INFLUENCE OF SEVERAL PARAMETERS ON THE ACCURACY OF A Convolution Quadrature method

T. Betcke ${ }^{\ddagger} \quad$ N. Salles ${ }^{\dagger}$
\dagger ENSTA-ParisTech Université Paris Saclay
\ddagger University College London

21th January 2016

We study a Z-transform based Convolution Quadrature method to solve the Wave equation:

$$
\left\{\begin{array}{l}
\frac{\partial^{2} u(t ; x)}{\partial t^{2}}-c^{2} \Delta u(t ; x)=0, \quad(t, x) \in[0, T] \times \Omega_{e} \\
u(0 ; x)=\frac{\partial u(0 ; x)}{\partial t}=0 \\
u(t ; x)=g(t ; x), \quad(t, x) \in[0, T] \times \Gamma
\end{array}\right.
$$

(1) We will show that this CQ method has
in addition to
the usual errors (time-discretisation scheme, spatial discretisation
(2) One comes from the boundary conditions of the frequency problems that are not well approximated using a truncated series instead of the infinite sum
(3) Another comes from the
integral) when coming back in time.
(4) By introducing N_{f}, and N_{z} two new parameters, it is possible to achieve

We study a Z-transform based Convolution Quadrature method to solve the Wave equation:

$$
\left\{\begin{array}{l}
\frac{\partial^{2} u(t ; x)}{\partial t^{2}}-c^{2} \Delta u(t ; x)=0, \quad(t, x) \in[0, T] \times \Omega_{e} \\
u(0 ; x)=\frac{\partial u(0 ; x)}{\partial t}=0 \\
u(t ; x)=g(t ; x), \quad(t, x) \in[0, T] \times \Gamma
\end{array}\right.
$$

(1) We will show that this CQ method has two inherent possible errors in addition to the usual errors (time-discretisation scheme, spatial discretisation ...)
(2) One comes from the boundary conditions of the frequency problems that are not well approximated using a truncated series instead of the infinite sum
(3) Another comes from the
integral) when coming back in time.
(By introducing N_{f}, and N_{z} two new parameters, it is possible to achieve

We study a Z-transform based Convolution Quadrature method to solve the Wave equation:

$$
\left\{\begin{array}{l}
\frac{\partial^{2} u(t ; x)}{\partial t^{2}}-c^{2} \Delta u(t ; x)=0, \quad(t, x) \in[0, T] \times \Omega_{e} \\
u(0 ; x)=\frac{\partial u(0 ; x)}{\partial t}=0 \\
u(t ; x)=g(t ; x), \quad(t, x) \in[0, T] \times \Gamma
\end{array}\right.
$$

(1) We will show that this CQ method has two inherent possible errors in addition to the usual errors (time-discretisation scheme, spatial discretisation ...)
(2) One comes from the boundary conditions of the frequency problems that are not well approximated using a truncated series instead of the infinite sum (bad approximation of the Z-transform)
(3) Another comes from the bad approximation of the inverse Z-transform (contour integral) when coming back in time.
(4) By introducing N_{f}, and N_{z} two new parameters, it is possible to achieve

We study a Z-transform based Convolution Quadrature method to solve the Wave equation:

$$
\left\{\begin{array}{l}
\frac{\partial^{2} u(t ; x)}{\partial t^{2}}-c^{2} \Delta u(t ; x)=0, \quad(t, x) \in[0, T] \times \Omega_{e} \\
u(0 ; x)=\frac{\partial u(0 ; x)}{\partial t}=0 \\
u(t ; x)=g(t ; x), \quad(t, x) \in[0, T] \times \Gamma
\end{array}\right.
$$

(1) We will show that this CQ method has two inherent possible errors in addition to the usual errors (time-discretisation scheme, spatial discretisation ...)
(2) One comes from the boundary conditions of the frequency problems that are not well approximated using a truncated series instead of the infinite sum (bad approximation of the Z-transform)
(3) Another comes from the bad approximation of the inverse Z-transform (contour integral) when coming back in time.
(4) By introducing $\boldsymbol{N}_{\boldsymbol{f}}$, and $\boldsymbol{N}_{\boldsymbol{z}}$ two new parameters, it is possible to achieve better accuracy.
(1) The Z-Transform based CQ
(2) Errors from the Z-transform based CQ
(3) Approximation error of the inverse Z-transform

44 Approximation error of the Z-transform
(1) The Z-Transform based CQ

(2) Errors from the Z-transform based CQ

3 Approximation error of the inverse Z-transform
4. Approximation error of the Z-transform

- You want to solve a time-domain problem for yesterday?
- You have an existing frequency code?
- You have a lot of computer nodes so you would like to get a "fast" method easily?
\Longrightarrow This Z-transform based CQ method can be really interesting!
- You want to solve a time-domain problem for yesterday?
- You have an existing frequency code?
- You have a lot of computer nodes so you would like to get a "fast" method easily?
\Longrightarrow This Z-transform based CQ method can be really interesting!
In 1 or 2 days you can solve your first time-domain problem with your frequency code.

1) Rewrite problem as a first order system

$$
\begin{cases}\frac{1}{c} \frac{\partial}{\partial t} v(t ; x) & =M v(t ; x),(t ; x) \in[0, T] \times \Omega_{e} \\ v(0 ; x) & =0, \forall x \in \Omega_{e} \\ B v(t ; x) & =F(t ; x),(t ; x) \in[0, T] \times \Gamma\end{cases}
$$

with $v=\left(u, \frac{1}{c} \partial_{t} u\right)^{\top}, M=\left(\begin{array}{cc}0 & 1 \\ \Delta_{x} & 0\end{array}\right), B=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ and $F(x, t)=(g(x, t), 0)^{\top}$.
2) Apply a multistep scheme

$$
\begin{aligned}
& \frac{1}{c \Delta t} \sum_{j \leq n} \gamma_{n-j} v_{d}\left(t_{j} ; x\right)=M v_{d}\left(t_{n} ; x\right), \text { for } n=1,2, \ldots \\
& \text { with } \gamma_{0}=1, \gamma_{1}=-1(\text { Backward Euler }) \\
& \text { or } \gamma_{0}=3 / 2, \gamma_{1}=-2, \gamma_{1}=1 / 2(\text { BDF- } 2), \text { and } t_{j}=j \Delta t
\end{aligned}
$$

The Z-transform maps a sequence given at time steps $u\left(t_{n} ; x\right), n=1, \ldots$ and $t_{n}=n \Delta t$, to a function in the frequency domain $U(z ; x)$

Z-transform and its inverse

Definitions

$$
\begin{aligned}
\mathcal{Z}[g](z ; x) & =\sum_{n=0}^{\infty} g\left(t_{n} ; x\right) z^{n} \\
\mathcal{Z}^{-1}[G]\left(t_{n} ; x\right) & =\frac{1}{2 \pi i} \int_{|z|=\lambda} \frac{G(z ; x)}{z^{n+1}} d z
\end{aligned}
$$

The Z-transform maps a sequence given at time steps $u\left(t_{n} ; x\right), n=1, \ldots$ and $t_{n}=n \Delta t$, to a function in the frequency domain $U(z ; x)$

Z-transform and its inverse

Definitions

$$
\begin{aligned}
\mathcal{Z}[g](z ; x) & =\sum_{n=0}^{\infty} g\left(t_{n} ; x\right) z^{n} \\
\mathcal{Z}^{-1}[G]\left(t_{n} ; x\right) & =\frac{1}{2 \pi i} \int_{|z|=\lambda} \frac{G(z ; x)}{z^{n+1}} d z
\end{aligned}
$$

In practice

$$
\begin{aligned}
\widetilde{\mathcal{Z}}_{N_{z}}[g](z ; x) & =\sum_{n=0}^{N_{z}} g\left(t_{n} ; x\right) z^{n} \\
\widetilde{\mathcal{Z}}_{N_{f}}^{-1}[G]\left(t_{n} ; x\right) & =\frac{\lambda^{-n}}{N_{f}} \sum_{\ell=1}^{N_{f}} G\left(\lambda z_{\ell} ; x\right) z_{\ell}^{-n}
\end{aligned}
$$

3) Apply the Z-transform

$$
\sum_{n=0}^{\infty} \frac{1}{c \Delta t} \sum_{j \leq n} \gamma_{n-j} v_{d}\left(t_{j} ; x\right) z^{n}=M \sum_{n=0}^{\infty} v_{d}\left(t_{n} ; x\right) z^{n}
$$

3) Apply the Z-transform

$$
\begin{gathered}
\sum_{n=0}^{\infty} \frac{1}{c \Delta t} \sum_{j \leq n} \gamma_{n-j} v_{d}(t ; x) z^{n}=M \sum_{n=0}^{\infty} v_{d}\left(t_{n} ; x\right) z^{n} \\
\Rightarrow \gamma(z) V_{d}(\boldsymbol{z} ; x)=M V_{d}(\boldsymbol{z} ; x)
\end{gathered}
$$

with $\gamma(\boldsymbol{z})=\sum_{n \geq 0} \gamma_{n} \boldsymbol{z}^{n}$ and $V_{d}(\boldsymbol{z} ; x)=\sum_{n \geq 0} V_{d}\left(t_{n} ; x\right) \boldsymbol{z}^{n}$.

3) Apply the Z-transform

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{1}{c \Delta t} \sum_{j \leq n} \gamma_{n-j} v_{d}(t ; x) z^{n} & =M \sum_{n=0}^{\infty} v_{d}\left(t_{n} ; x\right) z^{n} \\
\Rightarrow \gamma(z) V_{d}(\boldsymbol{z} ; x) & =M V_{d}(\boldsymbol{z} ; x)
\end{aligned}
$$

with $\gamma(\boldsymbol{z})=\sum_{n \geq 0} \gamma_{n} \boldsymbol{z}^{n}$ and $V_{d}(\boldsymbol{z} ; x)=\sum_{n \geq 0} v_{d}\left(t_{n} ; x\right) \boldsymbol{z}^{n}$.
4) We get the Laplace-domain problem (modified Helmholtz equation)

$$
\left\{\begin{array}{l}
\left(\frac{\gamma(\boldsymbol{z})}{c \Delta t}\right)^{2} U_{d}(\boldsymbol{z} ; x)-\Delta U_{d}(\boldsymbol{z} ; x)=0, \quad x \in \Omega_{e}, \\
U_{d}(\boldsymbol{z} ; x)=G(\boldsymbol{z} ; x), \quad x \in \Gamma, \\
\text { + Outgoing Boundary Condition }
\end{array}\right.
$$

Multistep and multistage convolution quadrature for the wave equation: Algorithms and experiments, Banjai L., 2010
5) The discrete time-domain solution is given by the inverse Z-transform

$$
u\left(t_{n} ; x\right)=\frac{1}{2 \pi i} \int_{\mathcal{C}} \frac{U(z ; x)}{z^{n+1}} d z=\frac{1}{2 \pi i} \int_{|z|=\lambda} \frac{U(x, z)}{z^{n+1}} d z
$$

6) We define the approximation using trapezoidal rule

$$
\tilde{u}_{N_{t}}\left(t_{n} ; x\right)=\frac{\lambda^{-n}}{N_{t}} \sum_{\ell=1}^{N_{t}} U\left(\lambda z_{\ell} ; x\right) z_{\ell}^{-n},
$$

Each quadrature point requires solution of the modified Helmholtz problem for a given complex frequency.
Previous methods use $N_{t}=N_{t}$ (number of time steps).
Actually, $U(x, \bar{z})=\bar{U}(x, z) \Rightarrow$ we divide by 2 the number of problems to solve.
5) The discrete time-domain solution is given by the inverse Z-transform

$$
u\left(t_{n} ; x\right)=\frac{1}{2 \pi i} \int_{\mathcal{C}} \frac{U(z ; x)}{z^{n+1}} d z=\frac{1}{2 \pi i} \int_{|z|=\lambda} \frac{U(x, z)}{z^{n+1}} d z
$$

6) We define the approximation using trapezoidal rule

$$
\tilde{u}_{N_{f}}\left(t_{n} ; x\right)=\frac{\lambda^{-n}}{N_{f}} \sum_{\ell=1}^{N_{t}} U\left(\lambda z_{\ell} ; x\right) z_{\ell}^{-n},
$$

Each quadrature point requires solution of the modified Helmholtz problem for a given complex frequency.

$\underset{x}{\Delta}$
Previous methods use $N_{t}=N_{t}$ (number of time steps).
Actually, $U(x, \bar{z})=\bar{U}(x, z) \Rightarrow$ we divide by 2 the number of problems to solve.
5) The discrete time-domain solution is given by the inverse Z-transform

$$
u\left(t_{n} ; x\right)=\frac{1}{2 \pi i} \int_{\mathcal{C}} \frac{U(z ; x)}{z^{n+1}} d z=\frac{1}{2 \pi i} \int_{|z|=\lambda} \frac{U(x, z)}{z^{n+1}} d z
$$

6) We define the approximation using trapezoidal rule

$$
\tilde{u}_{N_{t}}\left(t_{n} ; x\right)=\frac{\lambda^{-n}}{N_{f}} \sum_{\ell=1}^{N_{t}} U\left(\lambda z_{\ell} ; x\right) z_{\ell}^{-n},
$$

Each quadrature point requires solution of the modified Helmholtz problem for a given complex frequency.
Previous methods use $N_{f}=N_{t}$ (number of time steps).
Actually, $U(x, \bar{z})=\bar{U}(x, z) \Rightarrow$ we divide by 2 the number of problems to solve.

The exponentially convergent trapezoidal rule, Trefethen and Weideman, SIAM Review, 2013.

The steps to use "naive" Z-transform Convolution Quadrature:
(1) Evaluation of the boundary condition for each time step.
(2) Definition of the wave-numbers depending on the parameters ($\boldsymbol{\lambda}, \boldsymbol{N}_{f}$ and the multistep rule).
(3) Computation of the Z-transforms of the rhs.
(T) Solving frequency problems (can be done in parallel easily).
(0) Inverse Z-transform to come back in time.

$$
u\left(t_{n} ; x\right)=\mathcal{Z}^{-1}[U]\left(t_{n} ; x\right)=\mathcal{Z}^{-1}[\mathcal{B}_{k_{z}}\{\underbrace{\mathcal{Z}[\boldsymbol{g}]}_{G}\}]\left(t_{n} ; x\right)
$$

Z-transform and its inverse

Definitions

$$
\begin{aligned}
\mathcal{Z}[g](z ; x) & =\sum_{n=0}^{\infty} g\left(t_{n} ; x\right) z^{n} \\
\mathcal{Z}^{-1}[G]\left(t_{n} ; x\right) & =\frac{1}{2 \pi i} \int_{|z|=\lambda} \frac{G(z ; x)}{z^{n+1}} d z
\end{aligned}
$$

$$
\begin{gathered}
u\left(t_{n} ; x\right)=\mathcal{Z}^{-1}[U]\left(t_{n} ; x\right)=\mathcal{Z}^{-1}[\mathcal{B}_{k_{z}}\{\underbrace{\mathcal{Z}[\boldsymbol{g}]}_{G}\}]\left(t_{n} ; x\right) \\
\widetilde{u}_{N_{f}, N_{z}}\left(t_{n} ; x\right)=\widetilde{\mathcal{Z}}_{N_{f}}^{-1}\left[\widetilde{U}_{N_{z}}\right]=\widetilde{\mathcal{Z}}_{N_{f}}^{-1}[\mathcal{B}_{k_{z}} \underbrace{\left\{\widetilde{\mathcal{Z}}_{N_{z}}[\boldsymbol{g}]\right.}_{\tilde{G}_{N_{z}}}\}]\left(t_{n} ; x\right)
\end{gathered}
$$

Z-transform and its inverse

Definitions

$$
\begin{aligned}
\mathcal{Z}[g](z ; x) & =\sum_{n=0}^{\infty} g\left(t_{n} ; x\right) z^{n} \\
\mathcal{Z}^{-1}[G]\left(t_{n} ; x\right) & =\frac{1}{2 \pi i} \int_{|z|=\lambda} \frac{G(z ; x)}{z^{n+1}} d z
\end{aligned}
$$

In practice

$$
\begin{aligned}
\widetilde{\mathcal{Z}}_{N_{z}}[g](z ; x) & =\sum_{n=0}^{N_{z}} g\left(t_{n} ; x\right) z^{n} \\
\widetilde{\mathcal{Z}}_{N_{f}}^{-1}[G]\left(t_{n} ; x\right) & =\frac{\lambda^{-n}}{N_{f}} \sum_{\ell=1}^{N_{f}} G\left(\lambda z_{\ell} ; x\right) z_{\ell}^{-n}
\end{aligned}
$$

$$
\begin{aligned}
& u\left(t_{n} ; x\right)=\mathcal{Z}^{-1}[U]\left(t_{n} ; x\right)=\mathcal{Z}^{-1}[\mathcal{B}_{k_{z}}\{\underbrace{\mathcal{Z}[\boldsymbol{g}]\}}_{G}]\left(t_{n} ; x\right) \\
& \widetilde{u}_{N_{t}, N_{z}}\left(t_{n} ; x\right)=\widetilde{\mathcal{Z}}_{\boldsymbol{N}_{f}}^{-1}\left[\widetilde{U}_{N_{z}}\right]=\widetilde{\mathcal{Z}}_{N_{f}}^{-1}[\mathcal{B}_{k_{z}} \underbrace{\left.\widetilde{\mathcal{Z}}_{N_{z}}[\boldsymbol{g}]\right\}}_{\tilde{G}_{N_{z}} \text { with } k_{z}=i \frac{\gamma(z)}{c \Delta t}}]\left(t_{n} ; x\right)
\end{aligned}
$$

Z-transform and its inverse

Definitions

$$
\begin{aligned}
\mathcal{Z}[g](z ; x) & =\sum_{n=0}^{\infty} g\left(t_{n} ; x\right) z^{n} \\
\mathcal{Z}^{-1}[G]\left(t_{n} ; x\right) & =\frac{1}{2 \pi i} \int_{|z|=\lambda} \frac{G(z ; x)}{z^{n+1}} d z
\end{aligned}
$$

In practice

$$
\begin{aligned}
\tilde{\mathcal{Z}}_{N_{z}}[g](z ; x) & =\sum_{n=0}^{N_{z}} g\left(t_{n} ; x\right) z^{n} \\
\widetilde{\mathcal{Z}}_{N_{f}}^{-1}[G]\left(t_{n} ; x\right) & =\frac{\lambda^{-n}}{\boldsymbol{N}_{f}} \sum_{\ell=1}^{N_{f}} G\left(\lambda z_{\ell} ; x\right) z_{\ell}^{-n}
\end{aligned}
$$

(1) The Z-Transform based CQ
(2) Errors from the Z-transform based CQ
(3) Approximation error of the inverse Z-transform

4 Approximation error of the Z-transform

Let $u_{w}(t ; x)$ be the exact solution of the wave problem, then

$$
u_{w}\left(t_{n} ; x\right)-\widetilde{u}_{N_{t}, N_{z}}\left(t_{n} ; x\right)=
$$

Let $u_{w}(t ; x)$ be the exact solution of the wave problem, then

$$
u_{w}\left(t_{n} ; x\right)-\widetilde{u}_{N_{t}, N_{z}}\left(t_{n} ; x\right)=\left(u_{w}\left(t_{n} ; x\right)-\mathcal{Z}^{-1}[U]\left(t_{n} ; x\right)\right)
$$

Let $u_{w}(t ; x)$ be the exact solution of the wave problem, then

$$
\begin{aligned}
u_{w}\left(t_{n} ; x\right)-\widetilde{u}_{N_{t}, N_{z}}\left(t_{n} ; x\right) & =\left(u_{w}\left(t_{n} ; x\right)-\mathcal{Z}^{-1}[U]\left(t_{n} ; x\right)\right) \\
& +\left(\mathcal{Z}^{-1}[U]\left(t_{n} ; x\right)-\widetilde{\mathcal{Z}}_{N_{t}}^{-1}[U]\left(t_{n} ; x\right)\right)
\end{aligned}
$$

Let $u_{w}(t ; x)$ be the exact solution of the wave problem, then

$$
\begin{aligned}
u_{w}\left(t_{n} ; x\right)-\widetilde{U}_{N_{f}, N_{z}}\left(t_{n} ; x\right) & =\left(u_{w}\left(t_{n} ; x\right)-\mathcal{Z}^{-1}[U]\left(t_{n} ; x\right)\right) \\
& +\left(\mathcal{Z}^{-1}[U]\left(t_{n} ; x\right)-\widetilde{\mathcal{Z}}_{N_{f}}^{-1}[U]\left(t_{n} ; x\right)\right) \\
& +\left(\widetilde{\mathcal{Z}}_{N_{f}}^{-1}[U]\left(t_{n} ; x\right)-\widetilde{\mathcal{Z}}_{N_{f}}^{-1}\left[\widetilde{U}_{N_{z}}\right]\left(t_{n} ; x\right)\right)
\end{aligned}
$$

Let $u_{w}(t ; x)$ be the exact solution of the wave problem, then

$$
\begin{aligned}
& u_{w}\left(t_{n} ; x\right)-\widetilde{U}_{N_{t}, N_{z}}\left(t_{n} ; x\right)=\left(u_{w}\left(t_{n} ; x\right)-\mathcal{Z}^{-1}[U]\left(t_{n} ; x\right)\right) \\
& \text { Section 3 } \longrightarrow+\left(\mathcal{Z}^{-1}[U]\left(t_{n} ; x\right)-\widetilde{\mathcal{Z}}_{N_{t}}^{-1}[U]\left(t_{n} ; x\right)\right) \\
& \text { Section 4 } \longrightarrow+\left(\widetilde{\mathcal{Z}}_{N_{f}}^{-1}[U]\left(t_{n} ; x\right)-\widetilde{\mathcal{Z}}_{N_{t}}^{-1}\left[\widetilde{U}_{N_{z}}\right]\left(t_{n} ; x\right)\right)
\end{aligned}
$$

- Error of the the scheme used for the time discretisation
- Error to approximate the contour integral : Approximation error of the inverse Z-transform using a trapezoidal rule
- Error on the frequency solution $\widetilde{U}_{N_{z}}$ coming from the fact we truncate the Z-transform
(1) The Z-Transform based CQ
(2) Errors from the Z-transform based CQ
(3) Approximation error of the inverse Z-transform

4 Approximation error of the Z-transform

Approximation of the contour integral arising in the inverse Z-t

In this section, we study:

$$
E_{1}\left(\boldsymbol{\lambda}, \boldsymbol{N}_{\boldsymbol{f}}\right)=\mathcal{Z}^{-1}[U]\left(t_{n} ; x\right)-\widetilde{\mathcal{Z}}_{\boldsymbol{N}_{f}}^{-1}[U]\left(t_{n} ; x\right)
$$

The question is how well can we approximate the contour integral

$$
\mathcal{Z}^{-1}[U]\left(t_{n} ; x\right)=\frac{1}{2 \pi i} \int_{|z|=\lambda} \frac{U(z ; x)}{z^{n+1}} d z
$$

by (a trapezoidal rule)

$$
\widetilde{\mathcal{Z}}_{N_{f}}^{-1}[U]\left(t_{n} ; x\right)=\frac{\lambda^{-n}}{\boldsymbol{N}_{f}} \sum_{\ell=1} \mathbf{N}_{f} U\left(\lambda z_{\ell} ; x\right) z_{\ell}^{-n}
$$

Approximation of the contour integral arising in the inverse Z-t

In this section, we study:

$$
E_{1}\left(\boldsymbol{\lambda}, \boldsymbol{N}_{\boldsymbol{f}}\right)=\mathcal{Z}^{-1}[U]\left(t_{n} ; x\right)-\widetilde{\mathcal{Z}}_{\boldsymbol{N}_{f}}^{-1}[U]\left(t_{n} ; x\right)
$$

The question is how well can we approximate the contour integral

$$
\mathcal{Z}^{-1}[U]\left(t_{n} ; x\right)=\frac{1}{2 \pi i} \int_{|z|=\lambda} \frac{U(z ; x)}{z^{n+1}} d z
$$

by (a trapezoidal rule)

$$
\widetilde{\mathcal{Z}}_{N_{f}}^{-1}[U]\left(t_{n} ; x\right)=\frac{\lambda^{-n}}{\boldsymbol{N}_{f}} \sum_{\ell=1} \mathbf{N}_{f} U\left(\lambda z_{\ell} ; x\right) z_{\ell}^{-n}
$$

The answer has been studied in a paper submitted soon. The main result is:

$$
\left|E_{1}\left(\boldsymbol{\lambda}, \boldsymbol{N}_{f}\right)\right| \approx O\left(\left(\frac{\lambda}{\lambda_{U}}\right)^{\boldsymbol{N}_{f}}\right)
$$

Betcke T., Salles N., Śmigaj W., Exponentially Accurate Evaluation of Time-Stepping schemes for the Wave Equation via CQ type methods, Report

Approximation of the contour integral arising in the inverse Z-t

In this section, we study:

$$
E_{1}\left(\boldsymbol{\lambda}, \boldsymbol{N}_{\boldsymbol{f}}\right)=\mathcal{Z}^{-1}[U]\left(t_{n} ; x\right)-\widetilde{\mathcal{Z}}_{\boldsymbol{N}_{f}}^{-1}[U]\left(t_{n} ; x\right)
$$

The question is how well can we approximate the contour integral

$$
\mathcal{Z}^{-1}[U]\left(t_{n} ; x\right)=\frac{1}{2 \pi i} \int_{|z|=\lambda} \frac{U(z ; x)}{z^{n+1}} d z
$$

by (a trapezoidal rule)

$$
\widetilde{\mathcal{Z}}_{N_{f}}^{-1}[U]\left(t_{n} ; x\right)=\frac{\boldsymbol{\lambda}^{-n}}{\boldsymbol{N}_{\boldsymbol{f}}} \sum_{\ell=1} \boldsymbol{N}_{f} U\left(\lambda z_{\ell} ; x\right) z_{\ell}^{-n}
$$

The answer has been studied in a paper submitted soon. The main result is:

$$
\left|E_{1}\left(\lambda, \boldsymbol{N}_{f}\right)\right| \approx O\left(\left(\frac{\lambda}{\lambda_{U}}\right)^{N_{f}}\right)
$$

Betcke T., Salles N., Śmigaj W., Exponentially Accurate Evaluation of Time-Stepping schemes for the Wave Equation via CQ type methods, Report

[^0]
With an Indirect First Kind Formulation

The solution in Ω_{e} exists and is obtained by:

$$
U(z ; x)=\mathcal{B}_{k_{z}} G(z ; x)=\mathcal{S}_{k_{z}} \circ S_{k_{z}}^{-1} G(z ; x)
$$

The related poles

The representation of U is valid for $k_{z} \neq i p_{j}$ and $k_{z} \neq i q_{j}$ where $\underset{\text { xulent }}{\Delta} p_{j}$ are the scattering poles of the Helmholtz solution operator \mathcal{B} q_{j} are the eigenfrequencies of the interior Laplacian Dirichlet problem.

Eigenfrequencies of the interior Dirichlet problem
Let q_{j} be eigenfrequencies of the interior Dirichlet problem:

$$
\begin{array}{rl}
-\Delta v(x)=q_{j}^{2} & v(x), \quad x \in \Omega_{i} \\
& v(x)=0, x \in \Gamma
\end{array}
$$

Definition of the radius of analyticity of U

$U(z ; x)=\mathcal{B}\left(k_{z}\right) G(z ; x)=\mathcal{B}\left(i \frac{\gamma(z)}{c \Delta t}\right) G(z ; x)$, then the analyticity of U depends on the ones of $\mathcal{B}\left(k_{z}\right)$ and G then: $\lambda_{u}=\min \left\{\lambda_{G}, \lambda_{\mathcal{B}}\right\}$

Definition of the radius of analyticity of U

$U(z ; x)=\mathcal{B}\left(k_{z}\right) G(z ; x)=\mathcal{B}\left(i \frac{\gamma(z)}{c \Delta t}\right) G(z ; x)$, then the analyticity of U depends on the ones of $\mathcal{B}\left(k_{z}\right)$ and G then: $\lambda_{u}=\min \left\{\lambda_{G}, \lambda_{\mathcal{B}}\right\}$

Theorem (Error representation)

Let u and $u_{\left(N_{f}\right)}$ the solution using the multistep scheme and using a trapezoidal rule. Let $\boldsymbol{\lambda}<\lambda_{U}$, where λ_{U} is the radius of analyticity of U. For multistep rules We have the exact error representation

$$
\begin{aligned}
\widetilde{u}_{N_{f}}\left(t_{n} ; x\right)-u\left(t_{n} ; x\right) & =\widetilde{\mathcal{Z}}_{N_{f}}^{-1}[U]\left(t_{n} ; x\right)-\mathcal{Z}^{-1}[U]\left(t_{n} ; x\right) \\
& =\sum_{\kappa=1}^{\infty} \lambda^{\kappa N_{f}} u\left(t_{n+\kappa N_{f}} ; x\right)
\end{aligned}
$$

Theorem (Asymptotic error estimate)

Let $0<\lambda<\lambda_{u}$. Then

$$
\left|\mathcal{Z}^{-1}[U]\left(t_{n} ; x\right)-\widetilde{\mathcal{Z}}_{N_{f}}^{-1}[U]\left(t_{n} ; x\right)\right| \mathcal{O}\left(\left(\frac{\lambda U}{\lambda}-\epsilon\right)^{-N_{f}}\right)
$$

for any $\epsilon>0$ as $N_{f} \rightarrow \infty$.

Theorem (Error representation)

Let u and $u_{\left(N_{f}\right)}$ the solution using the multistep scheme and using a trapezoidal rule. Let $\boldsymbol{\lambda}<\lambda_{U}$, where λ_{U} is the radius of analyticity of U. For multistep rules We have the exact error representation

$$
\begin{aligned}
\widetilde{u}_{N_{f}}\left(t_{n} ; x\right)-u\left(t_{n} ; x\right) & =\widetilde{\mathcal{Z}}_{N_{f}}^{-1}[U]\left(t_{n} ; x\right)-\mathcal{Z}^{-1}[U]\left(t_{n} ; x\right) \\
& =\sum_{\kappa=1}^{\infty} \lambda^{\kappa N_{f}} u\left(t_{n+\kappa N_{f}} ; x\right)
\end{aligned}
$$

Theorem (Asymptotic error estimate)

Let $0<\lambda<\lambda_{u}$. Then

$$
\left|\mathcal{Z}^{-1}[U]\left(t_{n} ; x\right)-\widetilde{\mathcal{Z}}_{N_{f}}^{-1}[U]\left(t_{n} ; x\right)\right| \mathcal{O}\left(\left(\frac{\lambda_{U}}{\lambda}-\epsilon\right)^{-N_{f}}\right) \approx \mathcal{O}\left(\left(\frac{\lambda}{\lambda_{U}}\right)^{N_{f}}\right)
$$

for any $\epsilon>0$ as $N_{f} \rightarrow \infty$.

With a m-stages Runge-Kutta scheme

The scalar equation becomes a vector equation:

$$
\left(\frac{\Delta(z)}{c \Delta t}\right)^{2} \mathcal{R}(z ; x)=\Delta_{x} \mathcal{R}(z ; x), \text { and } U(z ; x)=z^{-1} R_{m}(z ; x)
$$

where, $\mathcal{R}(z ; x)=\left(R_{1}(z ; x), R_{2}(z ; x), \cdots, R_{m}(z ; x)\right)$ and (A, b) are part of the Butcher tableau

$$
\Delta(z)=\left(A+\frac{z}{1-z} \mathbb{1} b^{t}\right)^{-1}
$$

In practice, we diagonalize $\Delta(z)=\mathbb{P}(z) \mathbb{D}(z) \mathbb{P}^{-1}(z)$, and $\mathbb{D}(z)=\operatorname{diag}\left(\gamma_{1}(z), \ldots, \gamma_{m}(z)\right)$ in order to get \boldsymbol{m} independent scalar problems. The diagonalisation process is not possible for all frequencies so:

For the analysis of , we study the vector system directly

The solution $\mathcal{R}(z ; x)$ of the vector problem is analytic in z if there is no eigenvalues of $\Delta(z)$, denoted $\lambda_{j}(z)$, that hits a scattering pole.
Proof: Jordan decomposition ensure unicity and \mathcal{R} is complex differentiable.

BEM++ 3.0.3
)
Core library in C++, complete interface via Python
Support for Laplace, Helmholtz, Maxwell equations
Shared-Memory parallelisation (with Intel Threading Building Blocks (TBB))
Built-In H-Matrix compression
Support for FEM/BEM coupling with FEniCS
High-Frequency OSRC preconditioners
Extensive support for iterative solvers via interfaces to Eigen (C++)
BSD style open source license
Currently, Mac and Linux directly supported
BEM++ now works on any plateform (Windows, Mac, Linux, Solaris) where VirtualBox is available...

Indirect second kind formulation

$$
\lambda_{U}=1 \text { then the theoretical rate of convergence is } O\left(\lambda^{N_{f}}\right)
$$

For small $\boldsymbol{\lambda}$, convergence breaks down before Indirect second kind formulation machine precision is reached.

$$
\lambda_{u}=1 \text { then the theoretical rate of convergence is } O\left(\lambda^{N_{f}}\right)
$$

Other geometries / A trapping domain

We plot the $L^{2}(\Gamma)$-norm of the inverse of $\mathbb{A}(\omega)$ (the matrix of the Galerkin discretisation of $\left.\left[\frac{1}{2} I+K_{\omega}+S_{\omega}\right]\right)$ when ω is purely imaginary: If z is a pole, then norm of the inverse $\rightarrow \infty$ when $\omega \rightarrow z$.
Eigenfrequencies are located on the imaginary axis for the majority of the intg. formulation.

We plot the $L^{2}(\Gamma)$-norm of the inverse of $\mathbb{A}(\omega)$ (the matrix of the Galerkin discretisation of $\left.\left[\frac{1}{2} I+K_{\omega}+S_{\omega}\right]\right)$ when ω is purely imaginary: If z is a pole, then norm of the inverse $\rightarrow \infty$ when $\omega \rightarrow z$.
Eigenfrequencies are located on the imaginary axis for the majority of the intg. formulation.

(a) Combined Integral Formulation with $\eta=20 i$.

(b) Combined Integral Formulation with $\eta=20$.

(c) Combined Integral Formulation with $\eta=i$

(d) Combined Integral Formulation with $\eta=\omega$

Discretization of the time domain CFIE for acoustic scattering problems using convolution quadrature, P. Monk and Q. Chen, 2014.

Figure : Convergence when $\eta=i$.

Relative error for four different indirect integral formulations.

(1) The Z-Transform based CQ

2 Errors from the Z-transform based CQ

3 Approximation error of the inverse Z-transform

4 Approximation error of the Z-transform

The second error writes as

$$
\begin{aligned}
E_{2}\left(t_{n} ; x\right) & =\widetilde{\mathcal{Z}}_{N_{f}}^{-1}[U]\left(t_{n} ; x\right)-\widetilde{\mathcal{Z}}_{N_{f}}^{-1}\left[\widetilde{U}_{N_{z}}\right]\left(t_{n} ; x\right) \\
& =\frac{\boldsymbol{\lambda}^{-n}}{N_{f}} \sum_{\ell=1}^{N_{f}}\left(U\left(\lambda z_{\ell} ; x\right)-\widetilde{U}_{N_{z}}\left(\lambda z_{\ell} ; x\right)\right) z_{\ell}^{-n}
\end{aligned}
$$

The second error writes as

$$
\begin{aligned}
E_{2}\left(t_{n} ; x\right) & =\widetilde{\mathcal{Z}}_{N_{t}}^{-1}[U]\left(t_{n} ; x\right)-\widetilde{\mathcal{Z}}_{N_{t}}^{-1}\left[\widetilde{U}_{N_{z}}\right]\left(t_{n} ; x\right) \\
& =\frac{\lambda^{-n}}{N_{f}} \sum_{\ell=1}^{N_{f}}\left(U\left(\lambda z_{\ell} ; x\right)-\widetilde{U}_{N_{z}}\left(\lambda z_{\ell} ; x\right)\right) z_{\ell}^{-n},
\end{aligned}
$$

with

$$
U(z ; x)=\mathcal{B}_{k_{z}} G(z ; x) \quad \text { and } \quad \widetilde{U}_{N_{z}}(z ; x)=\mathcal{B}_{k_{z}} \widetilde{G}_{N_{z}}(z ; x)
$$

and,

$$
G(z ; x)=\sum_{n \geq 0} g\left(t_{n} ; x\right) z^{n} \quad \text { and } \quad \tilde{G}_{N_{z}}(z ; x)=\sum_{n=0}^{N_{z}} g\left(t_{n} ; x\right) z^{n}
$$

The second error writes as

$$
\begin{aligned}
E_{2}\left(t_{n} ; x\right) & =\widetilde{\mathcal{Z}}_{N_{f}}^{-1}[U]\left(t_{n} ; x\right)-\widetilde{\mathcal{Z}}_{N_{f}}^{-1}\left[\widetilde{U}_{N_{z}}\right]\left(t_{n} ; x\right) \\
& =\frac{\lambda^{-n}}{N_{f}} \sum_{\ell=1}^{N_{f}}\left(U\left(\lambda z_{\ell} ; x\right)-\widetilde{U}_{N_{z}}\left(\lambda z_{\ell} ; x\right)\right) z_{\ell}^{-n}
\end{aligned}
$$

with

$$
U(z ; x)=\mathcal{B}_{k_{z}} G(z ; x) \quad \text { and } \quad \widetilde{U}_{N_{z}}(z ; x)=\mathcal{B}_{k_{z}} \widetilde{G}_{N_{z}}(z ; x)
$$

and,

$$
G(z ; x)=\sum_{n \geq 0} g\left(t_{n} ; x\right) z^{n} \quad \text { and } \quad \widetilde{G}_{N_{z}}(z ; x)=\sum_{n=0}^{N_{z}} g\left(t_{n} ; x\right) z^{n}
$$

We decouple the time steps used to perform the Z-transform to the time steps where we evaluate the solution.
We obtained results with a Gaussian beam as incident wave ; its support is compact in time so the computation of the Z-transform is not expensive and the error is very small.

Let's see an incident wave of the form:

Then the error on the right-hand side is

$$
G(\lambda z)-G_{N_{z}}(\lambda z)=\sum_{n=N_{z}+1}^{\infty} g\left(t_{n}\right) \lambda^{n} z^{n}
$$

By increasing the number of time steps $\boldsymbol{N}_{\boldsymbol{z}}$ to approximate the Z-transform of the time-domain boundary condition, we reduce the error on the right-hand side of our frequency equations.

Let's

sform of the nd side of our

Let's see an incident wave of the form:

Then the error on the right-hand side is

$$
G(\lambda z)-G_{N_{z}}(\lambda z)=\sum_{n=N_{z}+1}^{\infty} g\left(t_{n}\right) \lambda^{n} z^{n}
$$

By increasing the number of time steps $\boldsymbol{N}_{\boldsymbol{z}}$ to approximate the Z-transform of the time-domain boundary condition, we reduce the error on the right-hand side of our frequency equations.

The error related to the approximation error of the Z-Transform of the boundary data:

$$
\widetilde{\mathcal{Z}}_{N_{f}}^{-1}[U]\left(t_{n} ; x\right)-\widetilde{\mathcal{Z}}_{N_{f}}^{-1}\left[\widetilde{U}_{N_{z}}\right]\left(t_{n} ; x\right)=\frac{\lambda^{-n}}{N_{f}} \sum_{\ell=1}^{N_{f}}\left(U\left(\lambda z_{\ell} ; x\right)-\widetilde{U}_{N_{z}}\left(\lambda z_{\ell} ; x\right)\right) z_{\ell}^{-n}
$$

(1) Can we bound the error on $\widetilde{\mathcal{Z}}_{N_{f}}^{-1}[U]\left(t_{n} ; x\right)-\widetilde{\mathcal{Z}}_{N_{f}}^{-1}\left[\widetilde{U}_{N_{z}}\right]\left(t_{n} ; x\right)$ by the error $G(z ; x)-\tilde{G}_{N_{z}}(z ; x)$?
(2) Is there an incident wave for which this error can be the leading error?
(3) For incident waves with compact support in time, we can reduce the number of evaluation by knowing when we can truncate the sum.

An example

For $\boldsymbol{\lambda}$ and $\boldsymbol{N}_{\boldsymbol{f}}$ given, we solve for different $\boldsymbol{N}_{\boldsymbol{z}}$ and plot the maximal relative error in time.


```
XLiFE++ http://uma.ensta-paristech.fr/soft/XLiFE++/
```

A)Deal with 1D, 2D, 3D scalar/vector transient/stationnary/harmonic pbs High order Lagrange FE, edge FE (Hrot, Hdiv), spectral FE

H1 conform and non conform approximation (DG methods) Unassembling FE
Integral methods (BEM, IR-FE, FEM-BEM)
Essential condition (periodic, quasi-periodic)
Absorbing condition, PML, DtN, ...
Meshing tools and export tool
Many solvers (direct solvers, iterative solvers, eigen solvers)
In progress: CQ solver (multistep schemes almost done)
≈ 120000 lines
(x)IENT Multi platform (linux, mac, windows)
x Online and paper documentation

- This CQ method is really easy to implement
- Two errors related to the CQ appeared:
(1) The first error (approximation of the inverse Z-transform) can play an important role on the accuracy of the solution and is analyzed now (See paper)
(2) For the second error (error coming from a "possible" bad approximation of the frequency right-hand sides), it is not clear if it is so important.
- We can tune/optimize the Z-transform based CQ with several parameters: $\boldsymbol{\lambda}, \boldsymbol{N}_{\boldsymbol{f}}$, and N_{z}.
- The CQ method is "easy" to apply to other problems (Maxwell, elastodynamics), as soon as you have a frequency solver.
- A Time-Domain solver will be available in the code developed by ENSTA-ParisTech and IRMAR: XLiFE++
- With Stéphanie Chaillat (ENSTA) we will try some experiments in elastodynamics.
(1) Inverse Z-Transform:
- The error to approximate the contour integral (inverse Z-transform) relies upon the distance from the contour to the poles of the frequency solution.
- The integral formulation used is important for the rate of convergence since eigenfrequencies of the interior Laplacian relies upon the integral formulation.
- Analysis with Runge-Kutta schemes is slightly different because the diagonalisation is not possible for any frequency.
(2) Z-transform of the rhs:
- The $\boldsymbol{\lambda}^{n}$ appearing in the Z-transform allows to think there is no special difficulty with this error provided we take an adapted number of time steps (the error is really smal)
- One interest is for fine meshes to reduce the number of terms to evaluate the Z-transform while keeping a good accuracy.
- Is there some physical cases for which this error could play an important role?
- Still some work to do to finish the analysis of this error.

Thank you!

[^0]: Betcke T., Salles N., Śmigaj W., Spectral estimates of the inverse Z-Transform arising in Convolution Quadrature methods., Sub. soon

