Time-dependent Wave Splitting and Source Separation

Marie KRAY

Department of Mathematics and Computer Science, University of Basel, Switzerland

Joint work with Marcus J. Grote (Univ. Basel), Frédéric Nataf (LJLL Paris 6) and Franck Assous (Ariel Univ.)

BIRS Workshop: Computational and Numerical Analysis of Transient Problems in Acoustics, Elasticity, and Electromagnetism

January 18-22, 2016

UNI BASEL

- 2 Step 1: Wave Splitting
 - Principle using non-reflecting boundary conditions
 - Wave splitting in the two-space dimensional case
 - Numerical example
- 3 Steps 2 and 3, in short
 - Step 2: Time Reversed Absorbing Conditions (TRAC)
 - Step 3: Adaptive Eigenspace Inversion

Outline

1 Introduction and motivation

2 Step 1: Wave Splitting

- Principle using non-reflecting boundary conditions
- Wave splitting in the two-space dimensional case
- Numerical example
- 3 Steps 2 and 3, in short
 - Step 2: Time Reversed Absorbing Conditions (TRAC)
 - Step 3: Adaptive Eigenspace Inversion

4 Conclusion

 $\begin{array}{c} \text{Ambient medium} \\ \text{wave propagation speed} \\ c_0 \text{ known} \end{array}$

Unknown inclusion wave propagation speed $c(x) \ge c_0$ non constant

 $\begin{array}{c} \text{Ambient medium} \\ \text{wave propagation speed} \\ c_0 \text{ known} \end{array}$

Incident wave u^{\prime} sent in the medium

Unknown inclusion wave propagation speed $c(x) \ge c_0$ non constant

Marie KRAY (Univ. Basel)

Aim: solve a time-dependent inverse problem from measurements data in situations when the incident field is unknown

But!!! needed to solve inverse problems \Rightarrow computation of the forward problem in the optimization process

Assumptions about the incident field:

- location: approx. known
- time history: unknown

Examples of applications:

- in medical imaging
 - e.g. Contrast-enhanced ultrasound: microbubbles as contrast agents
 - M. Pernot, G. Montaldo, M. Tanter, and M. Fink. "Ultrasonic stars" for time reversal focusing using induced cavitation bubbles. *Appl. Phys. Lett.*, 88(3):034102, 2006.
 - [2] S. R. Sirsi, M. A. Borden. Advances in Ultrasound Mediated Gene Therapy Using Microbubble Contrast Agents, *Theranostics*, 2(12):1208-1222, 2012.

• in geophysics

- e.g. Full Waveform Inversion or imaging
 - [3] N. Tu, A. Y. Aravkin, T. van Leeuwen, and F. J. Herrmann. Fast least-squares migration with multiples and source estimation, *EAGE* 2013.

Process:

wave splitting

 \Rightarrow split measurement data u into u^{I} and u^{S} on boundary Γ

Process:

- wave splitting \Rightarrow split measurement data u into u' and u^{s} on boundary Γ
- ② time reversed absorbing conditions ⇒ reconstruct either field u¹ or u^S inside the computational domain Ω delimited by Γ

Process:

- wave splitting \Rightarrow split measurement data u into u^{I} and u^{S} on boundary Γ
- immer reversed absorbing conditions
 ⇒ reconstruct either field u¹ or u^S inside the computational domain Ω delimited by Γ

inverse problem

 \Rightarrow recover the unknown inclusion by PDE-constrained optimization

Process:

- wave splitting \Rightarrow split measurement data u into u^{I} and u^{S} on boundary Γ
- immer reversed absorbing conditions
 ⇒ reconstruct either field u¹ or u^S inside the computational domain Ω delimited by Γ

inverse problem

 \Rightarrow recover the unknown inclusion by PDE-constrained optimization

Focus on Wave Splitting...

- 2 Step 1: Wave Splitting
 - Principle using non-reflecting boundary conditions
 - Wave splitting in the two-space dimensional case
 - Numerical example
- 3 Steps 2 and 3, in short
 - Step 2: Time Reversed Absorbing Conditions (TRAC)
 - Step 3: Adaptive Eigenspace Inversion
- 4 Conclusion

Multiple scattering problem: $u = u_1 + u_2$, in $\Omega := \mathbb{R}^d \setminus (S_1 \cup S_2)$

u satifies:

$$\frac{\partial^2 u}{\partial t^2} - c_0^2 \Delta u = 0 \qquad \text{in } \Omega, \ t > 0.$$

Question: Given the measured total field u, can we recover u_1 and u_2 without knowing in advance either of them ?

Marie KRAY (Univ. Basel)

Question: Given the measured total field u, can we recover u_1 and u_2 without knowing in advance either of them ?

Marie KRAY (Univ. Basel)

Question: Given the measured total field u, can we recover u_1 and u_2 without knowing in advance either of them ?

Marie KRAY (Univ. Basel)

Step 1: Wave Splitting Principle using non-reflecting boundary conditions

Multiple scattering problem: $u = u_1 + u_2$, in $\Omega := \mathbb{R}^d \setminus (S_1 \cup S_2)$

u satifies:

$$\frac{\partial^2 u}{\partial t^2} \ - \ c_0^2 \Delta u \ = \ 0 \qquad \text{in } \Omega, \ t > 0.$$

Question: Given the measured total field u, can we recover u_1 and u_2 without knowing in advance either of them ?

Marie KRAY (Univ. Basel)

Other works on Wave splitting:

- in the frequency domain
 - F. Ben Hassen, J. Liu, and R. Potthast. (2007)

On source analysis by wave splitting with applications in inverse scattering of multiple obstacles. J. Comput. Math, 25(3):266–281.

• R. Griesmaier, M. Hanke, and J. Sylvester. (2014)

Far field splitting for the Helmholtz equation. SIAM J. Numer. Anal., 52(1):343-362.

• H. Wang and J. Liu. (2013)

On decomposition method for acoustic wave scattering by multiple obstacles. Acta Mathematica Scientia, $33B(1){:}1{-}22.$

- in the time-dependent domain
 - R. Potthast, F. M. Fazi, and P. A. Nelson. (2010)

Source splitting via the point source method. Inv. Problems, 626(4):045002.

Our method is local in space and time, deterministic, and also avoids a priori assumptions on the frequency spectrum of the signal. Outside S_1 and S_2 , u satisfies:

$$\frac{\partial^2 u}{\partial t^2} - c_0^2 \Delta u = 0 \quad \text{in } \Omega, \ t > 0,$$

 $c_0 > 0$ constant.

At t = 0, no signal in Ω , then uniqueness of splitting¹

$$u = u_1 + u_2$$
 in Ω , $t > 0$

and u_k outgoing (3D):

$$u_k(t, r_k, \theta_k, \varphi_k) = \frac{1}{r_k} \sum_{i \ge 0} \frac{f_{k,i}(r_k - c_0 t, \theta_k, \varphi_k)}{(r_k)^i}$$

 $(r_k, \theta_k, \varphi_k)$ spherical coordinates centered at C_k .

Marie KRAY (Univ. Basel)

¹ M. J. Grote and C. Kirsch. Nonreflecting boundary condition for time-dependent multiple scattering. J. Comput. Phys., 221(1):41–67, 2007.

Since

$$u_k(t, r_k, \theta_k, \varphi_k) = \frac{1}{r_k} \sum_{i \ge 0} \frac{f_{k,i}(r_k - c_0 t, \theta_k, \varphi_k)}{(r_k)^i}$$

 $(r_k, \theta_k, \varphi_k)$ spherical coordinates centered at C_k ,

 $\textit{m}^{th}\text{-order}$ absorbing boundary condition^2 on any Γ in Ω

$$B_k[u_k] = O\left(\frac{1}{r_k^{2m+1}}\right), \qquad k = 1, 2$$

Marie KRAY (Univ. Basel)

 $^{^{2}}$ A. Bayliss and E. Turkel. Radiation boundary conditions for wave-like equations. Comm. Pure Appl. Math., 33(6):707–725, 1980.

Neglecting the higher order error term:

$$B_j[u_k] = B_j[u_k + u_j] = B_j[u], \qquad j = 1, 2, \quad k \neq j$$

Recover u_1 and u_2 by solving:

$$\begin{cases} B_{2}[u_{1}] = B_{2}[u] \\ B_{1}[u_{2}] = B_{1}[u] \end{cases}$$
(1) (2)

where *u* is known (measurements on Γ)

Neglecting the higher order error term:

$$B_j[u_k] = B_j[u_k + u_j] = B_j[u], \qquad j = 1, 2, \quad k \neq j$$

Recover u_1 and u_2 by solving:

$$\begin{cases} B_2[u_1] = B_2[u] & (1) \\ B_1[u_2] = B_1[u] & (2) \end{cases}$$

where u is known (measurements on Γ)

Difficulty: integration of partial differential equation (1)-(2) on the submanifold Γ

- Find adequate initial and boundary conditions
- Change of coordinates from $(r_k, \theta_k, \varphi_k)$ to $(r_j, \theta_j, \varphi_j)$
- Remove normal/radial derivatives (equation on Γ involving only (t, θ_j, φ_j))

Marie KRAY (Univ. Basel)

In 2D, Bayliss-Turkel first order absorbing boundary condition

$$B_j[u] = \frac{1}{c_0} \frac{\partial u}{\partial t} + \frac{\partial u}{\partial r_j} + \frac{u}{2r_j}$$

For simplicity, let $\Gamma := \Gamma_1$ be a circle centered at C_1 .

E.g. to recover u_1 on Γ_1

$$B_{2}[u_{1}] = B_{2}[u]$$

$$\frac{1}{c_{0}}\frac{\partial u_{1}}{\partial t} + \frac{\partial u_{1}}{\partial r_{2}} + \frac{u_{1}}{2r_{2}} = \frac{1}{c_{0}}\frac{\partial u}{\partial t} + \frac{\partial u}{\partial r_{2}} + \frac{u}{2r_{2}}$$

How to solve this PDE for u_1 ?

- need initial and boundary conditions
- $\bullet\,$ remove the radial derivative! we solve on Γ_1
- derivatives in (r_2, θ_2) , when domain in (r_1, θ_1)

$$\implies$$
 rewrite the PDE using only $\frac{\partial}{\partial t}, \ \frac{\partial}{\partial \theta_1}$ and 0th-order term

PDE reads:

$$\left(\frac{1}{c_0}\frac{\partial}{\partial t} + \frac{\partial}{\partial r_2} + \frac{1}{2r_2}\right)u_1 = B_2[u]$$

First step:

Change of coordinate system from (r_2, θ_2) to (r_1, θ_1)

$$\frac{\partial}{\partial r_2} = \mathcal{K}(r_1, \theta_1) \frac{\partial}{\partial r_1} + \mathcal{M}(r_1, \theta_1) \frac{\partial}{\partial \theta_1}$$

where K, M only depend on the change of coordinates, hence

$$\left(\frac{1}{c_0}\frac{\partial}{\partial t} + \mathcal{K}(\theta_1) \ \frac{\partial}{\partial r_1} + \mathcal{M}(\theta_1) \ \frac{\partial}{\partial \theta_1} + \frac{1}{2r_2}\right) u_1 = B_2[u], \quad \text{on } \Gamma_1, \ t > 0$$

PDE reads:

$$\left(\frac{1}{c_0}\frac{\partial}{\partial t} + \frac{\partial}{\partial r_2} + \frac{1}{2r_2}\right)u_1 = B_2[u]$$

First step:

Change of coordinate system from (r_2, θ_2) to (r_1, θ_1)

$$\frac{\partial}{\partial r_2} = \mathcal{K}(r_1, \theta_1) \frac{\partial}{\partial r_1} + \mathcal{M}(r_1, \theta_1) \frac{\partial}{\partial \theta_1}$$

where K, M only depend on the change of coordinates, hence

$$\left(\frac{1}{c_0}\frac{\partial}{\partial t} + \mathcal{K}(\theta_1)\left(\frac{\partial}{\partial r_1}\right) + M(\theta_1) \frac{\partial}{\partial \theta_1} + \frac{1}{2r_2}\right)u_1 = B_2[u], \quad \text{on } \Gamma_1, \ t > 0$$

III on Γ_1 , solution only depends on t and θ_1 since r_1 constant

Marie KRAY (Univ. Basel)

Second step:

Assume from the progressive wave expansion

$$u_1(t, r_1, \theta_1) \simeq \frac{1}{\sqrt{r_1}} f_1(r_1 - c_0 t, \theta_1)$$

Then f_1 satisfies:

$$\frac{\partial f_1}{\partial r_1} = -\frac{1}{c_0} \frac{\partial f_1}{\partial t}$$

by replacing in the PDE

$$\begin{pmatrix} \frac{1}{c_0} \frac{\partial}{\partial t} + K(\theta_1) & \frac{\partial}{\partial r_1} + M(\theta_1) & \frac{\partial}{\partial \theta_1} + \frac{1}{2r_2} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{r_1}} f_1 \end{pmatrix} = B_2[u] \\ \begin{pmatrix} \frac{1}{c_0\sqrt{r_1}} \frac{\partial}{\partial t} + \frac{K(\theta_1)}{\sqrt{r_1}} & \left(\frac{\partial}{\partial r_1} - \frac{1}{2r_1}\right) + \frac{M(\theta_1)}{\sqrt{r_1}} \frac{\partial}{\partial \theta_1} + \frac{1}{2r_2\sqrt{r_1}} \end{pmatrix} f_1 = B_2[u]$$

Second step:

Assume from the progressive wave expansion

$$u_1(t, r_1, \theta_1) \simeq \frac{1}{\sqrt{r_1}} f_1(r_1 - c_0 t, \theta_1)$$

Then f_1 satisfies:

$$\frac{\partial f_1}{\partial r_1} = -\frac{1}{c_0} \frac{\partial f_1}{\partial t}$$

by replacing in the PDE

$$\begin{pmatrix} \frac{1}{c_0} \frac{\partial}{\partial t} + \mathcal{K}(\theta_1) & \frac{\partial}{\partial r_1} + \mathcal{M}(\theta_1) & \frac{\partial}{\partial \theta_1} + \frac{1}{2r_2} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{r_1}} f_1 \end{pmatrix} = B_2[u] \\ \begin{pmatrix} \frac{1}{c_0\sqrt{r_1}} \frac{\partial}{\partial t} + \frac{\mathcal{K}(\theta_1)}{\sqrt{r_1}} \begin{pmatrix} \frac{\partial}{\partial r_1} - \frac{1}{2r_1} \end{pmatrix} + \frac{\mathcal{M}(\theta_1)}{\sqrt{r_1}} \frac{\partial}{\partial \theta_1} + \frac{1}{2r_2\sqrt{r_1}} \end{pmatrix} f_1 = B_2[u] \\ = -\frac{1}{c_0} \frac{\partial}{\partial t}$$

Finally: PDE to recover $f_1 = \sqrt{r_1}u_1$ on Γ_1 , t > 0

$$\left(\alpha_1(\theta_1)\frac{\partial}{\partial t}+\beta_1(\theta_1)\frac{\partial}{\partial \theta_1}+\gamma_1(\theta_1)\right)f_1=\left(\frac{1}{c_0}\frac{\partial}{\partial t}+\frac{\partial}{\partial r_2}+\frac{1}{2r_2}\right)u,$$

with

$$\begin{aligned} \alpha_{1}(\theta_{1}) &= \frac{\sqrt{r_{1}^{2} + \ell^{2} - 2r_{1}\ell\cos(\theta_{1})} - r_{1} + \ell\cos(\theta_{1})}{c_{0}\sqrt{r_{1}}\sqrt{r_{1}^{2} + \ell^{2} - 2r_{1}\ell\cos(\theta_{1})}},\\ \beta_{1}(\theta_{1}) &= \frac{\ell\sin(\theta_{1})}{r_{1}\sqrt{r_{1}}\sqrt{r_{1}^{2} + \ell^{2} - 2r_{1}\ell\cos(\theta_{1})}},\\ \gamma_{1}(\theta_{1}) &= \frac{\ell\cos(\theta_{1})}{2r_{1}\sqrt{r_{1}}\sqrt{r_{1}^{2} + \ell^{2} - 2r_{1}\ell\cos(\theta_{1})}},\end{aligned}$$

and ℓ the signed distance between C_1 and C_2 .

BASEL

We want to recover $f_1=\sqrt{r_1}u_1$ which satisfies on Γ , t>0

$$\left(\alpha_1(\theta_1)\frac{\partial}{\partial t} + \beta_1(\theta_1)\frac{\partial}{\partial \theta_1} + \gamma_1(\theta_1)\right)f_1 = \left(\frac{1}{c_0}\frac{\partial}{\partial t} + \frac{\partial}{\partial r_2} + \frac{1}{2r_2}\right)u,$$

Initial condition? At t = 0, no signal in Ω : all sources in $S_1 \cup S_2$

 \implies f_1 and f_2 vanish in Ω , thus on $\Gamma_1 \cup \Gamma_2$

the initial condition is:

$$f_1 = 0$$
, on Γ_1 , at $t = 0$.

Step 1: Wave Splitting Wave splitting in the two-space dimensional case

Hyperbolic PDE

$$\left(\alpha_1(\theta_1)\frac{\partial}{\partial t} + \beta_1(\theta_1)\frac{\partial}{\partial \theta_1} + \gamma_1(\theta_1)\right)f_1 = \left(\frac{1}{c_0}\frac{\partial}{\partial t} + \frac{\partial}{\partial r_2} + \frac{1}{2r_2}\right)u$$

trivial at $\theta_1 = 0$ or π modulo 2π , since $\alpha_1(\theta_1) = 0, \beta_1(\theta_1) = 0$

 \implies Dirichlet boundary condition: $f_1 = \frac{B_2[u]}{\gamma_1(0)}$ at $\theta_1 = 0$

Marie KRAY (Univ. Basel)

BASE

A similar equation can be derived for f_2 on the same boundary $\Gamma = \Gamma_1$. ¹ M.J. Grote, M. Kray, F. Nataf and F. Assous. Time-dependent wave splitting and source separation. (2016)

- Incident wave field from a point source
- Scattered wave field from a penetrable fish-shaped inclusion

Time history of wave fields at one location: incident wave impinges on a penetrable inclusion

- 2 Step 1: Wave Splitting
 - Principle using non-reflecting boundary conditions
 - Wave splitting in the two-space dimensional case
 - Numerical example
- 3 Steps 2 and 3, in short
 - Step 2: Time Reversed Absorbing Conditions (TRAC)
 - Step 3: Adaptive Eigenspace Inversion

Aim: Reconstruct the outgoing wave field u in $\Omega \setminus D$ from measurements on Γ reversed in time.

The wave equation is time reversible. The time reversed field $u_R(t, \cdot) := u(T - t, \cdot)$ is solution of a wave equation as well:

$$\begin{cases} \frac{\partial^2 u_R}{\partial t^2} - c_0^2 \Delta u_R &= 0 & \text{in } (0, T) \times (\Omega \setminus D), \\ u_R(t, \cdot) &= u(T - t, \cdot) & \text{on } (0, T) \times \Gamma, \\ u_R &= ? & \text{on } (0, T) \times \partial D, \end{cases}$$

with homogeneous initial conditions.

This problem is undetermined because D is unknown!

Time Reversed Absorbing Condition (*TRAC*) method: Introduce a subdomain *B* enclosing the inclusion *D*.

Reconstruct the time-reversed wave field in $\Omega \setminus B$ by imposing a relevant boundary condition on ∂B . $\implies TRAC$

Reconstruction of the total wave field

exact

sum

BXNEL

Aim: recover the location, shape and properties of inclusion D from the reconstructed data on a reduced computational domain

To solve the inverse problem, we minimize the functional:

$$J(\mathbf{p}) = \frac{1}{2} \int_0^T \int_\omega |u(\mathbf{p}) - u^{obs}|^2 dx dt + \frac{\alpha}{2} \int_B |\nabla \mathbf{p}|^2 dx,$$

with *p* the parameter to reconstruct, such that: $c^2(x) = c_0^2 + p(x)\chi_B(x)$ using

- optimize-then-discretize reduced-space approach
- BFGS algorithm
- finite elements method

Adaptive process³:

From an initial guess $p^{(0)}$, look for parameter p in the space spanned by the K first eigenfunctions of the elliptic operator:

$$p(x) = \sum_{i=1}^{K} p_i \phi_i(x), \quad \text{with} \quad \begin{cases} -\nabla \cdot (A(x) \nabla \phi_i) = \lambda_i \phi_i & \text{in } B, \\ \phi_i = 0 & \text{on } \partial B. \end{cases}$$

Matrix A is chosen with respect to the result obtained from the previous iteration:

$$A(x)=\frac{1}{|\nabla p^{(0)}(x)|^q}Id.$$

+ Mesh adaptation

 $^{^{3}}$ M. de Buhan, M. Kray. A new approach to solve the inverse scattering problem for waves: combining the TRAC and the Adaptive Inversion methods. Inverse Problems, 29(8), 2013.

Reconstruction of a fish: (from [de Buhan, K. 2013])

(a) Exact propagation speed in B
(b) Reconstruction with AI from data on ω
(c) Final mesh through adaptative process

- 2 Step 1: Wave Splitting
 - Principle using non-reflecting boundary conditions
 - Wave splitting in the two-space dimensional case
 - Numerical example
- 3 Steps 2 and 3, in short
 - Step 2: Time Reversed Absorbing Conditions (TRAC)
 - Step 3: Adaptive Eigenspace Inversion

Time-dependent Wave Splitting and Source Separation

New partial differential equation

- on a submanifold Γ
- in the time-dependent domain
- local in space and time
- independent on the frequency spectrum

Method extendable to:

- 2 or more scatterers
- vector-valued wave equations from electromagnetics and elasticity
- improved accuracy with higher order absorbing boundary condition (more terms in the progressive wave expansion)

Wave Splitting and adaptive eigenspace inversion for time-dependent inverse problems

Procedure in 3 steps:

- split the total wave field to recover the incident wave field, necessary for the optimization process
- incident and scattered wave fields reconstructed from split data by using the TRAC method
- adaptive eigenspace inversion to solve the inverse problem from the reconstructed data (in progress)

• Wave Splitting

- M.J. Grote, M. Kray, F. Nataf and F. Assous. Wave splitting for time-dependent scattered field separation. C. R. Acad. Sci., Serie I, 353(6) (2015)
- [2] M.J. Grote, M. Kray, F. Nataf and F. Assous. Time-dependent wave splitting and source separation. *submitted* (2016)

• TRAC method

- [3] F. Assous, M. Kray, F. Nataf, E. Turkel. Time Reversed Absorbing Condition: Application to inverse problems. *Inverse Problems*, 27(6) (2011)
- [4] F. Assous, M. Kray, F. Nataf. Time Reversed Absorbing Condition in the Partial Aperture Case. *Wave Motion*, 49(7) (2012)

• Adaptive (Eigenspace) Inversion method

- [5] M. de Buhan, M. Kray. A new approach to solve the inverse scattering problem for waves: combining the TRAC and the Adaptive Inversion methods. *Inverse Problems* 29(8) (2013)
- [6] M. J. Grote, M. Kray, U. Nahum. Adaptive Eigenspace Inversion for the Helmholtz equation. *in preparation*