ON THE MINIMIZERS OF TRACE INEQUALITIES IN BV

Vincenzo Ferone

Geometric and Analytic Inequalities
July 11-15, 2016
BIRS, Banff

Joint papers with A. Cianchi, C. Nitsch and C. Trombetti

Isoperimetric and functional inequalities

- Isoperimetric inequalities for physical quantities like the lowest principal frequency of vibrating clamped membranes, the electrostatic capacity or the torsional rigidity
[Faber (1923)], [Krahn (1924)], [SzeGÖ (1930)], [PÓlyA (1948)]

Isoperimetric and functional inequalities

- Isoperimetric inequalities for physical quantities like the lowest principal frequency of vibrating clamped membranes, the electrostatic capacity or the torsional rigidity
[Faber (1923)], [KRahn (1924)], [Szegö (1930)], [PÓlya (1948)]
- Best constant in Sobolev inequality [Aubin (1976)], [TALENTI (1976)]

Isoperimetric and functional inequalities

- Isoperimetric inequalities for physical quantities like the lowest principal frequency of vibrating clamped membranes, the electrostatic capacity or the torsional rigidity
[Faber (1923)], [KRahn (1924)], [Szegö (1930)], [PÓlya (1948)]
- Best constant in Sobolev inequality [Aubin (1976)], [TALENTI (1976)]
- ...

All the above quantities decrease or increase under Schwarz symmetrization. A key ingredient in finding sharp bounds is the classical isoperimetric property of the ball.

Isoperimetric and functional inequalities

- First non trivial eigenvalue of the laplacian with homogeneous Neumann boundary conditions
[SzËGo (1954)], [WEinberger (1956)]

Isoperimetric and functional inequalities

- First non trivial eigenvalue of the laplacian with homogeneous Neumann boundary conditions
[SzËGo (1954)], [WEinberger (1956)]
- Best constant in Sobolev-Poincaré inequalities
[Cianchi (1989)], [Andreu - Mazón - Rossi (2004)], [Girão - Weth (2006)], [Brezis - Van Schaftingen (2008)], [Leckband (2010)], [Bouchez - Van Schaftingen (2011)], [Esposito - V.F. - Kawohl Nitsch - Trombetti (2012)]
- ...

Isoperimetric and functional inequalities

- First non trivial eigenvalue of the laplacian with homogeneous Neumann boundary conditions
[SzËGO (1954)], [WEinbergaer (1956)]
- Best constant in Sobolev-Poincaré inequalities
[Cianchi (1989)], [Andreu - Mazón - Rossi (2004)], [Girão - Weth (2006)], [BreZis - Van Schaftingen (2008)], [Leckband (2010)], [Bouchez - Van Schaftingen (2011)], [ESposito - V.F. - Kawohl Nitsch - Trombetti (2012)]
- ...

The reduction to the case of the ball, when possible, is related to isoperimetric inequalities involving the relative perimeter.

Sobolev-Poincaré inequality in \mathbb{R}^{2}

Sobolev-Poincaré inequality

$$
\|D u\|(K) \geq C(K)\|u-\bar{u}\|_{2}, \quad u \in B V(K)
$$

where $\|D u\|(K)$ is the total variation of u in K, \bar{u} is the mean value of u on K and the best constant $C(K)$ is given by

Sobolev-Poincaré inequality in \mathbb{R}^{2}

Sobolev-Poincaré inequality

$$
\|D u\|(K) \geq C(K)\|u-\bar{u}\|_{2}, \quad u \in B V(K)
$$

where $\|D u\|(K)$ is the total variation of u in K, \bar{u} is the mean value of u on K and the best constant $C(K)$ is given by

$$
C(K)=|K|^{1 / 2} \inf _{\substack{G \subset K \\ 0<|G|<|K|}} \frac{\operatorname{Per}(G ; K)}{\sqrt{|G||K \backslash G|}} .
$$

[CIANCHI (1989)]

Sobolev-Poincaré inequality in \mathbb{R}^{2}

Sobolev-Poincaré inequality

$$
\|D u\|(K) \geq C(K)\|u-\bar{u}\|_{2}, \quad u \in B V(K)
$$

where $\|D u\|(K)$ is the total variation of u in K, \bar{u} is the mean value of u on K and the best constant $C(K)$ is given by

$$
C(K)=|K|^{1 / 2} \inf _{\substack{G \subset K \\ 0<|G|<|K|}} \frac{\operatorname{Per}(G ; K)}{\sqrt{|G||K \backslash G|}} .
$$

[CIANCHI (1989)]
The constant $C(K)$ can be related to the relative isoperimetric constant

$$
\gamma(K)=\inf _{\substack{G \subset K \\ 0<|G|<|K|}} \frac{\operatorname{Per}(G ; K)}{(\min \{|G|,|K \backslash G|\})^{1 / 2}}
$$

Sobolev-Poincaré inequality in \mathbb{R}^{2}

Theorem

If K is a convex set in \mathbb{R}^{2}, we have

$$
\gamma(K) \leq \gamma\left(K^{\sharp}\right) .
$$

where K^{\sharp} is the disc such that $\left|K^{\sharp}\right|=|K|$. Equality holds if and only if K is a disc.
[Esposito - V.F. - Kawohl - Nitsch - Trombetti (2012)]

Sobolev-Poincaré inequality in \mathbb{R}^{2}

Theorem

If K is a convex set in \mathbb{R}^{2}, we have

$$
\gamma(K) \leq \gamma\left(K^{\sharp}\right) .
$$

where K^{\sharp} is the disc such that $\left|K^{\sharp}\right|=|K|$. Equality holds if and only if K is a disc.
[Esposito - V.F. - Kawohl - Nitsch - Trombetti (2012)]
From the above theorem the following inequality follows:

$$
C(K) \leq C\left(K^{\sharp}\right) .
$$

Poincaré trace inequalities in $B V$

Ω is a bounded connected open set in $\mathbb{R}^{n}, n \geq 2$.

Poincaré trace inequalities in $B V$

Ω is a bounded connected open set in $\mathbb{R}^{n}, n \geq 2$.
If the boundary $\partial \Omega$ of Ω is smooth, then a linear operator is defined on the space $B V(\Omega)$ of functions of bounded variation in Ω, which associates with any function $u \in B V(\Omega)$ its (suitably defined) boundary trace $\widetilde{u} \in L^{1}(\partial \Omega)$.

Poincaré trace inequalities in $B V$

Ω is a bounded connected open set in $\mathbb{R}^{n}, n \geq 2$.
If the boundary $\partial \Omega$ of Ω is smooth, then a linear operator is defined on the space $B V(\Omega)$ of functions of bounded variation in Ω, which associates with any function $u \in B V(\Omega)$ its (suitably defined) boundary trace $\widetilde{u} \in L^{1}(\partial \Omega)$.
There exists a constant C, depending on Ω, such that

$$
\inf _{c \in \mathbb{R}}\|\widetilde{u}-c\|_{L^{1}(\partial \Omega)} \leq C(\Omega)\|D u\|(\Omega)
$$

for every $u \in B V(\Omega)$.
[MAZ'YA (2011)]

Poincaré trace inequalities in $B V$

Ω is a bounded connected open set in $\mathbb{R}^{n}, n \geq 2$.
If the boundary $\partial \Omega$ of Ω is smooth, then a linear operator is defined on the space $B V(\Omega)$ of functions of bounded variation in Ω, which associates with any function $u \in B V(\Omega)$ its (suitably defined) boundary trace $\widetilde{u} \in L^{1}(\partial \Omega)$.
There exists a constant C, depending on Ω, such that

$$
\inf _{c \in \mathbb{R}}\|\widetilde{u}-c\|_{L^{1}(\partial \Omega)} \leq C(\Omega)\|D u\|(\Omega)
$$

for every $u \in B V(\Omega)$.
[MAZ'YA (2011)]
We are interested in the minimization of $C(\Omega)$.

Poincaré trace inequalities in $B V$

We observe that the previous inequality is the case $p=1$ (in $B V$ setting) of the following one

$$
\begin{equation*}
\inf _{c \in \mathbb{R}}\|\widetilde{u}-c\|_{L^{p}(\partial \Omega)} \leq C_{p}(\Omega)\|D u\|_{L^{p}(\Omega)} \tag{1}
\end{equation*}
$$

where the extremal functions are solutions to the Stekloff eigenvalue problem

$$
\begin{cases}\Delta_{p} u=0 & \text { in } \Omega, \\ C_{p}(\Omega)|D u|^{p-2} \frac{\partial u}{\partial \nu}=|u|^{p-2} u & \text { on } \partial \Omega .\end{cases}
$$

Poincaré trace inequalities in $B V$

We observe that the previous inequality is the case $p=1$ (in $B V$ setting) of the following one

$$
\begin{equation*}
\inf _{c \in \mathbb{R}}\|\widetilde{u}-c\|_{L^{p}(\partial \Omega)} \leq C_{p}(\Omega)\|D u\|_{L^{p}(\Omega)} \tag{1}
\end{equation*}
$$

where the extremal functions are solutions to the Stekloff eigenvalue problem

$$
\begin{cases}\Delta_{p} u=0 & \text { in } \Omega, \\ C_{p}(\Omega)|D u|^{p-2} \frac{\partial u}{\partial \nu}=|u|^{p-2} u & \text { on } \partial \Omega .\end{cases}
$$

The problem of minimizing the constant $C_{p}(\Omega)$ in (1) has been solved only for $p=2$. The well known Weinstock-Brock inequality asserts that the (unique) minimizer among sets with fixed measure is the ball.
[Weinstock (1954)], [Brock (2001)]

Poincaré trace inequalities in $B V$

A property of L^{1} norms ensures that the infimum

$$
\inf _{c \in \mathbb{R}}\|\widetilde{u}-c\|_{L^{1}(\partial \Omega)}
$$

is attained when c agrees with the median of \widetilde{u} on $\partial \Omega$, given by

$$
\operatorname{med}_{\partial \Omega} \widetilde{u}=\sup \left\{t \in \mathbb{R}: \mathcal{H}^{n-1}(\{\widetilde{u}>t\})>\mathcal{H}^{n-1}(\partial \Omega) / 2\right\}
$$

[CIANCHI - Pick (2003)]

Poincaré trace inequalities in $B V$

A property of L^{1} norms ensures that the infimum

$$
\inf _{c \in \mathbb{R}}\|\widetilde{u}-c\|_{L^{1}(\partial \Omega)}
$$

is attained when c agrees with the median of \widetilde{u} on $\partial \Omega$, given by

$$
\operatorname{med}_{\partial \Omega} \widetilde{u}=\sup \left\{t \in \mathbb{R}: \mathcal{H}^{n-1}(\{\widetilde{u}>t\})>\mathcal{H}^{n-1}(\partial \Omega) / 2\right\}
$$

[CIANCHI - Pick (2003)]
Thus, the above trace inequality is equivalent to

$$
\left\|\widetilde{u}-\operatorname{med}_{\partial \Omega} \widetilde{u}\right\|_{L^{1}(\partial \Omega)} \leq C_{\text {med }}(\Omega)\|D u\|(\Omega)
$$

for every $u \in B V(\Omega)$, where $C_{\text {med }}(\Omega)$ denotes the optimal - smallest possible - constant which renders the inequality true.

Poincaré trace inequalities in $B V$

The constant $C_{\text {med }}(\Omega)$ can be characterized as a genuinely geometric quantity associated with Ω, namely,

$$
C_{\operatorname{med}}(\Omega)=\sup _{E \subset \Omega} \frac{\min \left\{\mathcal{H}^{n-1}\left(\partial^{M} E \cap \partial \Omega\right), \mathcal{H}^{n-1}\left(\partial \Omega \backslash \partial^{M} E\right)\right\}}{\mathcal{H}^{n-1}\left(\partial^{M} E \cap \Omega\right)},
$$

where the supremum is extended over all measurable sets $E \subset \Omega$ with positive Lebesgue measure and $\partial^{M} E$ denotes the essential boundary of E.
[MAZ'YA (2011)]

Some related problems

In studying the quality of transportation networks like waterways, railroad systems, or urban street systems one introduces the dilation of the network which is defined as $C_{\text {med }}$.
[Ebbers-Baumann - Grüne - Klein (2006)]

Some related problems

In studying the quality of transportation networks like waterways, railroad systems, or urban street systems one introduces the dilation of the network which is defined as $C_{\text {med }}$.
[Ebbers-Baumann - Grüne - Klein (2006)]
Also the definition of distortion of a curve is related to $C_{\text {med }}$, and it turns out to be useful in determining the thickest curve of prescribed length in a knot class. Such curves are of interest to chemists and biologists modeling polymers and DNA.
[Kusner - Sullivan (1998)]

Poincaré trace inequalities in $B V$

A stronger version of Poincaré trace inequality holds, when med $\partial_{\Omega} \widetilde{u}$ is replaced with the mean value $\widetilde{u}_{\partial \Omega}$ of \widetilde{u} over $\partial \Omega$, defined as

$$
\widetilde{u}_{\partial \Omega}=\frac{1}{\mathcal{H}^{n-1}(\partial \Omega)} \int_{\partial \Omega} \widetilde{u} d \mathcal{H}^{n-1}(x) .
$$

Poincaré trace inequalities in $B V$

A stronger version of Poincaré trace inequality holds, when med $\partial_{\Omega} \widetilde{u}$ is replaced with the mean value $\widetilde{u}_{\partial \Omega}$ of \widetilde{u} over $\partial \Omega$, defined as

$$
\widetilde{u}_{\partial \Omega}=\frac{1}{\mathcal{H}^{n-1}(\partial \Omega)} \int_{\partial \Omega} \widetilde{u} d \mathcal{H}^{n-1}(x) .
$$

The relevant inequality reads

$$
\left\|\widetilde{u}-\widetilde{u}_{\partial \Omega}\right\|_{L^{1}(\partial \Omega)} \leq C_{\operatorname{mv}}(\Omega)\|D u\|(\Omega)
$$

for every $u \in B V(\Omega)$, where $C_{\mathrm{mv}}(\Omega)$ is the optimal constant in the above inequality.

Poincaré trace inequalities in $B V$

A stronger version of Poincaré trace inequality holds, when med $\partial_{\Omega} \widetilde{u}$ is replaced with the mean value $\widetilde{u}_{\partial \Omega}$ of \widetilde{u} over $\partial \Omega$, defined as

$$
\widetilde{u}_{\partial \Omega}=\frac{1}{\mathcal{H}^{n-1}(\partial \Omega)} \int_{\partial \Omega} \widetilde{u} d \mathcal{H}^{n-1}(x) .
$$

The relevant inequality reads

$$
\left\|\widetilde{u}-\widetilde{u}_{\partial \Omega}\right\|_{L^{1}(\partial \Omega)} \leq C_{\operatorname{mv}}(\Omega)\|D u\|(\Omega)
$$

for every $u \in B V(\Omega)$, where $C_{\mathrm{mv}}(\Omega)$ is the optimal constant in the above inequality.

Observe that one has

$$
C_{\mathrm{med}}(\Omega) \leq C_{\mathrm{mv}}(\Omega)
$$

for every domain Ω.

Poincaré trace inequalities in $B V$

A stronger version of Poincaré trace inequality holds, when med $\partial_{\Omega} \widetilde{u}$ is replaced with the mean value $\widetilde{u}_{\partial \Omega}$ of \widetilde{u} over $\partial \Omega$, defined as

$$
\widetilde{u}_{\partial \Omega}=\frac{1}{\mathcal{H}^{n-1}(\partial \Omega)} \int_{\partial \Omega} \widetilde{u} d \mathcal{H}^{n-1}(x) .
$$

The relevant inequality reads

$$
\left\|\widetilde{u}-\widetilde{u}_{\partial \Omega}\right\|_{L^{1}(\partial \Omega)} \leq C_{\mathrm{mv}}(\Omega)\|D u\|(\Omega)
$$

for every $u \in B V(\Omega)$, where $C_{\mathrm{mv}}(\Omega)$ is the optimal constant in the above inequality.

Observe that one has

$$
C_{\text {med }}(\Omega) \leq C_{\text {mv }}(\Omega)
$$

for every domain Ω.
Both $C_{\text {med }}(\Omega)$ and $C_{\text {mv }}(\Omega)$ are invariant under dilations of Ω, and hence they only depend on the shape of Ω, but not on its size.

Poincaré trace inequalities in $B V$

The constant $C_{\mathrm{mv}}(\Omega)$ can be characterized as a genuinely geometric quantity associated with Ω, namely,

$$
C_{\mathrm{mv}}(\Omega)=\frac{2}{\mathcal{H}^{n-1}(\partial \Omega)} \sup _{E \subset \Omega} \frac{\mathcal{H}^{n-1}\left(\partial^{M} E \cap \partial \Omega\right) \mathcal{H}^{n-1}\left(\partial \Omega \backslash \partial^{M} E\right)}{\mathcal{H}^{n-1}\left(\partial^{M} E \cap \Omega\right)}
$$

where the supremum is extended over all measurable sets $E \subset \Omega$ with positive Lebesgue measure.
[CIANCHI (2012)]

Poincaré trace inequalities in $B V$

Theorem ([CIanchi - V.F. - Nitsch - Trombetti, Crelle (to appear)])
We have:

$$
\begin{equation*}
C_{m e d}(\Omega) \geq \sqrt{\pi} \frac{n}{2} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n+2}{2}\right)} . \tag{2}
\end{equation*}
$$

Moreover, equality holds in (2) if and only if Ω is equivalent to a ball, up to a set of \mathcal{H}^{n-1} measure zero.

Poincaré trace inequalities in $B V$

Theorem ([CIANchi - V.F. - Nitsch - Trombetti, Crelle (to appear)])

We have:

$$
\begin{equation*}
C_{m e d}(\Omega) \geq \sqrt{\pi} \frac{n}{2} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n+2}{2}\right)} \tag{2}
\end{equation*}
$$

Moreover, equality holds in (2) if and only if Ω is equivalent to a ball, up to a set of \mathcal{H}^{n-1} measure zero.

Remark. The constant which appears in (2) coincides with

$$
\frac{n \omega_{n}}{2 \omega_{n-1}}
$$

where $\omega_{n}=\pi^{\frac{n}{2}} / \Gamma\left(1+\frac{n}{2}\right)$ is the Lebesgue measure of the unit ball in \mathbb{R}^{n}. The supremum which defines $C_{\text {med }}(\Omega)$ is attained at a half-ball in this case.
[Bokowski - Sperner (1979)], [Escobar (1999)], [Maz’Ya (2011)]

Poincaré trace inequalities in $B V$

Theorem ([CIANChI - V.F. - Nitsch - Trombetti, Crelle (to appear)])
If $n \geq 3$, then

$$
\begin{equation*}
C_{m v}(\Omega) \geq \sqrt{\pi} \frac{n}{2} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n+2}{2}\right)}, \tag{3}
\end{equation*}
$$

and the equality holds in (3) if and only if Ω is equivalent to a ball, up to a set of \mathcal{H}^{n-1} measure zero.
If $n=2$, then

$$
\begin{equation*}
C_{m v}(\Omega) \geq 2 \tag{4}
\end{equation*}
$$

and the equality holds in (4) if Ω is a disc. However there exist open sets Ω, that are not equivalent to a disc, for which equality yet holds in (4).

Poincaré trace inequalities in $B V$

Theorem ([CIANChI - V.F. - Nitsch - Trombetti, Crelle (to appear)])

If $n \geq 3$, then

$$
\begin{equation*}
C_{m v}(\Omega) \geq \sqrt{\pi} \frac{n}{2} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n+2}{2}\right)}, \tag{3}
\end{equation*}
$$

and the equality holds in (3) if and only if Ω is equivalent to a ball, up to a set of \mathcal{H}^{n-1} measure zero.
If $n=2$, then

$$
\begin{equation*}
C_{m v}(\Omega) \geq 2 \tag{4}
\end{equation*}
$$

and the equality holds in (4) if Ω is a disc. However there exist open sets Ω, that are not equivalent to a disc, for which equality yet holds in (4).

Remark. Also in this case the lower bounds which appear in (3) and (4) coincide with the values of C_{mv} computed on a ball. When $n \geq 3, C_{\mathrm{mv}}$ is attained at a half-ball, when $n=2, C_{\mathrm{mv}}$ is attained in the limit, considering any sequence of circular segments whose measure converges to 0 (on the half-circle the ratio is $\pi / 2$).
[CIANCHI (2012)]

An example

Let us consider a stadium-shaped domain
$S_{R, d}=$ convex hull of two discs of equal radii R, with centers at distance d, with semi-perimeter $p=d+\pi R$.

An example

Let us consider a stadium-shaped domain
$S_{R, d}=$ convex hull of two discs of equal radii R, with centers at distance d,
with semi-perimeter $p=d+\pi R$.
In order to calculate $C_{\mathrm{mv}}\left(S_{R, d}\right)$ one can reduce the analysis to subsets of $S_{R, d}$ bounded by a chord which is orthogonal to the flat parts of $S_{R, d}$.

An example

Let us consider a stadium-shaped domain
$S_{R, d}=$ convex hull of two discs of equal radii R, with centers at distance d,
with semi-perimeter $p=d+\pi R$.
In order to calculate $C_{\mathrm{mv}}\left(S_{R, d}\right)$ one can reduce the analysis to subsets of $S_{R, d}$ bounded by a chord which is orthogonal to the flat parts of $S_{R, d}$.

An example

If $d \leq(4-\pi) R$

$$
C_{\mathrm{mv}}\left(S_{R, d}\right)=2
$$

An example

If $d \leq(4-\pi) R$

$$
C_{\mathrm{mv}}\left(S_{R, d}\right)=2
$$

If $d>(4-\pi) R$

$$
C_{\mathrm{mv}}\left(S_{R, d}\right)=\frac{d+\pi R}{2 R}>2 .
$$

Further Poincaré trace inequalities in $B V$

We have considered also two "unconventional" Poincaré trace inequalities where the mean value and the median of \widetilde{u} on $\partial \Omega$ is substituted by the mean value and the median of u on Ω.

Further Poincaré trace inequalities in $B V$

We have considered also two "unconventional" Poincaré trace inequalities where the mean value and the median of \widetilde{u} on $\partial \Omega$ is substituted by the mean value and the median of u on Ω.

Let us denote by $K_{m v}(\Omega)$ the optimal constant in the inequality

$$
\begin{equation*}
\left\|\widetilde{u}-m v_{\Omega}(u)\right\|_{L^{1}(\partial \Omega)} \leq K_{m v}(\Omega)\|D u\|(\Omega) \tag{5}
\end{equation*}
$$

for $u \in B V(\Omega)$.

Further Poincaré trace inequalities in $B V$

We have considered also two "unconventional" Poincaré trace inequalities where the mean value and the median of \widetilde{u} on $\partial \Omega$ is substituted by the mean value and the median of u on Ω.

Let us denote by $K_{m v}(\Omega)$ the optimal constant in the inequality

$$
\begin{equation*}
\left\|\widetilde{u}-m v_{\Omega}(u)\right\|_{L^{1}(\partial \Omega)} \leq K_{m v}(\Omega)\|D u\|(\Omega) \tag{5}
\end{equation*}
$$

for $u \in B V(\Omega)$.
Our first result asserts that $K_{m v}(\Omega)$ agrees with the isoperimetric constant

$$
\begin{equation*}
H_{m v}(\Omega)=\sup _{E \subset \Omega} \frac{|E| \mathcal{H}^{n-1}\left(\partial \Omega \backslash \partial^{M} E\right)+|\Omega \backslash E| \mathcal{H}^{n-1}\left(\partial^{M} E \cap \partial \Omega\right)}{|\Omega| \mathcal{H}^{n-1}\left(\partial^{M} E \cap \Omega\right)} . \tag{6}
\end{equation*}
$$

Further Poincaré trace inequalities in $B V$

Theorem ([CIANCHI - V.F. - NITSCH - TROMBETTI, preprint])

Let Ω be an admissible domain in \mathbb{R}^{n}, with $n \geq 2$. Then

$$
\begin{equation*}
K_{m v}(\Omega)=H_{m v}(\Omega) . \tag{7}
\end{equation*}
$$

Equality holds in (5) for some nonconstant function u if and only if the supremum is attained in (6) for some set E. In particular, if E is an extremal set in (6), then the function $a \chi_{E}+b$ is an extremal function in (5) for every $a \in \mathbb{R} \backslash\{0\}$ and $b \in \mathbb{R}$.

Further Poincaré trace inequalities in $B V$

Analogously, let $K_{\text {med }}(\Omega)$ be the optimal constant in the inequality

$$
\begin{equation*}
\left\|\widetilde{u}-\operatorname{med}_{\Omega}(u)\right\|_{L^{1}(\partial \Omega)} \leq K_{\text {med }}(\Omega)\|D u\|(\Omega) \tag{8}
\end{equation*}
$$

for $u \in B V(\Omega)$. The isoperimetric constant which now comes into play is defined as

$$
\begin{equation*}
H_{\text {med }}(\Omega)=\sup _{\substack{E \subset \Omega \\|E| \leq|\Omega| / 2}} \frac{\mathcal{H}^{n-1}\left(\partial^{M} E \cap \partial \Omega\right)}{\mathcal{H}^{n-1}\left(\partial^{M} E \cap \Omega\right)} \tag{9}
\end{equation*}
$$

Further Poincaré trace inequalities in $B V$

Analogously, let $K_{\text {med }}(\Omega)$ be the optimal constant in the inequality

$$
\begin{equation*}
\left\|\widetilde{u}-\operatorname{med}_{\Omega}(u)\right\|_{L^{1}(\partial \Omega)} \leq K_{\text {med }}(\Omega)\|D u\|(\Omega) \tag{8}
\end{equation*}
$$

for $u \in B V(\Omega)$. The isoperimetric constant which now comes into play is defined as

$$
\begin{equation*}
H_{\text {med }}(\Omega)=\sup _{\substack{E \subset \Omega \\|E| \leq|\Omega| / 2}} \frac{\mathcal{H}^{n-1}\left(\partial^{M} E \cap \partial \Omega\right)}{\mathcal{H}^{n-1}\left(\partial^{M} E \cap \Omega\right)} . \tag{9}
\end{equation*}
$$

Theorem ([CIANCHI - V.F. - Nitsch - Trombetti, preprint])

Let Ω be an admissible domain in \mathbb{R}^{n}, with $n \geq 2$. Then

$$
\begin{equation*}
K_{\text {med }}(\Omega)=H_{\text {med }}(\Omega) . \tag{10}
\end{equation*}
$$

Equality holds in (8) for some nonconstant function u if and only if the supremum is attained in (9) for some set E. In particular, if E is an extremal in (9), then the function $a \chi_{E}+b$ is an extremal in (8) for every $a \in \mathbb{R} \backslash\{0\}$ and $b \in \mathbb{R}$.

Further Poincaré trace inequalities in $B V$

We have started to calculate the constants $K_{m v}(\Omega)$ and $K_{\text {med }}(\Omega)$ when $\Omega=B$ is a ball.

Further Poincaré trace inequalities in $B V$

We have started to calculate the constants $K_{m v}(\Omega)$ and $K_{\text {med }}(\Omega)$ when $\Omega=B$ is a ball.

Theorem ([CIANCHI - V.F. - Nitsch - Trombetti, preprint])
Let $n \geq 2$. Then

$$
H_{m v}(B)=\frac{n \omega_{n}}{2 \omega_{n-1}}
$$

Half-balls are extremal sets for $K_{m v}(B)$.

Further Poincaré trace inequalities in $B V$

Theorem ([CIANCHI - V.F. - Nitsch - TROMBETTI, preprint])
Let $n \geq 2$. Then there exists a half-moon shaped set E which is extremal for $H_{\text {med }}(B)$.

An approach to the proof of the first result

Theorem
We have:

$$
\begin{equation*}
C_{m e d}(\Omega) \geq \sqrt{\pi} \frac{n}{2} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n+2}{2}\right)} \tag{11}
\end{equation*}
$$

Moreover, equality holds in (11) if and only if Ω is equivalent to a ball, up to a set of \mathcal{H}^{n-1} measure zero.

An approach to the proof of the first result

Suppose Ω is convex. We have to estimate from below the quantity

$$
C_{\text {med }}(\Omega)=\sup _{E \subset \Omega} \frac{\min \left\{\mathcal{H}^{n-1}\left(\partial^{M} E \cap \partial \Omega\right), \mathcal{H}^{n-1}\left(\partial \Omega \backslash \partial^{M} E\right)\right\}}{\mathcal{H}^{n-1}\left(\partial^{M} E \cap \Omega\right)}
$$

We denote by H_{ν} the half-space, with boundary having normal vector ν, such that

$$
\mathcal{H}^{n-1}\left(\partial^{M}\left(H_{\nu} \cap \Omega\right) \cap \partial \Omega\right)=\frac{\operatorname{Per}(\Omega)}{2},
$$

and we put

$$
h(\nu)=\mathcal{H}^{n-1}\left(\partial^{M}\left(H_{\nu} \cap \Omega\right) \cap \Omega\right) .
$$

We can use $E=H_{\nu} \cap \Omega$ in the ratio above to get

$$
C_{\text {med }}(\Omega) \geq \frac{\operatorname{Per}(\Omega)}{2} \frac{1}{\min _{\substack{H \text { hall-space } \\ \mathcal{H}^{n-1}\left(\partial^{M}(H \cap \Omega) \cap \partial\right)=\frac{\operatorname{Per}(\Omega)}{2}}} \mathcal{H}^{n-1}\left(\partial^{M}(H \cap \Omega) \cap \Omega\right)}
$$

An approach to the proof of the first result

On the other hand, using Cauchy formula, we have

$$
\begin{array}{r}
\min _{\substack{H \text { halt-space } \\
\mathcal{H}^{n-1}\left(\partial^{M}(H \cap \Omega) \cap \partial \Omega\right)=\frac{P e r(\Omega)}{2}}} \mathcal{H}^{n-1}\left(\partial^{M}(H \cap \Omega) \cap \Omega\right) \leq \frac{1}{n \omega_{n}} \int_{\mathbb{S}^{n-1}} h(\nu) d \nu \leq \\
\leq \frac{1}{n \omega_{n}} \int_{\mathbb{S}^{n-1}} \mathcal{H}^{n-1}\left(\Pi_{\nu} \Omega\right) d \nu=\frac{1}{n \omega_{n}} \omega_{n-1} \operatorname{Per}(\Omega),
\end{array}
$$

then

$$
C_{\text {med }}(\Omega) \geq \frac{n \omega_{n}}{2 \omega_{n-1}}
$$

and the proof of the inequality is complete.

An approach to the proof of the first result

If equality holds in the previous inequality, that is,

$$
C_{\mathrm{med}}(\Omega)=\sup _{E \subset \Omega} \frac{\min \left\{\mathcal{H}^{n-1}\left(\partial^{M} E \cap \partial \Omega\right), \mathcal{H}^{n-1}\left(\partial \Omega \backslash \partial^{M} E\right)\right\}}{\mathcal{H}^{n-1}\left(\partial^{M} E \cap \Omega\right)}=\frac{n \omega_{n}}{2 \omega_{n-1}},
$$

all the inequalities used above hold as equalities and we have

$$
\mathcal{H}^{n-1}\left(\partial^{M}\left(H_{\nu} \cap \Omega\right) \cap \Omega\right)=\mathcal{H}^{n-1}\left(\Pi_{\nu}(\Omega)\right)=\operatorname{Per}(\Omega) \frac{\omega_{n-1}}{n \omega_{n}}, \quad \forall \nu \in \mathbb{S}^{n-1}
$$

It follows that Ω is, in fact, strictly convex. Indeed, assume, by contradiction, that there exists a straight line intersecting $\partial \Omega$ in a whole segment Σ.

An approach to the proof of the first result

If equality holds in the previous inequality, that is,

$$
C_{\text {med }}(\Omega)=\sup _{E \subset \Omega} \frac{\min \left\{\mathcal{H}^{n-1}\left(\partial^{M} E \cap \partial \Omega\right), \mathcal{H}^{n-1}\left(\partial \Omega \backslash \partial^{M} E\right)\right\}}{\mathcal{H}^{n-1}\left(\partial^{M} E \cap \Omega\right)}=\frac{n \omega_{n}}{2 \omega_{n-1}},
$$

all the inequalities used above hold as equalities and we have

$$
\mathcal{H}^{n-1}\left(\partial^{M}\left(H_{\nu} \cap \Omega\right) \cap \Omega\right)=\mathcal{H}^{n-1}\left(\Pi_{\nu}(\Omega)\right)=\operatorname{Per}(\Omega) \frac{\omega_{n-1}}{n \omega_{n}}, \quad \forall \nu \in \mathbb{S}^{n-1}
$$

It follows that Ω is, in fact, strictly convex. Indeed, assume, by contradiction, that there exists a straight line intersecting $\partial \Omega$ in a whole segment Σ.

An approach to the proof of the first result

If equality holds in the previous inequality, that is,

$$
C_{\mathrm{med}}(\Omega)=\sup _{E \subset \Omega} \frac{\min \left\{\mathcal{H}^{n-1}\left(\partial^{M} E \cap \partial \Omega\right), \mathcal{H}^{n-1}\left(\partial \Omega \backslash \partial^{M} E\right)\right\}}{\mathcal{H}^{n-1}\left(\partial^{M} E \cap \Omega\right)}=\frac{n \omega_{n}}{2 \omega_{n-1}},
$$

all the inequalities used above hold as equalities and we have

$$
\mathcal{H}^{n-1}\left(\partial^{M}\left(H_{\nu} \cap \Omega\right) \cap \Omega\right)=\mathcal{H}^{n-1}\left(\Pi_{\nu}(\Omega)\right)=\operatorname{Per}(\Omega) \frac{\omega_{n-1}}{n \omega_{n}}, \quad \forall \nu \in \mathbb{S}^{n-1}
$$

It follows that Ω is, in fact, strictly convex. Indeed, assume, by contradiction, that there exists a straight line intersecting $\partial \Omega$ in a whole segment Σ. It results

$$
\mathcal{H}^{n-1}\left(\partial^{M}\left(H_{\nu} \cap \Omega\right) \cap \Omega\right)<\mathcal{H}^{n-1}\left(\Pi_{\nu}(\Omega)\right) .
$$

An approach to the proof of the first result

By the strict convexity of Ω, we have:

$$
\mathcal{H}^{n-1}\left(I_{\nu}(\Omega)\right)=\mathcal{H}^{n-1}\left(\partial \Omega \cap H_{\nu}\right)=\operatorname{Per}(\Omega) / 2, \quad \forall \nu \in \mathbb{S}^{n-1}
$$

where $I_{\nu}(\Omega)$ denotes the illuminated portion of Ω. In particular,

$$
\mathcal{H}^{n-1}\left(I_{\nu}(\Omega)\right)=\mathcal{H}^{n-1}\left(I_{-\nu}(\Omega)\right), \quad \forall \nu \in \mathbb{S}^{n-1}
$$

The above property implies that Ω is centrally symmetric.

An approach to the proof of the first result

By the strict convexity of Ω, we have:

$$
\mathcal{H}^{n-1}\left(I_{\nu}(\Omega)\right)=\mathcal{H}^{n-1}\left(\partial \Omega \cap H_{\nu}\right)=\operatorname{Per}(\Omega) / 2, \quad \forall \nu \in \mathbb{S}^{n-1}
$$

where $I_{\nu}(\Omega)$ denotes the illuminated portion of Ω. In particular,

$$
\mathcal{H}^{n-1}\left(I_{\nu}(\Omega)\right)=\mathcal{H}^{n-1}\left(I_{-\nu}(\Omega)\right), \quad \forall \nu \in \mathbb{S}^{n-1}
$$

The above property implies that Ω is centrally symmetric.
Finally, on calling B the ball with the same perimeter as Ω, we infer that

$$
\mathcal{H}^{n-1}\left(\Pi_{\nu}(\Omega)\right)=\mathcal{H}^{n-1}\left(\Pi_{\nu}(B)\right), \quad \forall \nu \in \mathbb{S}^{n-1}
$$

Hence, we conclude that Ω is a ball.
(The last two assertions come from well known results about convex bodies [Groemer (1996)])

The general case

If we do not suppose that Ω is convex the Cauchy surface area formula cannot be used and a weaker version of it is needed.

The general case

If we do not suppose that Ω is convex the Cauchy surface area formula cannot be used and a weaker version of it is needed.
Theorem ([Federer (1969)], [Cianchi - V.F. - Nitsch - Trombetti, Crelle (to appear)])
Let G be a set of finite perimeter and finite Lebesgue measure in \mathbb{R}^{n}. Then

$$
\begin{equation*}
\operatorname{Per}(G)=\frac{1}{2 \omega_{n-1}} \int_{\mathbb{S}^{n-1}}\left(\int_{\nu^{\perp}} \mathcal{H}^{0}\left(\left(\partial^{M} G\right)_{z}^{\nu}\right) d \mathcal{H}^{n-1}(z)\right) d \mathcal{H}^{n-1}(\nu) \tag{12}
\end{equation*}
$$

where we use the notation $E_{z}^{\nu}=\{r \in \mathbb{R}: z+r \nu \in E\}$. In particular,

$$
\begin{equation*}
\operatorname{Per}(G) \geq \frac{1}{\omega_{n-1}} \int_{\mathbb{S}^{n-1}} \mathcal{H}^{n-1}\left(\Pi_{\nu}(G)^{+}\right) d \nu \tag{13}
\end{equation*}
$$

where $\Pi_{\nu}(E)^{+}=\left\{z \in \nu^{\perp}: \mathcal{L}^{1}\left(E_{z}^{\nu}\right)>0\right\}$. Moreover, the following facts are equivalent:
(i) The equality holds in (13);
(ii) G is equivalent to a convex set, up to sets of Lebesgue measure zero;
(iii) The set G^{1} of points of density 1 with respect to G is convex.

The general case

$$
\int_{\nu^{\perp}} \mathcal{H}^{0}\left(\left(\partial^{M} G\right)_{z}^{\nu}\right) d \mathcal{H}^{n-1}(z) \geq 2 \mathcal{H}^{n-1}\left(\Pi_{\nu}(G)^{+}\right) .
$$

An approach to the proof of the second result

Theorem

If $n \geq 3$, then

$$
\begin{equation*}
C_{m v}(\Omega) \geq \sqrt{\pi} \frac{n}{2} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n+2}{2}\right)}, \tag{14}
\end{equation*}
$$

and the equality holds in (14) if and only if Ω is equivalent to a ball, up to a set of \mathcal{H}^{n-1} measure zero.
If $n=2$, then

$$
\begin{equation*}
C_{m v}(\Omega) \geq 2 \tag{15}
\end{equation*}
$$

and the equality holds in (15) if Ω is a disc. However there exist open sets Ω, that are not equivalent to a disc, for which equality yet holds in (15).

An approach to the proof of the second result

When $n \geq 3$, we have observed that

$$
C_{\text {mv }}(\Omega) \geq C_{\text {med }}(\Omega)
$$

An approach to the proof of the second result

When $n \geq 3$, we have observed that

$$
\begin{equation*}
C_{\mathrm{mv}}(\Omega) \geq C_{\mathrm{med}}(\Omega) \geq \sqrt{\pi} \frac{n}{2} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n+2}{2}\right)} \tag{16}
\end{equation*}
$$

and the inequality is proved. The assertion concerning the case of equality follows as well.

An approach to the proof of the second result

When $n \geq 3$, we have observed that

$$
\begin{equation*}
C_{\mathrm{mv}}(\Omega) \geq C_{\mathrm{med}}(\Omega) \geq \sqrt{\pi} \frac{n}{2} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n+2}{2}\right)} \tag{16}
\end{equation*}
$$

and the inequality is proved. The assertion concerning the case of equality follows as well.

When $n=2$, inequality (16) still holds true, but the right-hand side does not coincide with the constant C_{mv} computed on a ball. Indeed,

$$
\left.\sqrt{\pi} \frac{n}{2} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n+2}{2}\right)}\right|_{n=2}=\frac{\pi}{2}<2 .
$$

An approach to the proof of the second result

In order to prove that, when $n=2, C_{m v}(\Omega) \geq 2$ we consider a reference frame such that the origin O belongs to the boundary of Ω and

$$
\Omega \subset\left\{(x, y) \in \mathbb{R}^{2}: y>0\right\} .
$$

An approach to the proof of the second result

In order to prove that, when $n=2, C_{\mathrm{mv}}(\Omega) \geq 2$ we consider a reference frame such that the origin O belongs to the boundary of Ω and

$$
\Omega \subset\left\{(x, y) \in \mathbb{R}^{2}: y>0\right\} .
$$

Given $\varepsilon>0$, consider the open set

$$
\Omega(\varepsilon)=\{(x, y) \in \Omega: y<\varepsilon\} .
$$

We have:
$\mathcal{H}^{1}\left(\partial^{M} \Omega(\varepsilon) \cap \Omega\right) \leq \mathcal{H}^{1}\left(\partial^{M} \Omega(\varepsilon) \cap \partial \Omega\right)$ and

$$
\lim _{\varepsilon \rightarrow 0^{+}} \mathcal{H}^{1}\left(\partial \Omega \backslash \partial^{M} \Omega(\varepsilon)\right)=\operatorname{Per}(\Omega)
$$

An approach to the proof of the second result

It follows:

$$
\begin{aligned}
C_{\mathrm{mv}}(\Omega) & \geq \lim _{\varepsilon \rightarrow 0^{+}} \frac{2}{\mathcal{H}^{1}(\partial \Omega)} \frac{\mathcal{H}^{1}(\partial \Omega(\varepsilon) \cap \partial \Omega) \mathcal{H}^{1}(\partial \Omega \backslash \partial \Omega(\varepsilon))}{\mathcal{H}^{1}(\partial \Omega(\varepsilon) \cap \Omega)} \\
& \geq \lim _{\varepsilon \rightarrow 0^{+}} \frac{2 \mathcal{H}^{1}(\partial \Omega \backslash \partial \Omega(\varepsilon))}{\mathcal{H}^{1}(\partial \Omega)}=2 .
\end{aligned}
$$

