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Statement of the problem

Scattering with nonlinear impedance BC:

ütot
−∆utot

= 0 in Ω+
× (0,T ),

∂+ν u
tot

= g(u̇tot
) on Γ × (0,T )

utot
= uinc in Ω+

× {t ≤ 0}.

Ω-bounded Lipshitz domain

Γ = ∂Ω, Ω+ = Rd ∖Ω, ν- exterior normal

g(⋅) - given nonlinear function, e.g., g(x) = x + x ∣x ∣.

Incident wave uinc satisfies

üinc
−∆uinc

= 0 in Ω+
×R
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Motivation

Acoustic (nonlinear) boundary conditions [Beale, Rosencrans ’74, Graber

’12]

ü −∆u = 0 in Ω, t > 0,

u̇ +m(x)z̈ + f (x)ż + g(x)z = 0, on Γ, t > 0,

∂νu − g(u̇) + h(x)η(ż) = 0 on Γ, t > 0.

Scattering of EM waves by nonlinear coatings [Haddar, Joly ’01]
▸ Nonlinear system in a thin layer:

Ė −∇ ×H = 0, Ḣ + Ṁ +∇ × E = 0

with M linked to H through a ferromagnetic law.
▸ A nonlinear boundary condition obtained by a thin layer approximation.

Coupling with nonlinear circuits (see talk of Michielssen).
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Conditions on g

ütot
−∆utot

= 0 in Ω+
× (0,T ),

∂+ν u
tot

= g(u̇tot
) on Γ × (0,T )

Energy E(t) = 1
2∥u̇

tot∥2
L2(Ω+) +

1
2∥∇u

tot∥2
L2(Ω+) satisfies

E(t) = E(0) − ∫
t

0
⟨g(u̇tot

), u̇tot
⟩Γdτ.

Conditions on g ensuring well-posedness [Lasiecka, Tataru ’93, Graber ’12]

g ∈ C 1(R),

g(0) = 0,

g(s)s ≥ 0, ∀s ∈ R,

g ′(s) ≥ 0, ∀s ∈ R,

g satisfies the growth condition ∣g(s)∣ ≤ C(1 + ∣s ∣p), where

⎧⎪⎪
⎨
⎪⎪⎩

1 < p <∞ d = 2,

1 < p ≤ d
d−2 d ≥ 3.
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Semigroup setting

Definition

Let H be a Hilbert space, and A ∶ H → H be a (not necessary linear)
operator with domain domA. We call A maximally monotone if it
satisfies:

(i) (Ax −Ay , x − y)H ≤ 0 ∀x , y ∈ domA,

(ii) range (I −A) = H

Theorem (Komura-Kato)

Let A be a maximally monotone operator on a separable Hilbert space H
with domain dom(A) ⊂ H.
Then there exists unique solution u(t) ∈ dom(A) of

∂tu −Au = 0 u(0) = u0 ∈ dom(A)

and u is Lipschitz continuous on [0,+∞).
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Let ∆t > 0 and let ∂∆t
t u denote either 1st order (k = 1) or 2nd order

backward difference formula (k = 2).

Theorem ([Nevanlinna ’78])

There exists unique solution un∆t ∈ domA of

∂∆t
t u∆t −Au∆t = 0,

assuming for starting values uj = u(j∆t) for j ∈ 0, . . . k .

Further for N∆t ≤ T :

max
n=0,...,N

∥u(tn) − un∆t∥ ≤ C ∥Au0∥ [∆t +T 1/2
(∆t)1/2

+ (T +T 1/2
) (∆t)1/3

] .

For u ∈ Cp+1([0,T ],H), p – order of the multistep method,

max
n=0,...,N

∥u(tn) − un∆t∥ ≤ CT∆tp.
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Setting

We will use the exotic transmission problem setting of [Laliena, Sayas ’09].

Closed sub-spaces Xh ⊆ H−1/2(Γ), Yh ⊆ H1/2(Γ) (not necessarily finite
dimensional).

For Xh ⊆ X , the annihalator X ○
h ⊂ X ′ is defined as

X ○
h = {f ∈ X ′

∶ ⟨x , f ⟩Γ = 0 ∀x ∈ Xh}.
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Nonlinear semigroup setting
Setting v ∶= u̇ we get

(
u̇
v̇
) = (

v
∆u

) ,

Consider the operator

A ∶= (
0 I
∆ 0

) ,

dom(A) ∶= {(u, v) ∈ BL1
× L2

(Rd
) ∶ ∆u ∈ L2

(Rd
∖ Γ), v ∈Hh

J∂νuK ∈ Xh, ∂
+
n u − g(JγvK) ∈ Y ○

h },

where
Hh ∶= {u ∈ H1 (Rd

∖ Γ) ∶ JγuK ∈ Yh, γ
−u ∈ X ○

h}

and

BL1
∶= {u ∈ H1

loc(R
d
∖ Γ) ∶ ∥∇u∥L2(Rd∖Γ) <∞} / ker∇.
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Theorem

A is a maximally monotone operator on X , and generates a strongly
continuous semigroup which solves

(
u̇
v̇
) = A(

u
v
) , u(0) = u0, v(0) = v0.

Assume u0, v0 ∈Hh. Then, the solution satisfies:

(i) (u, v) ∈ domA and u(t) ∈Hh and v(t) ∈Hh for all t > 0.

(ii) u ∈ C 1,1 ([0,∞),H1(Rd ∖ Γ)),

(iii) u̇ ∈ L∞ ((0,∞),H1 (Rd ∖ Γ)),

(iv) ü ∈ L∞ ((0,∞),L2(Rd)).
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Boundary integral potentials and operators
With the Green’s function defined as (Re s > 0)

Φ(z ; s) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

i
4H
(1)
0 (is ∣z ∣) , for d = 2 ,

e−s∣z ∣
4π∣z ∣ , for d ≥ 3,

the single- and double-layer potentials:

(S(s)ϕ) (x) ∶= ∫
Γ

Φ(x − y ; s)u(y) dy

(D(s)ϕ) (x) ∶= ∫
Γ
∂ν(y)Φ(x − y ; s)u(y) dy .

and their traces

V (s) ∶ H−1/2
(Γ)→ H1/2

(Γ), V (s) ∶= γ±S(s),

K(s) ∶ H1/2
(Γ)→ H1/2

(Γ), K(s) ∶= {{γS(s)}} ,

K t
(s) ∶ H−1/2

(Γ)→ H−1/2
(Γ), K t

(s) ∶= {{∂νD(s)}} ,

W (s) ∶ H1/2
(Γ)→ H−1/2

(Γ), W (s) ∶= −∂±νD(s).
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Calderón operators

B(s) ∶= (
sV (s) K
−K t s−1W (s)

)

Bimp(s) ∶= B(s) + (
0 −1

2 I
1
2 I 0

) .

Lemma [LB, Lubich, Sayas ’15, Abboud et al ’11]

There exists a constant β > 0, depending only on Γ, such that

Re ⟨Bimp(s)(
ϕ
ψ
) ,(

ϕ
ψ
)⟩

Γ

≥ βmin(1, ∣s ∣2)
Re(s)

∣s ∣2
∣∣∣(ϕ,ψ)∣∣∣2Γ ,

where
∣∣∣(ϕ,ψ)∣∣∣2Γ ∶= ∥ϕ∥2

H−1/2(Γ) + ∥ψ∥2
H1/2(Γ) .
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Scattered field

Scattered field u = uscat = utot − uinc satisfies

ü −∆u = 0, in Ω+

∂+ν u = g(u̇ + u̇inc) − ∂+ν u
inc , on Γ

u(0) = u̇(0) = 0, in Ω+.

(1)

Boundary integral formulation

Bimp(∂t)(
ϕ
ψ
) + (

0
g(ψ + u̇inc)

) = (
0

−∂+ν u
inc) . (2)

(i) If u ∶= uscat solves (1), then (ϕ,ψ), with ϕ ∶= −∂+ν u and ψ ∶= γ+u̇,
solves (2).

(ii) If (ϕ,ψ) solves (2), then u ∶= S(∂t)ϕ + ∂
−1
t D(∂t)ψ solves (1).
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Time and space discretization

Closed sub-spaces Xh ⊆ H−1/2(Γ), Yh ⊆ H1/2(Γ) (not necessarily finite
dimensional).

JYh
Γ ∶ H1/2(Γ)→ Yh a stable operator, e.g., Scott-Zhang.

BDF1 or BDF2 based CQ with time-step ∆t > 0.

Fully discrete problem

For all n ∈ N, find (ϕn, ψn) ∈ Xh ×Yh such that:

⟨[Bimp(∂
∆t
t )(

ϕ
ψ
)]

n

,(
ξ
η
)⟩

Γ

+ ⟨g(ψ + JYh
Γ u̇inc), η⟩

Γ
= ⟨−∂+ν u

inc , η⟩
Γ

for all n ∈ N, (ξ, η) ∈ Xh ×Yh.

Solution in Ω+ given by representation formula

un ∶= [S(∂∆t
t )ϕ]

n
+ [(∂∆t

t )
−1D(∂∆t

t )ψ]
n
.
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Brief overview of basics of CQ

Discrete convolution

[Bimp(∂
∆t
t )(

ϕ
ψ
)]

n

=
n

∑
j=0

Bn−j (
ϕj

ψj
)

δ(z) generating function of BDF1 (δ(z) = 1 − z) or BDF2
(δ(z) = 1 − z + 1

2(1 − z)2)

Bimp (δ(z)/∆t) =
∞

∑
j=0

Bjz
j .

In particular B0 = Bimp(δ(0)/∆t) and hence

⟨B0 (
ϕ
ψ
) ,(

ϕ
ψ
)⟩

Γ

≥ β0∆t ∣∣∣(ϕ,ψ)∣∣∣2Γ

∂∆t
t u is the finite difference derivative, e.g., for BDF1

∂∆t
t u(tn) =

1
∆t (u(tn) − u(tn−1)).
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Proposition (Browder and Minty )

X a real separable and reflexive Banach space, A ∶ X → X ′ satisfies

A ∶ X → X ′ is continuous,

the set A(M) is bounded in X ′ for all bounded sets M ⊆ X ,

lim
∥u∥→∞

⟨A(u),u⟩X ′×X
∥u∥

=∞,

⟨A(u) −A(v),u − v⟩X ′×X ≥ 0 for all u, v ∈ X .

Then the variational equation

⟨A(u), v⟩X ′×X = ⟨f , v⟩X ′×X ∀v ∈ X

has at least one solution for all f ∈ X ′. If the operator is strongly
monotone, i.e.

⟨A(u) −A(v),u − v⟩X ′×X ≥ β ∥u − v∥2
X for all u, v ∈ X ,

then the solution is unique.
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Well-posedness of the discrete system

Theorem

The fully discrete system of equations has a unique solution in the space
Xh ×Yh for all n ∈ N.

Proof:

At each time-step we need to solve

⟨[B0 (
ϕn

ψ̃n)]

n

,(
ξ
η
)⟩

Γ

+ ⟨g(ψ̃n
), η⟩

Γ
= ⟨f n,(

ξ
η
)⟩

Γ

with f n ∶= −∂+ν u
inc

(tn) −
n−1

∑
j=0

Bn−j (
ϕj

ψj) +B0J
Yh
Γ u̇inc and

ψ̃n ∶= ψn + JYh
Γ uinc(tn).

Ellipticity of B0 and xg(x) ≥ 0 imply coercivity.
Strong monotonicity follows from

⟨g(η1) − g(η2), η1 − η2⟩Γ = ∫
Γ
g ′(s(x))(η1(x) − η2(x))

2 dx ≥ 0.

Boundedness follows from properties of Bj and assumptions on g .
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Equivalence of discretized PDE and BIE

Lemma

For all n ∈ N, find un∆t , v
n
∆t ∈Hh such that:

[∂∆t
t u∆t]

n
= vn∆t

[∂∆t
t v∆t]

n
= ∆un∆t

∂+ν u
n
∆t − g (Jγvn∆tK + JYh

Γ u̇inc(tn)) + ∂νu
inc

(tn) ∈ X
○
h ,

J∂νuK ∈ Xh.

(i) If the sequences ϕn, ψn solve the fully discrete BIE then

u∆t ∶= S(∂∆t
t )ϕ + (∂∆t

t )
−1

D(∂∆t
t )ψ and v∆t ∶= ∂

∆t
t u∆t solve the

above.

(ii) If u∆t ,v∆t solves the above, then ϕ ∶= −J∂νu∆tK, ψ ∶= Jγv∆tK solve
the fully discretized BIE.
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Convergence: time-discretization

Theorem

The discrete solutions, obtained by u∆t ∶= S(∂∆t
t )ϕ + (∂∆t

t )−1D(∂∆t
t )ψ

converge to the exact solution u, with the following rate:

max
n=0,...,N

∥u(tn) − un∆t∥ ≲ T (∆t)1/3.

If we assume, that the exact solution satisfies
(u, u̇) ∈ Cp+1 ([0,T ],BL1 × L2 (Rd ∖ Γ)), then

max
n=0,...,N

∥u(tn) − un∆t∥ ≲ T (∆t)p.
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Convergence results full discretization (low regularity)

With standard boundary element spaces Xh and Yh.

Theorem (low regularity)

For the fully discrete scheme, we have

u∆t + uinc ⇀ utot pointwise a.e. in (BL1
)

∂∆t
t u∆t + u̇inc ⇀ u̇tot pointwise a.e. in L2

(Rd
)

If aditionally g strictly monotone and ∣g(s)∣ ≲ ∣s ∣
d−1
d−2 for d ≥ 3

u∆t + uinc → utot in L∞ ((0,T );BL1)

∂∆t
t u∆t + u̇inc → u̇tot in L∞ ((0,T );L2

(Rd
)) .

with a rate in time of (∆t)1/3.
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Convergence results (higher regularity)

Assumptions (regularity)

Assume, that the exact solution of has the following regularity properties:

1 u ∈ C 2 ((0,T );H1
(Ω−

)),

2 u̇ ∈ C 2 ((0,T );L2
(Ω−

)),

3 γ+u, γ+u̇ ∈ L∞ ((0,T ),Hm(Γ)),

4 ∂+ν u, ∂
+
ν u̇ ∈ L

∞ ((0,T ),Hm−1(Γ)),

5 ü ∈ L∞ ((0,T ),Hm(Ω−)),

6 γ+u̇ ∈ L∞ ((0,T ),Hd−1(Γ)),

for some m ≥ 1/2.

Theorem (high regularity)

Optimal rates in both space and time for BDF1.
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Comments on implementation

Recursive, marching on in time implementation of CQ.

Newton iteration in each step, with solution at previous step as initial
guess.

In practice, only a few steps of Newton needed.

Main cost still the computation of history.

Implementation in BEM++.
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Setting

g(s) ∶= s + ∣s ∣ s

uinc(x , t) ∶= F (x − t) with F (s) ∶= − cos(ωs)e−(
s−A
σ
)

2

.

The parameters were ω ∶= π/2, σ = 0.5, A = 2.5.

27 / 32



Convergence

16 32 64 128

10−2

10−1

O(∆t2)

O(∆t)

T/∆t

er
ro

r

max
n∆t≤T

∥∥(∂∆t
t )−1ψn − ∂−1

t ψ(tn)
∥∥
H1/2

max
n∆t≤T

∥∥(∂∆t
t )−1ϕn − ∂−1

t ϕ(tn)
∥∥
H−1/2
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Space independent scattering by sphere: Exterior
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ψ
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Space independent scattering by sphere: Interior
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Conclusions

This talk:

A wave scattering problem with nonlinear damping.

Convergence analysis of full CQ/Galerkin in space discretization.

Future work:

More complex boundary conditions (DE on the boundary).

Higher-order CQ, i.e., Runge-Kutta.

Regularity of solution.
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