TDBIE treatment of the wave equation with a nonlinear impedance boundary condition

Lehel Banjai
Maxwell Institute for Mathematical Sciences
Heriot-Watt University, Edinburgh

> Banff, 19.1.2016

Joint work with: Alexander Rieder (TU Wien)

Outline

(1) Statement and motivation
(2) Domain setting and time-discretization
(3) Boundary integral formulation and its discretization
(4) Numerical experiments
(5) Conclusion

Outline

(1) Statement and motivation
(2) Domain setting and time-discretization
(3) Boundary integral formulation and its discretization

4 Numerical experiments
(5) Conclusion

Statement of the problem

Scattering with nonlinear impedance $B C$:

$$
\begin{aligned}
\ddot{u}^{\text {tot }}-\Delta u^{\text {tot }} & =0 & & \text { in } \Omega^{+} \times(0, T) \\
\partial_{\nu}^{+} u^{\text {tot }} & =g\left(\dot{u}^{\text {tot }}\right) & & \text { on } \Gamma \times(0, T) \\
u^{\text {tot }} & =u^{\text {inc }} & & \text { in } \Omega^{+} \times\{t \leq 0\} .
\end{aligned}
$$

- Ω-bounded Lipshitz domain
- $\Gamma=\partial \Omega, \Omega^{+}=\mathbb{R}^{d} \backslash \bar{\Omega}, \nu$ - exterior normal
- $g(\cdot)$ - given nonlinear function, e.g., $g(x)=x+x|x|$.
- Incident wave $u^{\text {inc }}$ satisfies

$$
\ddot{u}^{\text {inc }}-\Delta u^{\text {inc }}=0 \quad \text { in } \Omega^{+} \times \mathbb{R}
$$

Motivation

- Acoustic (nonlinear) boundary conditions [Beale, Rosencrans '74, Graber '12]

$$
\begin{array}{rlrl}
\ddot{u}-\Delta u & =0 & & \text { in } \Omega, t>0, \\
\dot{u}+m(x) \ddot{z}+f(x) \dot{z}+g(x) z=0, & & \text { on } \Gamma, t>0, \\
\partial_{\nu} u-g(\dot{u})+h(x) \eta(\dot{z})=0 & & \text { on } \Gamma, t>0 .
\end{array}
$$

Motivation

- Acoustic (nonlinear) boundary conditions [Beale, Rosencrans '74, Graber '12]

$$
\begin{array}{rlrl}
\ddot{u}-\Delta u & =0 & & \text { in } \Omega, t>0, \\
\dot{u}+m(x) \ddot{z}+f(x) \dot{z}+g(x) z=0, & & \text { on } \Gamma, t>0, \\
\partial_{\nu} u-g(\dot{u})+h(x) \eta(\dot{z})=0 & & \text { on } \Gamma, t>0 .
\end{array}
$$

- Scattering of EM waves by nonlinear coatings [Haddar, Joly '01]
- Nonlinear system in a thin layer:

$$
\dot{E}-\nabla \times H=0, \quad \dot{H}+\dot{M}+\nabla \times E=0
$$

with M linked to H through a ferromagnetic law.

- A nonlinear boundary condition obtained by a thin layer approximation.

Motivation

- Acoustic (nonlinear) boundary conditions [Beale, Rosencrans '74, Graber '12]

$$
\begin{aligned}
\ddot{u}-\Delta u & =0 & & \text { in } \Omega, t>0, \\
\dot{u}+m(x) \ddot{z}+f(x) \dot{z}+g(x) z & =0, & & \text { on } \Gamma, t>0, \\
\partial_{\nu} u-g(\dot{u})+h(x) \eta(\dot{z}) & =0 & & \text { on } \Gamma, t>0 .
\end{aligned}
$$

- Scattering of EM waves by nonlinear coatings [Haddar, Joly '01]
- Nonlinear system in a thin layer:

$$
\dot{E}-\nabla \times H=0, \quad \dot{H}+\dot{M}+\nabla \times E=0
$$

with M linked to H through a ferromagnetic law.

- A nonlinear boundary condition obtained by a thin layer approximation.
- Coupling with nonlinear circuits (see talk of Michielssen).

Conditions on g

$$
\begin{aligned}
\ddot{u}^{\text {tot }}-\Delta u^{\text {tot }} & =0 & & \text { in } \Omega^{+} \times(0, T), \\
\partial_{\nu}^{+} u^{\text {tot }} & =g\left(\dot{u}^{\text {tot }}\right) & & \text { on } \Gamma \times(0, T)
\end{aligned}
$$

Energy $E(t)=\frac{1}{2}\left\|\dot{u}^{\text {tot }}\right\|_{L^{2}\left(\Omega^{+}\right)}^{2}+\frac{1}{2}\left\|\nabla u^{\text {tot }}\right\|_{L^{2}\left(\Omega^{+}\right)}^{2}$ satisfies

$$
E(t)=E(0)-\int_{0}^{t}\left\langle g\left(\dot{u}^{\mathrm{tot}}\right), \dot{u}^{\mathrm{tot}}\right\rangle_{\Gamma} d \tau
$$

Conditions on g

$$
\begin{aligned}
\ddot{u}^{\text {tot }}-\Delta u^{\text {tot }} & =0 & & \text { in } \Omega^{+} \times(0, T) \\
\partial_{\nu}^{+} u^{\text {tot }} & =g\left(\dot{u}^{\text {tot }}\right) & & \text { on } \Gamma \times(0, T)
\end{aligned}
$$

Energy $E(t)=\frac{1}{2}\left\|\dot{u}^{\text {tot }}\right\|_{L^{2}\left(\Omega^{+}\right)}^{2}+\frac{1}{2}\left\|\nabla u^{\text {tot }}\right\|_{L^{2}\left(\Omega^{+}\right)}^{2}$ satisfies

$$
E(t)=E(0)-\int_{0}^{t}\left\langle g\left(\dot{u}^{\mathrm{tot}}\right), \dot{u}^{\mathrm{tot}}\right\rangle_{\Gamma} d \tau
$$

Conditions on g ensuring well-posedness [Lasiecka, Tataru '93, Graber '12]

- $g \in C^{1}(\mathbb{R})$,
- $g(0)=0$,
- $g(s) s \geq 0, \forall s \in \mathbb{R}$,
- $g^{\prime}(s) \geq 0, \forall s \in \mathbb{R}$,
- g satisfies the growth condition $|g(s)| \leq C\left(1+|s|^{p}\right)$, where

$$
\begin{cases}1<p<\infty & d=2 \\ 1<p \leq \frac{d}{d-2} & d \geq 3\end{cases}
$$

Outline

(1) Statement and motivation

(2) Domain setting and time-discretization
(3) Boundary integral formulation and its discretization

4 Numerical experiments
(5) Conclusion

Semigroup setting

Definition

Let H be a Hilbert space, and $\mathcal{A}: H \rightarrow H$ be a (not necessary linear) operator with domain $\operatorname{dom} \mathcal{A}$. We call \mathcal{A} maximally monotone if it satisfies:
(i) $(\mathcal{A} x-\mathcal{A} y, x-y)_{H} \leq 0 \quad \forall x, y \in \operatorname{dom} \mathcal{A}$,
(ii) $\operatorname{range}(I-\mathcal{A})=H$

Theorem (Komura-Kato)

Let \mathcal{A} be a maximally monotone operator on a separable Hilbert space H with domain $\operatorname{dom}(\mathcal{A}) \subset H$.
Then there exists unique solution $u(t) \in \operatorname{dom}(\mathcal{A})$ of

$$
\partial_{t} u-\mathcal{A} u=0 \quad u(0)=u_{0} \in \operatorname{dom}(\mathcal{A})
$$

and u is Lipschitz continuous on $[0,+\infty)$.

Let $\Delta t>0$ and let $\partial_{t}^{\Delta t} u$ denote either 1st order $(k=1)$ or 2 nd order backward difference formula $(k=2)$.

Let $\Delta t>0$ and let $\partial_{t}^{\Delta t} u$ denote either 1st order $(k=1)$ or 2 nd order backward difference formula $(k=2)$.

Theorem ([Nevanlinna '78])
There exists unique solution $u_{\Delta t}^{n} \in \operatorname{dom} \mathcal{A}$ of

$$
\partial_{t}^{\Delta t} u_{\Delta t}-\mathcal{A} u_{\Delta t}=0,
$$

assuming for starting values $u_{j}=u(j \Delta t)$ for $j \in 0, \ldots k$.
Further for $N \Delta t \leq T$:
$\max _{n=0, \ldots, N}\left\|u\left(t_{n}\right)-u_{\Delta t}^{n}\right\| \leq C\left\|\mathcal{A} u_{0}\right\|\left[\Delta t+T^{1 / 2}(\Delta t)^{1 / 2}+\left(T+T^{1 / 2}\right)(\Delta t)^{1 / 3}\right]$.
For $u \in C^{p+1}([0, T], H), p$ - order of the multistep method,

$$
\max _{n=0, \ldots, N}\left\|u\left(t_{n}\right)-u_{\Delta t}^{n}\right\| \leq C T \Delta t^{p} .
$$

Setting

We will use the exotic transmission problem setting of [Laliena, Sayas '09].

- Closed sub-spaces $X_{h} \subseteq H^{-1 / 2}(\Gamma), Y_{h} \subseteq H^{1 / 2}(\Gamma)$ (not necessarily finite dimensional).
- For $X_{h} \subseteq X$, the annihalator $X_{h}^{\circ} \subset X^{\prime}$ is defined as

$$
X_{h}^{\circ}=\left\{f \in X^{\prime}:\langle x, f\rangle_{\Gamma}=0 \forall x \in X_{h}\right\} .
$$

Nonlinear semigroup setting

Setting $v:=\dot{u}$ we get

$$
\binom{\dot{u}}{\dot{v}}=\binom{v}{\Delta u},
$$

Consider the operator

$$
\mathcal{A}:=\left(\begin{array}{ll}
0 & I \\
\Delta & 0
\end{array}\right),
$$

$$
\begin{aligned}
\operatorname{dom}(\mathcal{A}):= & \left\{(u, v) \in B L^{1} \times L^{2}\left(\mathbb{R}^{d}\right): \Delta u \in L^{2}\left(\mathbb{R}^{d} \backslash \Gamma\right), v \in \mathcal{H}_{h}\right. \\
& \left.\llbracket \partial_{\nu} u \rrbracket \in X_{h}, \partial_{n}^{+} u-g(\llbracket \gamma v \rrbracket) \in Y_{h}^{\circ}\right\},
\end{aligned}
$$

where

$$
\mathcal{H}_{h}:=\left\{u \in H^{1}\left(\mathbb{R}^{d} \backslash \Gamma\right): \llbracket \gamma u \rrbracket \in Y_{h}, \gamma^{-} u \in X_{h}^{\circ}\right\}
$$

and

$$
B L^{1}:=\left\{u \in H_{l o c}^{1}\left(\mathbb{R}^{d} \backslash \Gamma\right):\|\nabla u\|_{L^{2}\left(\mathbb{R}^{d} \backslash \Gamma\right)}<\infty\right\} / \operatorname{ker} \nabla .
$$

Theorem

\mathcal{A} is a maximally monotone operator on \mathcal{X}, and generates a strongly continuous semigroup which solves

$$
\binom{\dot{u}}{\dot{v}}=\mathcal{A}\binom{u}{v}, \quad u(0)=u_{0}, v(0)=v_{0} .
$$

Assume $u_{0}, v_{0} \in \mathcal{H}_{h}$. Then, the solution satisfies:
(i) $(u, v) \in \operatorname{dom} \mathcal{A}$ and $u(t) \in \mathcal{H}_{h}$ and $v(t) \in \mathcal{H}_{h}$ for all $t>0$.
(ii) $u \in C^{1,1}\left([0, \infty), H^{1}\left(\mathbb{R}^{d} \backslash \Gamma\right)\right)$,
(iii) $\dot{u} \in L^{\infty}\left((0, \infty), H^{1}\left(\mathbb{R}^{d} \backslash \Gamma\right)\right)$,
(iv) $\ddot{u} \in L^{\infty}\left((0, \infty), L^{2}\left(\mathbb{R}^{d}\right)\right)$.

Outline

(1) Statement and motivation

(2) Domain setting and time-discretization
(3) Boundary integral formulation and its discretization

4 Numerical experiments
(5) Conclusion

Boundary integral potentials and operators

With the Green's function defined as $(\operatorname{Re} s>0)$

$$
\Phi(z ; s):= \begin{cases}\frac{i}{4} H_{0}^{(1)}(i s|z|), & \text { for } d=2 \\ \frac{e^{-s|z|}}{4 \pi|z|}, & \text { for } d \geq 3\end{cases}
$$

the single- and double-layer potentials:

$$
\begin{array}{r}
(S(s) \varphi)(x):=\int_{\Gamma} \Phi(x-y ; s) u(y) d y \\
(D(s) \varphi)(x):=\int_{\Gamma} \partial_{\nu(y)} \Phi(x-y ; s) u(y) d y .
\end{array}
$$

and their traces

$$
\begin{array}{rlrl}
V(s) & : H^{-1 / 2}(\Gamma) \rightarrow H^{1 / 2}(\Gamma), & V(s):=\gamma^{ \pm} S(s), \\
K(s) & : H^{1 / 2}(\Gamma) \rightarrow H^{1 / 2}(\Gamma), & K(s):=\{\{\gamma S(s)\}\}, \\
K^{t}(s): H^{-1 / 2}(\Gamma) \rightarrow H^{-1 / 2}(\Gamma), & K^{t}(s):=\left\{\left\{\partial_{\nu} D(s)\right\}\right\}, \\
W(s): H^{1 / 2}(\Gamma) \rightarrow H^{-1 / 2}(\Gamma), & W(s):=-\partial_{\nu}^{ \pm} D(s) .
\end{array}
$$

Calderón operators

$$
\begin{aligned}
B(s) & :=\left(\begin{array}{cc}
s V(s) & K \\
-K^{t} & s^{-1} W(s)
\end{array}\right) \\
B_{\text {imp }}(s) & :=B(s)+\left(\begin{array}{cc}
0 & -\frac{1}{2} I \\
\frac{1}{2} I & 0
\end{array}\right) .
\end{aligned}
$$

Lemma [LB, Lubich, Sayas '15, Abboud et al '11]
There exists a constant $\beta>0$, depending only on Γ, such that

$$
\operatorname{Re}\left\langle B_{\operatorname{imp}}(s)\binom{\varphi}{\psi},\left.\binom{\varphi}{\psi}\right|_{\Gamma} \geq \beta \min \left(1,|s|^{2}\right) \frac{\operatorname{Re}(s)}{|s|^{2}}\|(\varphi, \psi)\|_{\Gamma}^{2},\right.
$$

where

$$
\|(\varphi, \psi)\|_{\Gamma}^{2}:=\|\varphi\|_{H^{-1 / 2}(\Gamma)}^{2}+\|\psi\|_{H^{1 / 2}(\Gamma)}^{2} .
$$

Scattered field

Scattered field $u=u^{\text {scat }}=u^{\text {tot }}-u^{\text {inc }}$ satisfies

$$
\begin{align*}
\ddot{u}-\Delta u & =0, \quad \text { in } \Omega^{+} \\
\partial_{\nu}^{+} u & =g\left(\dot{u}+\dot{u}^{\text {inc }}\right)-\partial_{\nu}^{+} u^{i n c}, \quad \text { on } \Gamma \tag{1}\\
u(0) & =\dot{u}(0)=0, \quad \text { in } \Omega^{+} .
\end{align*}
$$

Boundary integral formulation

$$
\begin{equation*}
B_{\mathrm{imp}}\left(\partial_{t}\right)\binom{\varphi}{\psi}+\binom{0}{g\left(\psi+\dot{u}^{i n c}\right)}=\binom{0}{-\partial_{\nu}^{+} u^{i n c}} . \tag{2}
\end{equation*}
$$

(i) If $u:=u^{\text {scat }}$ solves (1), then (φ, ψ), with $\varphi:=-\partial_{\nu}^{+} u$ and $\psi:=\gamma^{+} \dot{u}$, solves (2).
(ii) If (φ, ψ) solves (2), then $u:=S\left(\partial_{t}\right) \varphi+\partial_{t}^{-1} D\left(\partial_{t}\right) \psi$ solves (1).

Time and space discretization

- Closed sub-spaces $X_{h} \subseteq H^{-1 / 2}(\Gamma), Y_{h} \subseteq H^{1 / 2}(\Gamma)$ (not necessarily finite dimensional).
- $J_{\Gamma}^{Y_{h}}: H^{1 / 2}(\Gamma) \rightarrow Y_{h}$ a stable operator, e.g., Scott-Zhang.
- BDF1 or BDF2 based CQ with time-step $\Delta t>0$.

Fully discrete problem

For all $n \in \mathbb{N}$, find $\left(\varphi^{n}, \psi^{n}\right) \in X_{h} \times Y_{h}$ such that:

$$
\left\langle\left[B_{\mathrm{imp}}\left(\partial_{t}^{\Delta t}\right)\binom{\varphi}{\psi}\right]^{n},\left.\binom{\xi}{\eta}\right|_{\Gamma}+\left\langle g\left(\psi+J_{\Gamma}^{Y_{t}} \dot{u}^{i n c}\right), \eta\right)_{\Gamma}=\left\langle-\partial_{\nu}^{+} u^{i n c}, \eta\right\rangle_{\Gamma}\right.
$$

for all $n \in \mathbb{N},(\xi, \eta) \in X_{h} \times Y_{h}$.

Solution in Ω^{+}given by representation formula

$$
u^{n}:=\left[S\left(\partial_{t}^{\Delta t}\right) \varphi\right]^{n}+\left[\left(\partial_{t}^{\Delta t}\right)^{-1} D\left(\partial_{t}^{\Delta t}\right) \psi\right]^{n}
$$

Brief overview of basics of CQ

- Discrete convolution

$$
\left[B_{\mathrm{imp}}\left(\partial_{t}^{\Delta t}\right)\binom{\varphi}{\psi}\right]^{n}=\sum_{j=0}^{n} B_{n-j}\binom{\varphi_{j}}{\psi_{j}}
$$

- $\delta(z)$ generating function of BDF1 $(\delta(z)=1-z)$ or BDF2 $\left(\delta(z)=1-z+\frac{1}{2}(1-z)^{2}\right)$

$$
B_{\mathrm{imp}}(\delta(z) / \Delta t)=\sum_{j=0}^{\infty} B_{j} z^{j}
$$

- In particular $B_{0}=B_{\text {imp }}(\delta(0) / \Delta t)$ and hence

$$
\left\langle B_{0}\binom{\varphi}{\psi},\left.\binom{\varphi}{\psi}\right|_{\Gamma} \geq \beta_{0} \Delta t\|(\varphi, \psi)\|_{\Gamma}^{2}\right.
$$

- $\partial_{t}^{\Delta t} u$ is the finite difference derivative, e.g., for BDF1

$$
\partial_{t}^{\Delta t} u\left(t_{n}\right)=\frac{1}{\Delta t}\left(u\left(t_{n}\right)-u\left(t_{n-1}\right)\right)
$$

Proposition (Browder and Minty)

X a real separable and reflexive Banach space, $A: X \rightarrow X^{\prime}$ satisfies

- $A: X \rightarrow X^{\prime}$ is continuous,
- the set $A(M)$ is bounded in X^{\prime} for all bounded sets $M \subseteq X$,
- $\lim _{\|u\| \rightarrow \infty} \frac{\langle A(u), u\rangle_{X^{\prime} \times X}}{\|u\|}=\infty$,
- $\langle A(u)-A(v), u-v\rangle_{X^{\prime} \times X} \geq 0$ for all $u, v \in X$.

Then the variational equation

$$
\langle A(u), v\rangle_{X^{\prime} \times X}=\langle f, v\rangle_{X^{\prime} \times X} \quad \forall v \in X
$$

has at least one solution for all $f \in X^{\prime}$. If the operator is strongly monotone, i.e.

$$
\langle A(u)-A(v), u-v\rangle_{X^{\prime} \times X} \geq \beta\|u-v\|_{X}^{2} \quad \text { for all } u, v \in X
$$

then the solution is unique.

Well-posedness of the discrete system

Theorem

The fully discrete system of equations has a unique solution in the space $X_{h} \times Y_{h}$ for all $n \in \mathbb{N}$.

Proof:

- At each time-step we need to solve

$$
\left\langle\left[B_{0}\binom{\varphi^{n}}{\widetilde{\psi}^{n}}\right]^{n},\left.\binom{\xi}{\eta}\right|_{\Gamma}+\left\langle g\left(\widetilde{\psi}^{n}\right), \eta\right\rangle_{\Gamma}=\left\langle f^{n},\left.\binom{\xi}{\eta}\right|_{\Gamma}\right.\right.
$$

with $f^{n}:=-\partial_{\nu}^{+} u^{i n c}\left(t_{n}\right)-\sum_{j=0}^{n-1} B_{n-j}\binom{\varphi^{j}}{\psi^{j}}+B_{0} J_{\Gamma}^{Y_{h}} \dot{u}^{i n c}$ and
$\widetilde{\psi}^{n}:=\psi^{n}+J_{\Gamma}^{Y_{h}} u^{i n c}\left(t_{n}\right)$.

- Ellipticity of B_{0} and $x g(x) \geq 0$ imply coercivity.
- Strong monotonicity follows from

$$
\left\langle g\left(\eta_{1}\right)-g\left(\eta_{2}\right), \eta_{1}-\eta_{2}\right\rangle_{\Gamma}=\int_{\Gamma} g^{\prime}(s(x))\left(\eta_{1}(x)-\eta_{2}(x)\right)^{2} d x \geq 0
$$

- Boundedness follows from properties of B_{j} and assumptions on g.

Equivalence of discretized PDE and BIE

Lemma

For all $n \in \mathbb{N}$, find $u_{\Delta t}^{n}, v_{\Delta t}^{n} \in \mathcal{H}_{h}$ such that:

$$
\begin{aligned}
{\left[\partial_{t}^{\Delta t} u_{\Delta t}\right]^{n} } & =v_{\Delta t}^{n} \\
{\left[\partial_{t}^{\Delta t} v_{\Delta t}\right]^{n} } & =\Delta u_{\Delta t}^{n} \\
\partial_{\nu}^{+} u_{\Delta t}^{n}-g\left(\llbracket \gamma v_{\Delta t}^{n} \rrbracket+J_{\Gamma}^{Y_{h}} \dot{u}^{i n c}\left(t_{n}\right)\right) & +\partial_{\nu} u^{i n c}\left(t_{n}\right) \in X_{h}^{\circ}, \\
\llbracket \partial_{\nu} u \rrbracket & \in X_{h} .
\end{aligned}
$$

(i) If the sequences φ^{n}, ψ^{n} solve the fully discrete BIE then $u_{\Delta t}:=S\left(\partial_{t}^{\Delta t}\right) \varphi+\left(\partial_{t}^{\Delta t}\right)^{-1} D\left(\partial_{t}^{\Delta t}\right) \psi$ and $v_{\Delta t}:=\partial_{t}^{\Delta t} u_{\Delta t}$ solve the above.
(ii) If $u_{\Delta t}, v_{\Delta t}$ solves the above, then $\varphi:=-\llbracket \partial_{\nu} u_{\Delta t} \rrbracket, \psi:=\llbracket \gamma v_{\Delta t} \rrbracket$ solve the fully discretized BIE.

Convergence: time-discretization

Theorem

The discrete solutions, obtained by $u_{\Delta t}:=S\left(\partial_{t}^{\Delta t}\right) \varphi+\left(\partial_{t}^{\Delta t}\right)^{-1} D\left(\partial_{t}^{\Delta t}\right) \psi$ converge to the exact solution u, with the following rate:

$$
\max _{n=0, \ldots, N}\left\|u\left(t_{n}\right)-u_{\Delta t}^{n}\right\| \lesssim T(\Delta t)^{1 / 3} .
$$

If we assume, that the exact solution satisfies $(u, \dot{u}) \in C^{p+1}\left([0, T], B L^{1} \times L^{2}\left(\mathbb{R}^{d} \backslash \Gamma\right)\right)$, then

$$
\max _{n=0, \ldots, N}\left\|u\left(t_{n}\right)-u_{\Delta t}^{n}\right\| \lesssim T(\Delta t)^{p} .
$$

Convergence results full discretization (low regularity)

With standard boundary element spaces X_{h} and Y_{h}.

Theorem (low regularity)

For the fully discrete scheme, we have

$$
\begin{array}{cl}
u_{\Delta t}+u^{\text {inc }} \rightharpoonup u^{\text {tot }} & \text { pointwise a.e. in }\left(B L^{1}\right) \\
\partial_{t}^{\Delta t} u_{\Delta t}+\dot{u}^{\text {inc }} \rightharpoonup \dot{u}^{\text {tot }} & \text { pointwise a.e. in } L^{2}\left(\mathbb{R}^{d}\right)
\end{array}
$$

If aditionally g strictly monotone and $|g(s)| \lesssim|s|^{\frac{d-1}{d-2}}$ for $d \geq 3$

$$
\begin{gathered}
u_{\Delta t}+u^{\text {inc }} \rightarrow u^{\text {tot }} \quad \text { in } L^{\infty}\left((0, T) ; B L^{1}\right) \\
\partial_{t}^{\Delta t} u_{\Delta t}+\dot{u}^{\text {inc }} \rightarrow \dot{u}^{\text {tot }} \quad \text { in } L^{\infty}\left((0, T) ; L^{2}\left(\mathbb{R}^{d}\right)\right) .
\end{gathered}
$$

with a rate in time of $(\Delta t)^{1 / 3}$.

Convergence results (higher regularity)

Assumptions (regularity)

Assume, that the exact solution of has the following regularity properties:
(1) $u \in C^{2}\left((0, T) ; H^{1}\left(\Omega^{-}\right)\right)$,
(2) $\dot{u} \in C^{2}\left((0, T) ; L^{2}\left(\Omega^{-}\right)\right)$,

- $\gamma^{+} u, \gamma^{+} \dot{u} \in L^{\infty}\left((0, T), H^{m}(\Gamma)\right)$,
- $\partial_{\nu}^{+} u, \partial_{\nu}^{+} \dot{u} \in L^{\infty}\left((0, T), H^{m-1}(\Gamma)\right)$,
- $\ddot{u} \in L^{\infty}\left((0, T), H^{m}\left(\Omega^{-}\right)\right)$,
- $\gamma^{+} \dot{u} \in L^{\infty}\left((0, T), H^{d-1}(\Gamma)\right)$,
for some $m \geq 1 / 2$.

Convergence results (higher regularity)

Assumptions (regularity)

Assume, that the exact solution of has the following regularity properties:
(1) $u \in C^{2}\left((0, T) ; H^{1}\left(\Omega^{-}\right)\right)$,
(2) $\dot{u} \in C^{2}\left((0, T) ; L^{2}\left(\Omega^{-}\right)\right)$,

- $\gamma^{+} u, \gamma^{+} \dot{u} \in L^{\infty}\left((0, T), H^{m}(\Gamma)\right)$,
- $\partial_{\nu}^{+} u, \partial_{\nu}^{+} \dot{u} \in L^{\infty}\left((0, T), H^{m-1}(\Gamma)\right)$,
- $\ddot{u} \in L^{\infty}\left((0, T), H^{m}\left(\Omega^{-}\right)\right)$,
- $\gamma^{+} \dot{u} \in L^{\infty}\left((0, T), H^{d-1}(\Gamma)\right)$,
for some $m \geq 1 / 2$.
Theorem (high regularity)
Optimal rates in both space and time for BDF1.

Outline

(1) Statement and motivation

(2) Domain setting and time-discretization
(3) Boundary integral formulation and its discretization
(4) Numerical experiments
(5) Conclusion

Comments on implementation

- Recursive, marching on in time implementation of CQ.
- Newton iteration in each step, with solution at previous step as initial guess.
- In practice, only a few steps of Newton needed.
- Main cost still the computation of history.
- Implementation in BEM++.

Setting

- $g(s):=s+|s| s$
- $u^{\text {inc }}(x, t):=F(x-t)$ with $F(s):=-\cos (\omega s) e^{-\left(\frac{s-A}{\sigma}\right)^{2}}$.
- The parameters were $\omega:=\pi / 2, \sigma=0.5, A=2.5$.

Convergence

$$
\begin{aligned}
& \square \max _{n \Delta t \leq T}\left\|\left(\partial_{t}^{\Delta t}\right)^{-1} \psi^{n}-\partial_{t}^{-1} \psi\left(t_{n}\right)\right\|_{H^{1 / 2}} \\
& -\max _{n \Delta t<T}\left\|\left(\partial_{t}^{\Delta t}\right)^{-1} \varphi^{n}-\partial_{t}^{-1} \varphi\left(t_{n}\right)\right\|_{H^{-1 / 2}}
\end{aligned}
$$

Space independent scattering by sphere: Exterior

Space independent scattering by sphere: Interior

Outline

(1) Statement and motivation
(2) Domain setting and time-discretization
(3) Boundary integral formulation and its discretization

4 Numerical experiments
(5) Conclusion

Conclusions

This talk:

- A wave scattering problem with nonlinear damping.
- Convergence analysis of full CQ/Galerkin in space discretization.

Future work:

- More complex boundary conditions (DE on the boundary).
- Higher-order CQ, i.e., Runge-Kutta.
- Regularity of solution.

