Time approximation of transient boundary integral equations

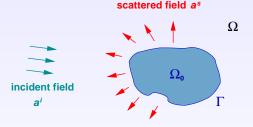
Penny Davies (Strathclyde)

Joint work with Dugald Duncan (Heriot-Watt)

Jan 2016

Motivation: acoustic scattering

Problem: $a^{i}(x, t)$ is incident on Γ for t > 0 – find the scattered field $a^{s}(x, t)$



- PDE: $a_{tt}^s = \Delta a^s$ in Ω (wave speed is c = 1);
- BC: a^s + aⁱ = 0 on Γ
- TDBIE: *a^s* can be obtained from surface potential *u*:

$$\frac{1}{4\pi} \int_{\Gamma} \frac{u(\boldsymbol{x}', t - |\boldsymbol{x}' - \boldsymbol{x}|)}{|\boldsymbol{x}' - \boldsymbol{x}|} \ d\sigma_{\boldsymbol{X}'} = -a^{i}(\boldsymbol{x}, t) \quad \boldsymbol{x} \in \Gamma, \ t > 0$$

Penny Davies (Strathclyde)

Jan 2016 1 / 18

< ロ > < 同 > < 回 > < 回 >

Approx TDBIE in time & space*

$$\sum_{m=0}^{n} Q^m \, \underline{U}^{n-m} = \underline{a}^n \,, \quad n = 1 : N_T \quad \left({}^* \mathsf{time \ Galerkin} - \mathsf{see \ later} \right)$$

 $(\underline{U}^n \in \mathbb{R}^{N_S}$ is spatial approx of u at/near $t^n = n h$, Q^m are matrices)

time-stepping scheme:
$$Q^0 \, \underline{U}^n = \underline{a}^n - \sum_{m=1}^n Q^m \, \underline{U}^{n-m}$$

- Choose space mesh size \simeq time step h, so $N_T \simeq N$, $N_S \simeq N^2$
- Sparsity of matrices Q^m given by (effective) support of time basis functions:
 - Galerkin in time: time BFs are local
 - Convolution quadrature (CQ) in time: scheme is very stable, but effective support of BFs is greater and increases with *m*
 - Comp complexity extra power of \sqrt{N} for both setup & run times for CQ

Approx TDBIE in time & space*

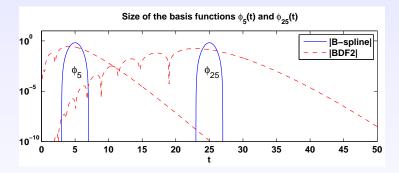
$$\sum_{m=0}^{n} Q^m \, \underline{U}^{n-m} = \underline{a}^n \,, \quad n = 1 : N_T \quad \left({}^* \mathsf{time \ Galerkin} - \mathsf{see \ later} \right)$$

 $(\underline{U}^n \in \mathbb{R}^{N_S}$ is spatial approx of u at/near $t^n = n h$, Q^m are matrices)

time-stepping scheme:
$$Q^0 \underline{U}^n = \underline{a}^n - \sum_{m=1}^n Q^m \underline{U}^{n-m}$$

- Choose space mesh size \simeq time step h, so $N_T \simeq N$, $N_S \simeq N^2$
- Sparsity of matrices Q^m given by (effective) support of time basis functions:
 - Galerkin in time: time BFs are local
 - Convolution quadrature (CQ) in time: scheme is very stable, but effective support of BFs is greater and increases with *m*
 - Comp complexity extra power of \sqrt{N} for both setup & run times for CQ
 - Ideal: local time BFs with stability of CQ: "convolution spline"

Time basis functions



Basis functions for CQ (BDF2) and cubic splines

• **TDBIE comp complexity** – extra power of \sqrt{N} for both setup & run times for CQ

> < = > <</p>

"Convolution spline" approx in time

• Derive for convolution Volterra integral equation (VIE):

$$\int_0^t K(\tau) u(t-\tau) d\tau = a(t)$$

- Idea: construct a backwards-in-time approx in terms of local basis functions – gives sparse Q^m matrices for TDBIEs
- Approx is:

$$u(t_n-t)\approx\sum_{m=0}^n u_{n-m}\,\phi_m(t/h)$$
 NOT $u(t)\approx\sum_k u_k\,\phi_k(t/h)$

- Basis functions φ_m(t) are cubic B-splines with parabolic runout conditions at t = 0 (so translates for m ≥ 3)
- New results for VIE: stability and 4th order convergence for kernels K which are piecewise smooth (can be **discontinuous**)

Penny Davies (Strathclyde)

Simple VIE example

$$\int_0^t \mathcal{K}(\tau) \ u(t - \tau) \ d\tau = a(t) \,, \quad \text{where} \quad \mathcal{K}(t) = \left\{ \begin{array}{ll} 1, & t \leq L \\ 0, & \text{otherwise} \end{array} \right.$$

exact solution:
$$u(t) = \sum_{k=0}^{\lfloor t/L \rfloor} a'(t-kL)$$

VIE approx: key Gronwall result

Standard Gronwall:

$$x_n \leq a+b \sum_{j=0}^{n-1} x_j \quad \Longrightarrow \quad x_n \leq a \, (1+b)^n \leq a \, e^{bn}$$

イロト イヨト イヨト イヨト

VIE approx: key Gronwall result

Standard Gronwall:

$$x_n \leq a+b \sum_{j=0}^{n-1} x_j \quad \Longrightarrow \quad x_n \leq a \, (1+b)^n \leq a \, e^{bn}$$

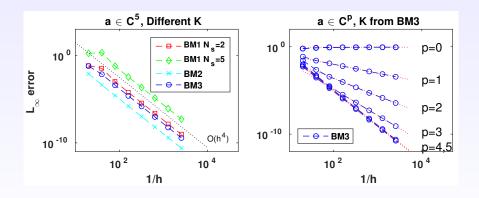
Extension – include contribution from *M* steps back:

$$x_n \leq a+b \sum_{j=0}^{n-1} x_j + \boldsymbol{c} \, \boldsymbol{x_{n-M}} \implies x_n \leq a \, (1+b)^n (1+\boldsymbol{c})^{\lfloor n/M \rfloor}$$

– Can show that convolution spline scheme is stable and 4th order accurate when kernel K is discontinuous

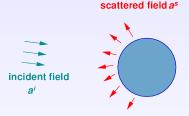
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 のへで

Numerical results



伺 とう ヨ とう きょう

Scattering from unit sphere $\ensuremath{\mathbb{S}}$



• Spherical harmonic expansion: $(R = |\mathbf{x}|, \ \widehat{\mathbf{x}} = \mathbf{x}/R)$

$$a^{i}(\mathbf{x},t) = \sum_{\ell,m} a^{i}_{\ell,m}(R,t) Y^{m}_{\ell}(\widehat{\mathbf{x}})$$

• Y_{ℓ}^{m} are eigenfunctions of the single layer potential operator on \mathbb{S} (e.g. Nédélec) \implies spherical harmonic representation of u and a^{s}

< ロ > < 同 > < 回 > < 回 >

Potential u on \mathbb{S}

• TDBIE for surface potential *u*:

$$\frac{1}{4\pi} \int_{\mathbb{S}} \frac{u(\boldsymbol{x}',t-|\boldsymbol{x}'-\boldsymbol{x}|)}{|\boldsymbol{x}'-\boldsymbol{x}|} \ d\sigma_{\boldsymbol{X}'} = -a^{i}(\boldsymbol{x},t) \quad \boldsymbol{x} \in \mathbb{S}, \ t > 0$$

• Spherical harmonic expansion – everything decouples:

$$a^{i}(\mathbf{x},t) = \sum_{\ell,m} a^{i}_{\ell,m}(R,t) Y^{m}_{\ell}(\widehat{\mathbf{x}}) \implies u(\widehat{\mathbf{x}},t) = \sum_{\ell,m} u_{\ell,m}(t) Y^{m}_{\ell}(\widehat{\mathbf{x}})$$

• Separate step-kernel VIE problem for each $u_{\ell,m}$ [Sauter & Veit, 2011]

$$\int_0^t K_{\ell}(\tau) \, u_{\ell,m}(t - \tau) = -a_{\ell,m}^i(1,t) \, ,$$

・コン ・ ア・ ・ モン ・ モン

9 / 18

Jan 2016

Potential u on \mathbb{S}

• TDBIE for surface potential *u*:

$$\frac{1}{4\pi} \int_{\mathbb{S}} \frac{u(\boldsymbol{x}',t-|\boldsymbol{x}'-\boldsymbol{x}|)}{|\boldsymbol{x}'-\boldsymbol{x}|} \ d\sigma_{\boldsymbol{X}'} = -a^{i}(\boldsymbol{x},t) \quad \boldsymbol{x} \in \mathbb{S}, \ t > 0$$

Spherical harmonic expansion – everything decouples:

$$a^{i}(\mathbf{x},t) = \sum_{\ell,m} a^{i}_{\ell,m}(R,t) Y^{m}_{\ell}(\widehat{\mathbf{x}}) \implies u(\widehat{\mathbf{x}},t) = \sum_{\ell,m} u_{\ell,m}(t) Y^{m}_{\ell}(\widehat{\mathbf{x}})$$

• Separate step-kernel VIE problem for each $u_{\ell,m}$ [Sauter & Veit, 2011]

$$\int_0^t \mathcal{K}_\ell(au) \; u_{\ell,m}(t\!-\! au) = -a^i_{\ell,m}(1,t)\,, \quad \mathcal{K}_\ell(t) = \left\{egin{array}{cc} rac{1}{2} \; P_\ell(1-t^2/2), & t\leq 2\ 0, & t>2 \end{array}
ight.$$

 $(P_{\ell} \text{ is Legendre polynomial})$ New?

Penny Davies (Strathclyde)

Jan 2016 9 / 18

Scattered field a^s from \mathbb{S}

$$a^s(oldsymbol{x},t) = \sum_{\ell,m} a^s_{\ell,m}(R,t) \, Y^m_\ell(\widehat{oldsymbol{x}})$$

• Components ($t \ge 2$):

$$a_{\ell,m}^{s}(R,t) = \frac{1}{2R} \int_{R-1}^{R+1} P_{\ell}(1-\tau^{2}/2) u_{\ell,m}(t-\tau)$$

where $\frac{1}{2} \int_{0}^{2} P_{\ell}(1-\tau^{2}/2) u_{\ell,m}(t-\tau) = -a_{\ell,m}^{i}(1,t)$

- Convolution spline approx solution?
 - Problem: our error bound for approx u involves $\|K'_{\ell}\| = \ell(\ell+1) \dots$

▲□▶ ▲□▶ ★ □▶ ★ □▶ = □ ● ○ ○ ○

Scattered field a^s from \mathbb{S}

$$a^s(oldsymbol{x},t) = \sum_{\ell,m} a^s_{\ell,m}(R,t) \, Y^m_\ell(\widehat{oldsymbol{x}})$$

• Components $(t \ge 2)$:

$$a_{\ell,m}^{s}(R,t) = \frac{1}{2R} \int_{R-1}^{R+1} P_{\ell}(1-\tau^{2}/2) u_{\ell,m}(t-\tau)$$

where $\frac{1}{2} \int_{0}^{2} P_{\ell}(1-\tau^{2}/2) u_{\ell,m}(t-\tau) = -a_{\ell,m}^{i}(1,t)$

- Convolution spline approx solution?
 - Problem: our error bound for approx u involves $\|K'_{\ell}\| = \ell(\ell+1) \dots$
 - Problem ... as an exponential!

Penny Davies (Strathclyde)

Jan 2016 10 / 18

Scattered field a^s from \mathbb{S}

$$a^s(oldsymbol{x},t) = \sum_{\ell,m} a^s_{\ell,m}(R,t) \, Y^m_\ell(\widehat{oldsymbol{x}})$$

Components (t ≥ 2):

$$a_{\ell,m}^{s}(R,t) = \frac{1}{2R} \int_{R-1}^{R+1} P_{\ell}(1-\tau^{2}/2) u_{\ell,m}(t-\tau)$$

where $\frac{1}{2} \int_{0}^{2} P_{\ell}(1-\tau^{2}/2) u_{\ell,m}(t-\tau) = -a_{\ell,m}^{i}(1,t)$

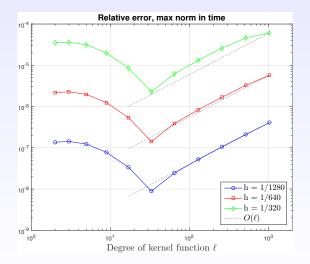
- Convolution spline approx solution?
 - Problem: our error bound for approx u involves $\|K'_{\ell}\| = \ell(\ell+1) \dots$
 - Problem ... as an exponential!
 - But: scheme works much better than this in practice ...

Penny Davies (Strathclyde)

Jan 2016

10 / 18

Numerical results for VIE solution $u_{\ell,m}$



Penny Davies (Strathclyde)

<ロ> (日) (日) (日) (日) (日)

Connections: space-time Galerkin and convolution spline

- Ha Duong: TDBIE variational formulation stability of full space-time Galerkin approximation
- But Galerkin methods are typically not in time-marching form very expensive to implement without modification
- **Strategy:** find a modified variational formulation with the following properties.
 - its exact and (Galerkin) approx solutions are close to those for the unmodified version
 - its Galerkin approx is equivalent to a convolution spline (time-marching) scheme
 - the CS scheme's basis functions are globally smooth enough to make quadrature efficient
- Could then use Ha Duong (Galerkin) analysis for convolution spline

< ロ > < 同 > < 回 > < 回 >

Ha Duong: Galerkin variational formulation

• TDBIE (single layer potential) for surface potential *u*:

$$(Su)(\mathbf{x},t) := rac{1}{4\pi} \int_{\Gamma} rac{u(\mathbf{x}',t-|\mathbf{x}'-\mathbf{x}|)}{|\mathbf{x}'-\mathbf{x}|} \ d\sigma_{\mathbf{x}'} = -a^i(\mathbf{x},t) \quad \mathbf{x} \in \Gamma, \ t \in [0,T]$$

• Approx solution in terms of unknowns U_k^n :

$$u(\mathbf{x},t) pprox u_h(\mathbf{x},t) := \sum_{n=1}^{N_T} \sum_{k=1}^{N_S} U_k^n \psi_k(\mathbf{x}) \phi_n(t/h) \in V_h$$

• Galerkin approx uses time differentiated TDBIE $S\dot{u} = -\dot{a}_i$ not $Su = -a_i$:

$$a(q_h, u_h; T) := \int_0^T \int_{\Gamma} q_h S \dot{u}_h \, d\sigma_{\mathbf{X}} \, dt = -\int_0^T \int_{\Gamma} q_h \, \dot{a}^i \, d\sigma_{\mathbf{X}} \, dt$$

for each $q_h = \psi_j(\mathbf{x}) \phi_m(t/h) \in V_h$

Penny Davies (Strathclyde)

Jan 2016 13 / 18

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Galerkin is **not** usually a time-marching scheme...

- It is when ϕ_m are **piecewise constants** in time, but not in general
- Example: $\phi_m(t/h) = B_1(t/h m)$ translates of 1st order B-spline (hat functions)
- Resulting linear system for the $\underline{U}^{j} \in \mathbb{R}^{N_{\mathcal{S}}}$ is: $\underline{U}^{0} = 0$,

$$Q^{\star} \underline{\underline{U}}^{n+1} + \sum_{m=0}^{n} Q^{m} \underline{\underline{U}}^{n-m} = \underline{\underline{a}}^{n}, \quad n = 1: N_{T} - 1 \text{ (modified at } n = N_{T}\text{)}$$

Picture for $N_T = 4$ (* is a non-zero block $N_S \times N_S$ matrix):

$$\begin{pmatrix} * & * & 0 & 0 \\ * & * & * & 0 \\ * & * & * & * \\ * & * & * & * \end{pmatrix} \begin{pmatrix} \underline{U}^1 \\ \underline{U}^2 \\ \underline{U}^3 \\ \underline{U}^4 \end{pmatrix} = \begin{pmatrix} \underline{a}^1 \\ \underline{a}^2 \\ \underline{a}^3 \\ \underline{a}^4 \end{pmatrix}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 のへで

... it can be modified to give a time-marching scheme

• Can either apply Galerkin (B₁ in time) to modified variational problem

$$a(q_h, u_h; T) + h^2 \int_0^T \int_{\Gamma} \int_{\Gamma} \frac{\dot{q}_h(\mathbf{x}, t) F(|\mathbf{x} - \mathbf{y}|) \dot{u}_h(\mathbf{y}, t)}{|\mathbf{x} - \mathbf{y}|} \, d\sigma_{\mathbf{x}} d\sigma_{\mathbf{y}} dt = \text{Galerkin RHS}$$

where $F(r) = B_2(r/h + 1/2) =$ second order B-spline

- Or modify Galerkin scheme using extrapolation $\underline{U}^{n+1} \approx 2 \, \underline{U}^n \underline{U}^{n-1}$
- Both approaches give the same time-marching scheme:

$$-Q^{\star}(\underline{U}^{n+1}-2\underline{U}^{n}+\underline{U}^{n-1})+Q^{\star}\underline{U}^{n+1}+\sum_{m=0}^{n}Q^{m}\underline{U}^{n-m}=\underline{a}^{n}$$

i.e.
$$(2Q^{\star} + Q^0) \underline{U}^n + (Q^1 - Q^{\star}) \underline{U}^{n-1} + \sum_{m=2}^n Q^m \underline{U}^{n-m} = \underline{a}^n$$

Penny Davies (Strathclyde)

Jan 2016 15 / 18

Connections: B_1 -Galerkin and convolution spline

• Modified Galerkin scheme based on B_1 (linears) in time:

$$\left(2Q^{\star}+Q^{0}\right)\underline{U}^{n}+\left(Q^{1}-Q^{\star}\right)\underline{U}^{n-1}+\sum_{m=2}^{n}Q^{m}\underline{U}^{n-m}=\underline{a}^{n}$$

• Convolution spline scheme with B_3 -basis functions also applied to time differentiated TDBIE $S\dot{u} = -\dot{a}^i$ is

$$\left(2Q^{\star}+Q^{0}\right)\underline{U}^{n}+\left(Q^{1}-Q^{\star}\right)\underline{U}^{n-1}+\sum_{m=2}^{n}Q^{m}\underline{U}^{n-m}=\underline{a}_{C}^{n}$$

– same matrices and $\underline{a}_C^n \approx \underline{a}^n$

Jan 2016

16 / 18

Connections: B_1 -Galerkin and convolution spline

• Modified Galerkin scheme based on B_1 (linears) in time:

$$\left(2Q^{\star}+Q^{0}\right)\underline{U}^{n}+\left(Q^{1}-Q^{\star}\right)\underline{U}^{n-1}+\sum_{m=2}^{n}Q^{m}\underline{U}^{n-m}=\underline{a}^{n}$$

• Convolution spline scheme with B_3 -basis functions also applied to time differentiated TDBIE $S\dot{u} = -\dot{a}^i$ is

$$(2Q^{\star}+Q^{0})\underline{U}^{n}+(Q^{1}-Q^{\star})\underline{U}^{n-1}+\sum_{m=2}^{n}Q^{m}\underline{U}^{n-m}=\underline{a}_{C}^{n}$$

- same matrices and $\underline{a}_C^n \approx \underline{a}^n$
- Shown: direct connection with convolution spline scheme with B_2 -basis functions applied to $Su = -a^i$, via

$$\dot{B}_3(t) = B_2(t+1/2) - B_2(t-1/2)$$

Jan 2016

16 / 18

Penny Davies (Strathclyde)

Connections: Galerkin and convolution spline

Galerkin time basis (app to $S\dot{u} = -\dot{a}^i$)	Convolution spline (app to $Su = -a^i$)	Conv spline sta- ble for VIE?
$B_1(t)$	$B_2(t)$	Yes
?	$B_3(t)$	Yes
$B_2(t)$	$B_4(t)$	Yes
$B_3(t)$	$B_6(t)$	No

- Ha Duong: standard (unmodified) Galerkin scheme should be stable
- Shown: Modified B₁-Galerkin scheme is equivalent to B₂-convolution splines
- Shown (probably!): exact solutions of standard and modified B₁ variational formulation differ by O(h²). Approximate solutions are harder...
- B_4 -convolution spline looks similar to B_2 -Galerkin, but details are messy
- B₃-convolution spline? Fractional spline Galerkin? Petrov-Galerkin method??
- Petrov-Galerkin approach: [Elwin van 't Wout et al, 2016]

< ロ > < 同 > < 回 > < 回 >

Summary

• Volterra IEs: (cubic) convolution spline is stable and 4th order accurate for discontinuous kernel problems

イロト イヨト イヨト イヨト

Jan 2016

18 / 18

Summary

- Volterra IEs: (cubic) convolution spline is stable and 4th order accurate for discontinuous kernel problems
- Scattering from S: spherical harmonic decomposition with components related by

$$\frac{1}{2} \int_0^2 P_{\ell}(1-\tau^2/2) u_{\ell,m}(t-\tau) = -a_{\ell,m}^i(1,t)$$

(a)

18 / 18

Jan 2016

Summary

- Volterra IEs: (cubic) convolution spline is stable and 4th order accurate for discontinuous kernel problems
- Scattering from S: spherical harmonic decomposition with components related by

$$\frac{1}{2} \int_0^2 P_{\ell}(1-\tau^2/2) \ u_{\ell,m}(t-\tau) = -a_{\ell,m}^i(1,t)$$

• Scattering from Γ: strategy is to exploit connection between convolution spline and (modified) Galerkin to use Ha Duong stability analysis

< ロ > < 同 > < 回 > < 回 >