Connections between collocation (convolution spline) and Galerkin methods for TDBIEs

Dugald Duncan Maxwell institute for Mathematical Sciences, Heriot-Watt University

Joint work with Penny Davies (Strathclyde)

Jan 2016

Acoustic scattering - notation

Problem: $\mathbf{a}^{i}(\mathbf{x}, \mathbf{t})$ is incident on Γ for t > 0 – find the scattered field $\mathbf{a}^{s}(\mathbf{x}, \mathbf{t})$

- PDE: $a_{tt}^s = \Delta a^s$ in Ω (wave speed is c = 1);
- BC: a^s + aⁱ = 0 on Γ IC: aⁱ reaches Γ at t > 0
- TDBIE: **a**^s can be obtained from surface potential *u*:

$$\frac{1}{4\pi} \int_{\Gamma} \frac{u(\mathbf{x}', t - |\mathbf{x}' - \mathbf{x}|)}{|\mathbf{x}' - \mathbf{x}|} \ d\sigma_{\mathbf{X}'} = -a^{i}(\mathbf{x}, t) \quad \mathbf{x} \in \Gamma, \ t > 0$$

Dugald Duncan (Heriot-Watt)

Jan 2016 1 / 15

(a)

Connections: space-time Galerkin and convolution spline

- Ha Duong: TDBIE variational formulation stability of full space-time Galerkin approximation
- But Galerkin methods are typically not in time-marching form very expensive to implement without modification
- **Strategy:** find a modified variational formulation with the following properties.
 - its exact and (Galerkin) approx solutions are close to those for the unmodified version
 - its Galerkin approx is equivalent to a convolution spline (time-marching) scheme
 - the CS scheme's basis functions are globally smooth enough to make quadrature efficient
- Could then use Ha Duong (Galerkin) analysis for convolution spline

イロト 不得下 イヨト イヨト 二日

Ha Duong: variational formulation

• TDBIE (single layer potential) for surface potential *u*:

$$(Su)(\mathbf{x},t) := \frac{1}{4\pi} \int_{\Gamma} \frac{u(\mathbf{x}',t-|\mathbf{x}'-\mathbf{x}|)}{|\mathbf{x}'-\mathbf{x}|} d\sigma_{\mathbf{x}'} = -a^{i}(\mathbf{x},t) \quad \mathbf{x} \in \Gamma, \ t \in [0,T]$$

• Equivalent exact variational form: find $u \in V$, s.t. $\forall q \in V$, $t \in [0, T]$

$$a(u,q;t) := \int_0^t \int_{\Gamma} q \,\mathbf{S} \dot{u} \, d\sigma_{\mathbf{X}} \, dt = -\int_0^t \int_{\Gamma} q \, \dot{\mathbf{a}}^{\mathbf{i}} \, d\sigma_{\mathbf{X}} \, d\tau$$

Note: time differentiated TDBIE $S\dot{u} = -\dot{a}^i$ not $Su = -a^i$

• Energy of scattered field a^s is

$$\mathsf{E}(u;t) = \mathsf{a}(u,u;t) = rac{1}{2} \int_{\Omega} \left(|
abla \mathsf{a}^s|^2 + |\dot{\mathsf{a}^s}|^2 \right) d\mathsf{x}$$

Dugald Duncan (Heriot-Watt)

Jan 2016 3 / 15

Space-time Galerkin approximation

• Approx solution in terms of unknowns U_k^n :

$$u(\mathbf{x},t) \approx u_h(\mathbf{x},t) := \sum_{n=1}^{N_T} \sum_{k=1}^{N_S} U_k^n \phi_k(\mathbf{x}) \psi_n(\mathbf{t}) \in V_h$$

• Approx variational form: for each $q_h = \phi_j(\mathbf{x}) \psi_n(\mathbf{t}) \in V_h$

$$a(u_h, q_h; T) = \int_0^T \psi_{\mathbf{n}}(\mathbf{t}) \int_{\Gamma} \int_{\Gamma} \sum_{k=1}^{N_s} \sum_{m=1}^{N_T} \frac{U_k^m \phi_k(\mathbf{x}) \phi_j(\mathbf{y})}{|\mathbf{x} - \mathbf{y}|} \, \dot{\psi}_{\mathbf{m}}(\mathbf{t} - |\mathbf{x} - \mathbf{y}|) \, d\sigma_{\mathbf{x}} \, d\sigma_{\mathbf{y}} \, d\mathbf{t}$$

$$=\sum_{k=1}^{N_{\rm S}}\sum_{m=1}^{N_{\rm T}}U_k^m\int_{\Gamma}\int_{\Gamma}\frac{\phi_k(\mathbf{x})\phi_j(\mathbf{y})}{|\mathbf{x}-\mathbf{y}|}\ \beta_{\rm m,n}(|\mathbf{x}-\mathbf{y}|)\ d\sigma_{\mathbf{x}}d\sigma_{\mathbf{y}}=-\int_0^{T}\int_{\Gamma}q_h\dot{a}^i\,d\sigma_{\mathbf{x}}dt$$

where $\beta_{\rm m,n}(\mathbf{r}):=\int_0^{T}\psi_n(\mathbf{t})\,\dot{\psi}_m(\mathbf{t}-\mathbf{r})\,\mathrm{dt}=\int_{\mathbf{r}}^{T}\psi_n(\mathbf{t})\,\dot{\psi}_m(\mathbf{t}-\mathbf{r})\,\mathrm{dt}$

(the time basis functions have support in [0, T])

Dugald Duncan (Heriot-Watt)

Jan 2016 4 / 15

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 のへで

A nice property of B-splines

•
$$\beta_{m,n}(r) := \int_0^T \psi_n(t) \, \dot{\psi}_m(t-r) \, dt$$

• If $\psi_n(t) = B_\ell(t/h - n)$ then

$$\beta_{m,n}(r) = \int_0^T B_{\ell}(t/h - n) \dot{B}_{\ell}(t/h - m - r/h) dt$$

= $h \left(B_{2\ell} \left(\frac{r}{h} - \frac{1}{2} + m - n \right) - B_{2\ell} \left(\frac{r}{h} + \frac{1}{2} + m - n \right) \right)$
= $-h \dot{B}_{2\ell+1} \left(\frac{r}{h} + m - n \right)$

- Note: needs some modification near 0 and T
- Also works for Petrov Galerkin $(B_{\ell}, B_{\ell'}) \rightarrow B_{\ell+\ell'}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 のへで

B_{ℓ} time basis functions for Galerkin

• Approx variational form: for each $q_h = \phi_j(\mathbf{x})\psi_n(t) \in V_h$

$$a(u_h, q_h; T) = -\int_0^T \!\!\!\int_{\Gamma} \!\! q_h \, \dot{a}^i \, d\sigma_{\mathbf{X}} \, dt$$

• Assemble into matrix-vector form for each $n \leq N_T$:

$$\sum_{m=1}^{N_{\tau}} \widehat{Q}_{m,n} \mathbf{U}^{m} = \mathbf{a}^{n}, \quad \widehat{Q}_{m,n} = \int_{\Gamma} \int_{\Gamma} \frac{\phi(\mathbf{x})\phi^{T}(\mathbf{y})}{|\mathbf{x} - \mathbf{y}|} \, \boldsymbol{\beta}_{\mathbf{m},\mathbf{n}}(|\mathbf{x} - \mathbf{y}|) \, d\sigma_{\mathbf{x}} d\sigma_{\mathbf{y}}$$

where $\boldsymbol{\phi}^{\mathsf{T}} = (\phi_1, \dots, \phi_{N_S})$ and $\widehat{Q}_{m,n} \in \mathbb{R}^{N_S \times N_S}$

- Note: most Q̂_{m,n} = Q^{n−m} since most β_{m,n} = −hB_{2ℓ+1}(r/h + m − n) − so mainly a convolution sum
- $\beta_{m,n}$ are degree 2ℓ and are globally $C^{2\ell-1}$, so quadrature can be done over space elements only

・ロト ・ 同ト ・ ヨト ・ ヨト ・ りゅう

Galerkin is **not** usually a time-marching scheme...

- Example: $\psi_m(t/h) = B_1(t/h m)$ translates of 1st order B-spline (hat functions)
- Resulting linear system for the $\mathbf{U}^{j} \in \mathbb{R}^{N_{\mathcal{S}}}$ is: $\mathbf{U}^{0} = 0$,

$$Q^{\star} \mathbf{U}^{\mathbf{n+1}} + \sum_{m=0}^{n} Q^{m} \mathbf{U}^{n-m} = \mathbf{a}^{n}, \quad n = 1: N_{T} - 1 \text{ (modified at } n = N_{T}\text{)}$$

• Use extrapolation: $\mathbf{U}^{n+1} \approx 2 \mathbf{U}^n - \mathbf{U}^{n-1}$ to get modified scheme

Jan 2016 7 / 15

Modified $(B_1 \text{ in time})$ Galerkin

• Extrapolation is equivalent to modified variational problem:

$$a(u_h, q_h; T) + h^2 \underbrace{\int_0^T \int_{\Gamma} \int_{\Gamma} \frac{\dot{q}_h(\mathbf{x}, t) F(|\mathbf{x} - \mathbf{y}|) \dot{u}_h(\mathbf{y}, t)}{|\mathbf{x} - \mathbf{y}|}_{b(\dot{u}_h, \dot{q}_h; T)} d\sigma_{\mathbf{x}} d\sigma_{\mathbf{y}} dt}_{\mathsf{b}(\mathbf{x}, \mathbf{y}, \mathbf{y}; T)} = \mathsf{Galerkin RHS}$$

where $F(r) = B_2(r/h + 1/2) =$ second order B-spline

Gives a time-marching scheme:

i.e.
$$(2Q^{\star} + Q^{0}) \mathbf{U}^{n} + (Q^{1} - Q^{\star}) \mathbf{U}^{n-1} + \sum_{m=2}^{n} Q^{m} \mathbf{U}^{n-m} = \mathbf{a}^{n}$$

• Using B_3 -basis functions also applied in convolution spline form to time differentiated TDBIE $S\dot{u} = -\dot{a}^i$ gives same matrices and slightly altered RHS

Compare exact solutions of variational formulations

• Original: find $u \in V$ such that for all $q \in V$, $t \in [0, T]$

$$a(u,q;t) = -\int_0^t \int_{\Gamma} q(\mathbf{x}, au) \, a^i(\mathbf{x}, au) \, d\sigma_{\mathbf{X}} \, d au$$

• Modified: find $v \in V$ such that for all $q \in V$, $t \in [0, T]$

$$a(v,q;t) + h^2 b(\dot{v},\dot{q};t) = -\int_0^t \int_{\Gamma} q(\mathbf{x},\tau) a^i(\mathbf{x},\tau) d\sigma_{\mathbf{X}} d\tau$$

- So $a(v u, q; t) + h^2 b(\dot{v} \dot{u}, \dot{q}; t) = -h^2 b(\dot{u}, \dot{q}; t)$
- Set q = v u to get an **energy-like** expression:

$$a(v-u, v-u; t) + h^2 b(\dot{v}-\dot{u}, \dot{v}-\dot{u}; t) = -h^2 b(\dot{u}, \dot{v}-\dot{u}; t)$$

Dugald Duncan (Heriot-Watt)

Jan 2016 9 / 15

What's known about energy E(u, t) = a(u, u; t)?

- $E(u,t) \geq 0$
- Ha Duong's results concern its time integral:

$$\begin{split} \alpha \|u\|_{\mathcal{H}^{-1/2}}^2 &\leq \int_0^T a(u,u;t) dt = \int_0^T E(u;t) dt \leq \beta \|u\|_{\mathcal{H}^{-1/2}} \|\dot{a}^i\|_{\mathcal{H}^{1/2}} \\ \Rightarrow \quad \|u\|_{\mathcal{H}^{-1/2}} \leq \frac{\beta}{\alpha} \|\dot{a}^i\|_{\mathcal{H}^{1/2}} \end{split}$$

- What is the space $\mathcal{H}^{-1/2}$? Ha Duong uses
 - (H^{1/2,1/2}₀₀)' (from Lions & Magenes) in earlier work, including PhD thesis
 H^{-1/2} = H^{-1/2}(0, T; L²(Γ)) ∩ L²(0, T; H^{-1/2}(Γ)) in 2003 survey article
- Note: rearranging gives:

$$\int_0^T a(u, u; t) dt = \int_0^T \int_0^t \int_{\Gamma} u(S\dot{u}) d\sigma_{\mathbf{x}} d\tau dt = \int_0^T (\mathbf{T} - \mathbf{t}) \int_{\Gamma} u(S\dot{u}) d\sigma_{\mathbf{x}} dt$$

Dugald Duncan (Heriot-Watt)

Stability in modified variational problem - exact

• **Exact:** find $v \in V$ s.t.

$$a(v,q;t)+h^2b(\dot{v},\dot{q};t)=-\int_0^t\!\!\int_{\Gamma}\!\!q\dot{a}^id\sigma_{f X}d au$$

for all $q \in V$ and all $t \in [0, T]$

• Exact: Ha Duong coercivity and upper bound give stability

$$\alpha \|v\|_{\mathcal{H}^{-1/2}}^2 \leq \int_0^T (a(v,v;t) + h^2 \underbrace{b(\dot{v},\dot{v};t)}_{\geq 0}) dt$$

$$= -\int_0^T \int_0^t \int_{\Gamma} \mathbf{v} \dot{\mathbf{a}}^i d\sigma_{\mathbf{X}} d\tau dt \le \beta \|\mathbf{v}\|_{\mathcal{H}^{-1/2}} \|\dot{\mathbf{a}}^i\|_{\mathcal{H}^{1/2}}$$
$$\Rightarrow \|\mathbf{v}\|_{\mathcal{H}^{-1/2}} \le \frac{\beta}{\alpha} \|\dot{\mathbf{a}}^i\|_{\mathcal{H}^{1/2}}$$

Dugald Duncan (Heriot-Watt)

Jan 2016 11 / 15

Stability in modified variational problem - Galerkin approx

• Approx: find $v_h \in V_h$ s.t. for all $q_h \in V_h$

$$a(v_h, q_h; T) + h^2 b(\dot{v}_h, \dot{q}_h; T) = -\int_0^T \int_{\Gamma} q_h \dot{a}^i d\sigma_{\mathbf{X}} d\tau$$

• Approx: stability would follow from coercivity (OK) and upper bound (???)

$$\alpha \|\mathbf{v}_h\|_{\mathcal{H}^{-1/2}}^2 \leq \int_0^T a(\mathbf{v}_h, \mathbf{v}_h; t) + h^2 \underbrace{b(\dot{\mathbf{v}}_h, \dot{\mathbf{v}}_h; t)}_{\geq 0} dt \leq \beta \|\mathbf{v}_h\|_{\mathcal{H}^{-1/2}} \|\dot{\mathbf{a}}^i\|_{\mathcal{H}^{1/2}}???$$

Upper bound appears to need

$$a(v_h, v_h; \mathbf{t}) + h^2 b(\dot{v}_h, \dot{v}_h; \mathbf{t}) = -\int_0^{\mathbf{t}} \int_{\Gamma} v_h \dot{a}^i d\sigma_{\mathbf{X}} d\tau \quad \forall \mathbf{t} \in [0, T]$$

to work in simple way – but this is not true in general, only for t=T.

Dugald Duncan (Heriot-Watt)

Jan 2016 12 / 15

イロト 不得下 イヨト イヨト 二日

Bound difference between exact solns of original and modified variational problems

• Set $\mathbf{q} = \mathbf{v} - \mathbf{u}$, the difference in solutions. We have

$$\underbrace{a(q,q;t) + h^2 b(\dot{q},\dot{q};t)}_{\text{LHS}} = \underbrace{-h^2 b(\dot{u},\dot{q};t)}_{\text{RHS}}$$

• Can show that $b(\dot{q}, \dot{q}; t) \ge 0$, so using Ha Duong coercivity

$$\begin{aligned} \alpha \|q\|_{\mathcal{H}^{-1/2}}^{2} &\leq \int_{0}^{T} LHS \, dt = \int_{0}^{T} RHS \, dt \\ &\leq h^{2} C_{1} \|q\|_{\mathcal{H}^{-1/2}} \left(\|\partial_{t} u\|_{\mathcal{H}^{-1/2}} + T \|\partial_{t}^{2} u\|_{\mathcal{H}^{-1/2}} \right) \\ &\leq h^{2} C_{2} \|q\|_{\mathcal{H}^{-1/2}} \left(\|\partial_{t}^{2} a^{i}\|_{\mathcal{H}^{1/2}} + T \|\partial_{t}^{3} a^{i}\|_{\mathcal{H}^{1/2}} \right) \end{aligned}$$

provided a^i is well-enough behaved.

Finally

$$\|v - u\|_{\mathcal{H}^{-1/2}} \le h^2 C_2 \left(\|\partial_t^2 a^i\|_{\mathcal{H}^{1/2}} + T \|\partial_t^3 a^i\|_{\mathcal{H}^{1/2}} \right)$$

A D > A P > A B > A

lan 2016

13 / 15

Dugald Duncan (Heriot-Watt)

Difference between approximate solutions

- Would like to bound the difference between the Galerkin approximate solutions of the two variational problems.
- Galerkin approx: find $u_h, v_h \in V_h$ such that, for all $q_h \in V_h$

$$\underbrace{a(u_h, q_h; T)}_{\text{original}} = -\int_0^T \int_{\Gamma} q_h \dot{a}^i d\sigma_{\mathbf{X}} dt = \underbrace{a(v_h, q_h; T) + h^2 b(v_h, q_h; T)}_{\text{modified}}$$

• Set $\mathbf{q}_{\mathbf{h}} = \mathbf{v}_{\mathbf{h}} - \mathbf{u}_{\mathbf{h}}$ and subtract original from modified:

$$a(q_h, q_h; T) + h^2 b(\dot{q}_h, \dot{q}_h; T) = -h^2 b(\dot{u}_h, \dot{q}_h; T)$$

Coercivity same as for the exact solutions:

$$\alpha \|\boldsymbol{q}_h\|_{\mathcal{H}^{-1/2}}^2 \leq \int_0^T (\boldsymbol{a}(\boldsymbol{q}_h, \boldsymbol{q}_h; t) + h^2 \boldsymbol{b}(\dot{\boldsymbol{q}}_h, \dot{\boldsymbol{q}}_h; t)) dt$$

but the upper bound is not clear, since we do not know a way to bound $\|\partial_t u_h\|_{\mathcal{H}^{-1/2}}$ and $\|\partial_t^2 u_h\|_{\mathcal{H}^{-1/2}}$ in terms of derivatives of a^i .

Dugald Duncan (Heriot-Watt)

Jan 2016 14 / 15

Summary

- B-splines: demonstrated nice properties as time basis functions
 - simple formula for core time calculation in Galerkin approx
 - good smoothess for quadrature based only on space elements

Summary

- B-splines: demonstrated nice properties as time basis functions
 - simple formula for core time calculation in Galerkin approx
 - good smoothess for quadrature based only on space elements
- **B**₁ spline Galerkin: with modified variational form
 - equivalent to B_2 "convolution spline" method with explicit time marching
 - modified variational problem inherits coercivity property
 - Galerkin approx of modified variational problem stable ???
 - solutions of original and modified variational problems differ by $\mathcal{O}(h^2)$
 - Galerkin approx of original and modified variational problems differ by ???

Summary

- B-splines: demonstrated nice properties as time basis functions
 - simple formula for core time calculation in Galerkin approx
 - good smoothess for quadrature based only on space elements
- **B**₁ spline Galerkin: with modified variational form
 - equivalent to B_2 "convolution spline" method with explicit time marching
 - modified variational problem inherits coercivity property
 - Galerkin approx of modified variational problem stable ???
 - solutions of original and modified variational problems differ by $\mathcal{O}(h^2)$
 - Galerkin approx of original and modified variational problems differ by ???
- **Outlook:** dig deeper in Ha Duong's orginal work to understand and fix gaps above (or ask the audience)

– tidy up B_2 spline Galerkin and explicit time marching B_4 "convolution spline" counterpart