\prime}}=-a^{i}(\mathbf{x}, t) \quad \mathbf{x} \in \Gamma, t>0
$$

Connections: space-time Galerkin and convolution spline

- Ha Duong: TDBIE variational formulation - stability of full space-time Galerkin approximation
- But Galerkin methods are typically not in time-marching form - very expensive to implement without modification
- Strategy: find a modified variational formulation with the following properties.
- its exact and (Galerkin) approx solutions are close to those for the unmodified version
- its Galerkin approx is equivalent to a convolution spline (time-marching) scheme
- the CS scheme's basis functions are globally smooth enough to make quadrature efficient
- Could then use Ha Duong (Galerkin) analysis for convolution spline

Ha Duong: variational formulation

- TDBIE (single layer potential) for surface potential u :

$$
(S u)(\mathbf{x}, t):=\frac{1}{4 \pi} \int_{\Gamma} \frac{u\left(\mathbf{x}^{\prime}, t-\left|\mathbf{x}^{\prime}-\mathbf{x}\right|\right)}{\left|\mathbf{x}^{\prime}-\mathbf{x}\right|} d \sigma_{\mathbf{x}^{\prime}}=-a^{i}(\mathbf{x}, t) \quad \mathbf{x} \in \Gamma, t \in[0, T]
$$

- Equivalent exact variational form: find $u \in V$, s.t. $\forall q \in V, t \in[0, T]$

$$
a(u, q ; t):=\int_{0}^{t} \int_{\Gamma} q \mathbf{S} \dot{\mathbf{u}} d \sigma_{\mathbf{x}} d t=-\int_{0}^{t} \int_{\Gamma} q \dot{\mathbf{a}}^{\mathbf{i}} d \sigma_{\mathbf{x}} d \tau
$$

Note: time differentiated TDBIE $S \dot{u}=-\dot{a}^{i}$ not $S u=-a^{i}$

- Energy of scattered field a^{s} is

$$
E(u ; t)=a(u, u ; t)=\frac{1}{2} \int_{\Omega}\left(\left|\nabla a^{s}\right|^{2}+\left|\dot{a}^{s}\right|^{2}\right) d x
$$

Space-time Galerkin approximation

- Approx solution in terms of unknowns U_{k}^{n} :

$$
u(\mathbf{x}, t) \approx u_{h}(\mathbf{x}, t):=\sum_{n=1}^{N_{T}} \sum_{k=1}^{N_{s}} U_{k}^{n} \phi_{k}(\mathbf{x}) \psi_{\mathbf{n}}(\mathrm{t}) \in V_{h}
$$

- Approx variational form: for each $q_{h}=\phi_{j}(\mathbf{x}) \psi_{\mathbf{n}}(\mathrm{t}) \in V_{h}$

$$
\begin{aligned}
& a\left(u_{h}, q_{h} ; T\right)=\int_{0}^{T} \psi_{\mathbf{n}}(\mathrm{t}) \int_{\Gamma} \int_{\Gamma} \sum_{k=1}^{N_{s}} \sum_{m=1}^{N_{T}} \frac{U_{k}^{m} \phi_{k}(\mathbf{x}) \phi_{j}(\mathbf{y})}{|\mathbf{x}-\mathbf{y}|} \dot{\psi}_{\mathrm{m}}(\mathrm{t}-|\mathbf{x}-\mathbf{y}|) d \sigma_{\mathbf{x}} d \sigma_{\mathbf{y}} \mathrm{dt} \\
& =\sum_{k=1}^{N_{s}} \sum_{m=1}^{N_{T}} U_{k}^{m} \int_{\Gamma} \int_{\Gamma} \frac{\phi_{k}(\mathbf{x}) \phi_{j}(\mathbf{y})}{|\mathbf{x}-\mathbf{y}|} \beta_{\mathrm{m}, \mathbf{n}}(|\mathbf{x}-\mathbf{y}|) d \sigma_{\mathbf{x}} d \sigma_{\mathbf{y}}=-\int_{0}^{T} \int_{\Gamma} q_{\mathrm{a}} \dot{a}^{i} d \sigma_{\mathbf{x}} d t \\
& \quad \text { where } \beta_{\mathrm{m}, \mathrm{n}}(\mathrm{r}):=\int_{0}^{T} \psi_{\mathbf{n}}(\mathrm{t}) \dot{\psi}_{\mathrm{m}}(\mathrm{t}-\mathrm{r}) \mathrm{dt}=\int_{\mathrm{r}}^{T} \psi_{\mathrm{n}}(\mathrm{t}) \dot{\psi}_{\mathrm{m}}(\mathrm{t}-\mathrm{r}) \mathrm{dt}
\end{aligned}
$$

(the time basis functions have support in $[0, T]$)

A nice property of B-splines

- $\beta_{m, n}(r):=\int_{0}^{T} \psi_{n}(t) \dot{\psi}_{m}(t-r) d t$
- If $\psi_{n}(t)=B_{\ell}(t / h-n)$ then

$$
\begin{aligned}
\beta_{m, n}(r) & =\int_{0}^{T} B_{\ell}(t / h-n) \dot{B}_{\ell}(t / h-m-r / h) d t \\
& =h\left(B_{2 \ell}\left(\frac{r}{h}-\frac{1}{2}+m-n\right)-B_{2 \ell}\left(\frac{r}{h}+\frac{1}{2}+m-n\right)\right) \\
& =-h \dot{B}_{2 \ell+1}\left(\frac{r}{h}+m-n\right)
\end{aligned}
$$

- Note: needs some modification near 0 and T
- Also works for Petrov Galerkin $\left(B_{\ell}, B_{\ell^{\prime}}\right) \rightarrow B_{\ell+\ell^{\prime}}$

B_{ℓ} time basis functions for Galerkin

- Approx variational form: for each $q_{h}=\phi_{j}(\mathbf{x}) \psi_{n}(t) \in V_{h}$

$$
a\left(u_{h}, q_{h} ; T\right)=-\int_{0}^{T} \int_{\Gamma} q_{h} \dot{a}^{i} d \sigma_{\mathbf{x}} d t
$$

- Assemble into matrix-vector form for each $n \leq N_{T}$:

$$
\sum_{m=1}^{N_{T}} \widehat{Q}_{m, n} \mathbf{U}^{m}=\mathbf{a}^{n}, \quad \widehat{Q}_{m, n}=\int_{\Gamma} \int_{\Gamma} \frac{\phi(\mathbf{x}) \phi^{T}(\mathbf{y})}{|\mathbf{x}-\mathbf{y}|} \beta_{\mathrm{m}, \mathrm{n}}(|\mathbf{x}-\mathbf{y}|) d \sigma_{\mathbf{x}} d \sigma_{\mathbf{y}}
$$

where $\phi^{T}=\left(\phi_{1}, \ldots, \phi_{N_{s}}\right)$ and $\widehat{Q}_{m, n} \in \mathbb{R}^{N_{s} \times N_{s}}$

- Note: most $\widehat{\mathbf{Q}}_{\mathbf{m}, \mathbf{n}}=\mathbf{Q}^{\mathbf{n}-\mathbf{m}}$ since most $\beta_{m, n}=-h \dot{B}_{2 \ell+1}(r / h+m-n)$ - so mainly a convolution sum
- $\beta_{m, n}$ are degree 2ℓ and are globally $C^{2 \ell-1}$, so quadrature can be done over space elements only

Galerkin is not usually a time-marching scheme...

- Example: $\psi_{m}(t / h)=B_{1}(t / h-m)$ - translates of 1st order B-spline (hat functions)
- Resulting linear system for the $\mathbf{U}^{j} \in \mathbb{R}^{N_{s}}$ is: $\mathbf{U}^{0}=0$,

$$
Q^{\star} \mathbf{U}^{n+1}+\sum_{m=0}^{n} Q^{m} \mathbf{U}^{n-m}=\mathbf{a}^{n}, \quad n=1: N_{T}-1\left(\text { modified at } n=N_{T}\right)
$$

- Use extrapolation: $\mathbf{U}^{n+1} \approx 2 \mathbf{U}^{n}-\mathbf{U}^{n-1}$ to get modified scheme

Modified (B_{1} in time) Galerkin

- Extrapolation is equivalent to modified variational problem:

$$
a\left(u_{h}, q_{h} ; T\right)+h^{2} \underbrace{\int_{0}^{T} \int_{\Gamma} \int_{\Gamma} \frac{\dot{q}_{h}(\mathbf{x}, t) F(|\mathbf{x}-\mathbf{y}|) \dot{u}_{h}(\mathbf{y}, t)}{|\mathbf{x}-\mathbf{y}|} d \sigma_{\mathbf{x}} d \sigma_{\mathbf{y}} d t}_{b\left(\dot{u}_{h}, \dot{q}_{h} ; T\right)}=\text { Galerkin RHS }
$$

where $F(r)=B_{2}(r / h+1 / 2)=$ second order B-spline

- Gives a time-marching scheme:

$$
\text { i.e. } \quad\left(2 Q^{\star}+Q^{0}\right) \mathbf{U}^{n}+\left(Q^{1}-Q^{\star}\right) \mathbf{U}^{n-1}+\sum_{m=2}^{n} Q^{m} \mathbf{U}^{n-m}=\mathbf{a}^{n}
$$

- Using B_{3}-basis functions also applied in convolution spline form to time differentiated TDBIE $\quad S \dot{u}=-\dot{a}^{i}$ gives same matrices and slightly altered RHS

Compare exact solutions of variational formulations

- Original: find $u \in V$ such that for all $q \in V, t \in[0, T]$

$$
a(u, q ; t)=-\int_{0}^{t} \int_{\Gamma} q(\mathbf{x}, \tau) a^{i}(\mathbf{x}, \tau) d \sigma_{\mathbf{x}} d \tau
$$

- Modified: find $v \in V$ such that for all $q \in V, t \in[0, T]$

$$
a(v, q ; t)+h^{2} b(\dot{v}, \dot{q} ; t)=-\int_{0}^{t} \int_{\Gamma} q(\mathbf{x}, \tau) a^{i}(\mathbf{x}, \tau) d \sigma_{\mathbf{x}} d \tau
$$

- So $a(v-u, q ; t)+h^{2} b(\dot{v}-\dot{u}, \dot{q} ; t)=-h^{2} b(\dot{u}, \dot{q} ; t)$
- Set $q=v-u$ to get an energy-like expression:

$$
a(v-u, v-u ; t)+h^{2} b(\dot{v}-\dot{u}, \dot{v}-\dot{u} ; t)=-h^{2} b(\dot{u}, \dot{v}-\dot{u} ; t)
$$

What's known about energy $E(u, t)=a(u, u ; t)$?

- $E(u, t) \geq 0$
- Ha Duong's results concern its time integral:

$$
\begin{gathered}
\alpha\|u\|_{\mathcal{H}^{-1 / 2}}^{2} \leq \int_{0}^{T} a(u, u ; t) d t=\int_{0}^{T} E(u ; t) d t \leq \beta\|u\|_{\mathcal{H}^{-1 / 2}}\left\|\dot{a}^{i}\right\|_{\mathcal{H}^{1 / 2}} \\
\Rightarrow \quad\|u\|_{\mathcal{H}^{-1 / 2}} \leq \frac{\beta}{\alpha}\left\|\dot{a}^{i}\right\|_{\mathcal{H}^{1 / 2}}
\end{gathered}
$$

- What is the space $\mathcal{H}^{-1 / 2}$? Ha Duong uses
- $\left(H_{00}^{1 / 2,1 / 2}\right)^{\prime}$ (from Lions \& Magenes) in earlier work, including PhD thesis
- $\mathcal{H}^{-1 / 2}=H^{-1 / 2}\left(0, T ; L^{2}(\Gamma)\right) \cap L^{2}\left(0, T ; H^{-1 / 2}(\Gamma)\right)$ in 2003 survey article
- Note: rearranging gives:

$$
\int_{0}^{T} a(u, u ; t) d t=\int_{0}^{T} \int_{0}^{t} \int_{\Gamma} u(S \dot{u}) d \sigma_{\mathbf{x}} d \tau d t=\int_{0}^{T}(\mathbf{T}-\mathbf{t}) \int_{\Gamma} u(S \dot{u}) d \sigma_{\mathbf{x}} d t
$$

Stability in modified variational problem - exact

- Exact: find $v \in V$ s.t.

$$
a(v, q ; t)+h^{2} b(\dot{v}, \dot{q} ; t)=-\int_{0}^{t} \int_{\Gamma} q \dot{a}^{i} d \sigma_{\mathbf{x}} d \tau
$$

for all $q \in V$ and all $t \in[0, T]$

- Exact: Ha Duong coercivity and upper bound give stability

$$
\begin{aligned}
& \alpha\|v\|_{\mathcal{H}^{-1 / 2}}^{2} \leq \int_{0}^{T}(a(v, v ; t)+h^{2} \underbrace{b(\dot{v}, \dot{v} ; t)}_{\geq 0}) d t \\
& =-\int_{0}^{T} \int_{0}^{t} \int_{\Gamma} v \dot{a}^{i} d \sigma_{\mathbf{x}} d \tau d t \leq \beta\|v\|_{\mathcal{H}^{-1 / 2}}\left\|^{\dot{a}^{i}}\right\|_{\mathcal{H}^{1 / 2}} \\
& \quad \Rightarrow\|v\|_{\mathcal{H}^{-1 / 2}} \leq \frac{\beta}{\alpha}\left\|\dot{a}^{\dot{a}^{\|}}\right\|_{\mathcal{H}^{1 / 2}}
\end{aligned}
$$

Stability in modified variational problem - Galerkin approx

- Approx: find $v_{h} \in V_{h}$ s.t. for all $q_{h} \in V_{h}$

$$
a\left(v_{h}, q_{h} ; T\right)+h^{2} b\left(\dot{v}_{h}, \dot{q}_{h} ; T\right)=-\int_{0}^{T} \int_{\Gamma} q_{h} \dot{a}^{i} d \sigma_{\mathbf{x}} d \tau
$$

- Approx: stability would follow from coercivity (OK) and upper bound (???)

$$
\alpha\left\|v_{h}\right\|_{\mathcal{H}^{-1 / 2}}^{2} \leq \int_{0}^{T} a\left(v_{h}, v_{h} ; t\right)+h^{2} \underbrace{b\left(\dot{v}_{h}, \dot{v}_{h} ; t\right)}_{\geq 0} d t \leq \beta\left\|\mathbf{v}_{\mathbf{h}}\right\|_{\mathcal{H}^{-1 / 2}}\left\|\boldsymbol{a}^{\dot{a}}\right\|_{\mathcal{H}^{1 / 2}} \text { ??? }
$$

- Upper bound appears to need

$$
a\left(v_{h}, v_{h} ; \mathbf{t}\right)+h^{2} b\left(\dot{v}_{h}, \dot{v}_{h} ; \mathbf{t}\right)=-\int_{0}^{\mathbf{t}} \int_{\Gamma} v_{h} \dot{a}^{i} d \sigma_{\mathbf{x}} d \tau \quad \forall \mathbf{t} \in[0, T]
$$

to work in simple way - but this is not true in general, only for $\mathrm{t}=\mathrm{T}$.

Bound difference between exact solns of original and modified variational problems

- Set $\mathbf{q}=\mathbf{v}-\mathbf{u}$, the difference in solutions. We have

$$
\underbrace{a(q, q ; t)+h^{2} b(\dot{q}, \dot{q} ; t)}_{\text {LHS }}=\underbrace{-h^{2} b(\dot{u}, \dot{q} ; t)}_{\text {RHS }}
$$

- Can show that $b(\dot{q}, \dot{q} ; t) \geq 0$, so using Ha Duong coercivity

$$
\begin{aligned}
\alpha\|q\|_{\mathcal{H}^{-1 / 2}}^{2} & \leq \int_{0}^{T} \mathrm{LHS} d t=\int_{0}^{T} \mathrm{RHS} d t \\
& \leq h^{2} C_{1}\|q\|_{\mathcal{H}^{-1 / 2}}\left(\left\|\partial_{t} u\right\|_{\mathcal{H}^{-1 / 2}}+T\left\|\partial_{t}^{2} u\right\|_{\mathcal{H}^{-1 / 2}}\right) \\
& \leq h^{2} C_{2}\|q\|_{\mathcal{H}^{-1 / 2}}\left(\left\|\partial_{t}^{2} a^{i}\right\|_{\mathcal{H}^{1 / 2}}+T\left\|\partial_{t}^{3} a^{i}\right\|_{\mathcal{H}^{1 / 2}}\right)
\end{aligned}
$$

provided a^{i} is well-enough behaved.

- Finally

$$
\|v-u\|_{\mathcal{H}^{-1 / 2}} \leq h^{2} C_{2}\left(\left\|\partial_{t}^{2} a^{i}\right\|_{\mathcal{H}^{1 / 2}}+T\left\|\partial_{t}^{3} a^{i}\right\|_{\mathcal{H}^{1 / 2}}\right)
$$

Difference between approximate solutions

- Would like to bound the difference between the Galerkin approximate solutions of the two variational problems.
- Galerkin approx: find $u_{h}, v_{h} \in V_{h}$ such that, for all $q_{h} \in V_{h}$

$$
\underbrace{a\left(u_{h}, q_{h} ; T\right)}_{\text {original }}=-\int_{0}^{T} \int_{\Gamma} q_{h} \dot{a}^{i} d \sigma_{\mathbf{x}} d t=\underbrace{a\left(v_{h}, q_{h} ; T\right)+h^{2} b\left(v_{h}, q_{h} ; T\right)}_{\text {modified }}
$$

- Set $\mathbf{q}_{\mathbf{h}}=\mathbf{v}_{\mathbf{h}}-\mathbf{u}_{\mathbf{h}}$ and subtract original from modified:

$$
a\left(q_{h}, q_{h} ; T\right)+h^{2} b\left(\dot{q_{h}}, \dot{q}_{h} ; T\right)=-h^{2} b\left(\dot{u}_{h}, \dot{q}_{h} ; T\right)
$$

- Coercivity same as for the exact solutions:

$$
\alpha\left\|q_{h}\right\|_{\mathcal{H}^{-1 / 2}}^{2} \leq \int_{0}^{T}\left(a\left(q_{h}, q_{h} ; t\right)+h^{2} b\left(\dot{q}_{h}, \dot{q}_{h} ; t\right)\right) d t
$$

but the upper bound is not clear, since we do not know a way to bound $\left\|\partial_{t} u_{h}\right\|_{\mathcal{H}^{-1 / 2}}$ and $\left\|\partial_{t}^{2} u_{h}\right\|_{\mathcal{H}^{-1 / 2}}$ in terms of derivatives of a^{i}.

Summary

- B-splines: demonstrated nice properties as time basis functions - simple formula for core time calculation in Galerkin approx - good smoothess for quadrature based only on space elements

Summary

- B-splines: demonstrated nice properties as time basis functions
- simple formula for core time calculation in Galerkin approx
- good smoothess for quadrature based only on space elements
- \mathbf{B}_{1} spline Galerkin: with modified variational form
- equivalent to B_{2} "convolution spline" method with explicit time marching
- modified variational problem inherits coercivity property
- Galerkin approx of modified variational problem stable ???
- solutions of original and modified variational problems differ by $\mathcal{O}\left(h^{2}\right)$
- Galerkin approx of original and modified variational problems differ by ???

Summary

- B-splines: demonstrated nice properties as time basis functions
- simple formula for core time calculation in Galerkin approx
- good smoothess for quadrature based only on space elements
- \mathbf{B}_{1} spline Galerkin: with modified variational form
- equivalent to B_{2} "convolution spline" method with explicit time marching
- modified variational problem inherits coercivity property
- Galerkin approx of modified variational problem stable ???
- solutions of original and modified variational problems differ by $\mathcal{O}\left(h^{2}\right)$
- Galerkin approx of original and modified variational problems differ by ???
- Outlook: dig deeper in Ha Duong's orginal work to understand and fix gaps above (or ask the audience)
- tidy up B_{2} spline Galerkin and explicit time marching B_{4} "convolution spline" counterpart

