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1. Motivation

Eisenstein series on reductive groups

Convergence (Godement, 1962)

Meromorphic continuation (Langlands, 196?–1976)

Eisenstein series on infinite dimensional Kac–Moody groups

Affine case:

Convergence (Garland, 2006)

Meromorphic continuation of minimal parabolic Eisenstein series

(Garland, 2007)

Holomorphy of cuspidal Eisenstein series

(Garland, Miller, Patnaik, 2013)

Function field analogue (Braverman, Kazhdan, 2012)
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Rank 2 hyperbolic case (Carbone, Liu, L., 2013):

Almost everywhere convergence

Holomorphy of cuspidal Eisenstein series

Computation of degenerate Fourier-Whittaker coefficients

General Kac–Moody case (Fleig, Kleinschmidt, Persson, 2013):

Formal computation of degenerate Fourier-Whittaker coefficients

Study of special cases of E9,E10,E11

Kyu-Hwan Lee (UConn) July 27, 2016 3 / 23



Rank 2 hyperbolic case (Carbone, Liu, L., 2013):

Almost everywhere convergence

Holomorphy of cuspidal Eisenstein series

Computation of degenerate Fourier-Whittaker coefficients

General Kac–Moody case (Fleig, Kleinschmidt, Persson, 2013):

Formal computation of degenerate Fourier-Whittaker coefficients

Study of special cases of E9,E10,E11

Kyu-Hwan Lee (UConn) July 27, 2016 3 / 23



Rank 2 hyperbolic case (Carbone, Liu, L., 2013):

Almost everywhere convergence

Holomorphy of cuspidal Eisenstein series

Computation of degenerate Fourier-Whittaker coefficients

General Kac–Moody case (Fleig, Kleinschmidt, Persson, 2013):

Formal computation of degenerate Fourier-Whittaker coefficients

Study of special cases of E9,E10,E11

Kyu-Hwan Lee (UConn) July 27, 2016 3 / 23



Rank 2 hyperbolic case (Carbone, Liu, L., 2013):

Almost everywhere convergence

Holomorphy of cuspidal Eisenstein series

Computation of degenerate Fourier-Whittaker coefficients

General Kac–Moody case (Fleig, Kleinschmidt, Persson, 2013):

Formal computation of degenerate Fourier-Whittaker coefficients

Study of special cases of E9,E10,E11

Kyu-Hwan Lee (UConn) July 27, 2016 3 / 23



Rank 2 hyperbolic case (Carbone, Liu, L., 2013):

Almost everywhere convergence

Holomorphy of cuspidal Eisenstein series

Computation of degenerate Fourier-Whittaker coefficients

General Kac–Moody case (Fleig, Kleinschmidt, Persson, 2013):

Formal computation of degenerate Fourier-Whittaker coefficients

Study of special cases of E9,E10,E11

Kyu-Hwan Lee (UConn) July 27, 2016 3 / 23



Rank 2 hyperbolic case (Carbone, Liu, L., 2013):

Almost everywhere convergence

Holomorphy of cuspidal Eisenstein series

Computation of degenerate Fourier-Whittaker coefficients

General Kac–Moody case (Fleig, Kleinschmidt, Persson, 2013):

Formal computation of degenerate Fourier-Whittaker coefficients

Study of special cases of E9,E10,E11

Kyu-Hwan Lee (UConn) July 27, 2016 3 / 23



Rank 2 hyperbolic case (Carbone, Liu, L., 2013):

Almost everywhere convergence

Holomorphy of cuspidal Eisenstein series

Computation of degenerate Fourier-Whittaker coefficients

General Kac–Moody case (Fleig, Kleinschmidt, Persson, 2013):

Formal computation of degenerate Fourier-Whittaker coefficients

Study of special cases of E9,E10,E11

Kyu-Hwan Lee (UConn) July 27, 2016 3 / 23



Rank 2 hyperbolic case (Carbone, Liu, L., 2013):

Almost everywhere convergence

Holomorphy of cuspidal Eisenstein series

Computation of degenerate Fourier-Whittaker coefficients

General Kac–Moody case (Fleig, Kleinschmidt, Persson, 2013):

Formal computation of degenerate Fourier-Whittaker coefficients

Study of special cases of E9,E10,E11

Kyu-Hwan Lee (UConn) July 27, 2016 3 / 23



Question:

Can we generalize convergence and holomorphy

to arbitrary Kac–Moody groups?

Today’s Answer:

Yes, if we assume some interesting combinatorial conditions for

the Kac–Moody groups.

Kyu-Hwan Lee (UConn) July 27, 2016 4 / 23



Question:

Can we generalize convergence and holomorphy

to arbitrary Kac–Moody groups?

Today’s Answer:

Yes, if we assume some interesting combinatorial conditions for

the Kac–Moody groups.

Kyu-Hwan Lee (UConn) July 27, 2016 4 / 23



Question:

Can we generalize convergence and holomorphy

to arbitrary Kac–Moody groups?

Today’s Answer:

Yes, if we assume some interesting combinatorial conditions for

the Kac–Moody groups.

Kyu-Hwan Lee (UConn) July 27, 2016 4 / 23



Why do we care about Kac–Moody Eisenstein series?

Potential Applications:

Extension of the Langlands–Shahidi method to study automorphic

L-functions

Moments of L-functions through multiple Dirichlet series as

envisioned by Bump, Friedberg and Hoffstein

String theory as will be explained in the talks of Persson and

Kleinschmidt
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2. Kac–Moody Groups

I = {1,2, . . . , r}

A = (aij)i,j∈I : nonsingular symmetrizable G.C.M.

(h,∆,∆∨): realization of A

That is, ∆ = {α1, ..., αr} ⊂ h∗ and ∆∨ = {α∨1 , ..., α∨r } ⊂ h

satisfy 〈αj , α
∨
i 〉 = aij for i , j ∈ I.

g = g(A): Kac–Moody algebra associated to (h,∆,∆∨)

Φ = Φ+ ∪ Φ−: set of roots of g

α∨: coroot corresponding to α ∈ Φ

$i ∈ h∗, i = 1, . . . , r : fundamental weights

W : Weyl group generated by simple reflections wi , i ∈ I
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V : integrable highest weight module for gC

VZ: Z-form of V

Then we have

en
i

n!
(VZ) ⊆ VZ and

f n
i

n!
(VZ) ⊆ VZ for n ∈ N, i ∈ I,

thanks to the local nilpotence of ei and fi .

VR = R⊗Z VZ

For s, t ∈ R and i ∈ I, set

χαi (s) =
∞∑

n=0

sn en
i

n!
, χ−αi (t) =

∞∑
n=0

tn f n
i

n!
.

Then χαi (s) and χ−αi (t) define elements in Aut(VR).
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Set G0
R = 〈χαi (s), χ−αi (t) : s, t ∈ R, i ∈ I〉 ⊂ Aut(VR).

Ψ = {v1, v2, . . . }: coherently ordered basis of VR

B0: subgroup consisting of upper triangular matrices w.r.t. Ψ

Ut = Span{v1, v2, . . . , vt} for t ∈ Z>0, B0Ut ⊆ Ut for each t

Bt : image of B0 in Aut(Ut )

Define B to be the projective limit of the projective family {Bt}.

Topology on G0
R: for a base of neighborhoods of the identity, we

take

Vt = {g ∈ G0
R : gvi = vi , i = 1,2, . . . , t}.

Define GR to be the completion of G0
R w.r.t. this topology.
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We define the following subgroups of GR:

U = completion of the subgroup generated by χα, α ∈ Φ+

K = {k ∈ GR : k preserves 〈, 〉 on Vλ
R}

A = 〈hαi (s) : s ∈ R×, i ∈ I〉 and A+ = 〈hαi (s) : s ∈ R+, i ∈ I〉,

where wαi (t) = χαi (t)χ−αi (−t−1)χαi (t) and

hαi (t) = wαi (t)wαi (1)−1 for i ∈ I for t ∈ R×.

Γ = GZ = {γ ∈ GR : γ · VZ ⊆ VZ}

We have the Iwasawa decomposition

GR = UA+K

with uniqueness of expression.
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3. Eisenstein series and their constant terms

Write g = uak ∈ GR and consider a quasi-character λ : A+ → C×.

Define Φλ : GR → C× by

Φλ(g) = aλ+ρ,

where 〈ρ, α∨i 〉 = 1, i ∈ I.

Define the Eisenstein series on GR to be the infinite formal sum

Eλ(g) =
∑

γ∈Γ∩B\Γ

Φλ(γg).

We define for all g ∈ GR the constant term

E ]
λ(g) =

∫
Γ∩U\U

Eλ(ug)du.
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Applying the Gindikin–Karpelevich formula, we obtain

E ]
λ(g) =

∑
w∈W

a(g)wλ+ρc(λ,w),

where

c(λ,w) =
∏

α>0,wα<0

ξ(〈λ, α∨〉)
ξ(1 + 〈λ, α∨〉)

,

and ξ(s) is the completed Riemann zeta function.

C = {x ∈ h : 〈αi , x〉 > 0, i ∈ I}, C: W -orbit of C

Using exp : h→ A+, set AC = exp C and AC = expC.

C∗ = {λ ∈ h∗ : 〈λ, α∨i 〉 > 0, i ∈ I}, C∗ ⊂ h∗: dual of C

P: weight lattice
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Lemma (Looijenga)
Let K be a compact subset of C and µ ∈ P ∩ C∗. If AK,µ(N) is the

number of µ′ ∈W · {µ} whose maximum on K is ≥ −N, then

AK,µ(N) = O(N r ) as N →∞.

Theorem

Assume that λ ∈ h∗C with Re(λ)− ρ ∈ C∗. Then E ]
λ(g) converges

absolutely for g ∈ UACK .

Corollary
For λ ∈ h∗C with Re(λ)− ρ ∈ C∗, there exists a measure zero subset S0

of US such that the series Eλ(g) converges absolutely for g ∈ USK

off the set S0K , where S is an arbitrary compact subset of AC.
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4. Convergence of Eisenstein series

Assume that λ− ρ ∈ C∗. Then there exists a constant M > 0

depending on λ such that, for α ∈ ∆, x ∈ R and g = uak ∈ GR,∑
m∈Z

a(wαuα(x + m)g)λ+ρ ≤ M awα(λ+ρ)(1 + aα),

where a(g) is the A+-component of g.

Using induction, we want to have, for w = wβ1 . . .wβ` ,

(♣)
∑

m1,...,m`∈Z
a(wβ1uβ1(x1 + m1) · · ·wβ`uβ`(x` + m`)g)λ+ρ

≤ M`aw−1(λ+ρ)
∏

α>0,wα<0

(1 + aα).
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However, we need the following property to prove (♣).

Property (?): Assume that λ− ρ ∈ C∗. Every w 6= id ∈W can be

written as w = vwβ where β ∈ ∆ and `(v) < `(w), such that for

any subset S of Φ+ ∩ v−1Φ− one has

〈v−1(λ+ ρ) +
∑
α∈S

α, β∨〉 > 1.

Theorem
Assume Property (?) and Re(λ)− ρ ∈ C∗. Then the series Eλ(g)

converges absolutely for g ∈ UACK .

Use the inequality (♣) and bound Eλ(g) by its constant term.
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Property (?) holds in the following cases:

All rank 2 root systems

|aij | ≥ 2 for all i , j ∈ I for the Cartan matrix A = (aij )

Feingold–Frenkel rank 3 hyperbolic algebra

In general, Property (?) is not true. For example, the root system

A3 and w the longest element.

Property (?) is related to holomorphy of cuspidal Eisenstein series.
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5. Cuspidal Eisenstein series

P = MN: maximal parabolic subgroup of G

Assume that M is a finite-dimensional split reductive group.

αP : simple root corresponding to P

Write ∆M = ∆ \ {αP}.

$P : fundamental weight corresponding to P

H = {a ∈ A : aα = ±1, α ∈ ∆M}

H+: identity component of H

L: subgroup of M(R) generated by χ±α(t), α ∈ ∆M , t ∈ R

Then we have M = LH.

Kyu-Hwan Lee (UConn) July 27, 2016 16 / 23



5. Cuspidal Eisenstein series

P = MN: maximal parabolic subgroup of G

Assume that M is a finite-dimensional split reductive group.

αP : simple root corresponding to P

Write ∆M = ∆ \ {αP}.

$P : fundamental weight corresponding to P

H = {a ∈ A : aα = ±1, α ∈ ∆M}

H+: identity component of H

L: subgroup of M(R) generated by χ±α(t), α ∈ ∆M , t ∈ R

Then we have M = LH.

Kyu-Hwan Lee (UConn) July 27, 2016 16 / 23



5. Cuspidal Eisenstein series

P = MN: maximal parabolic subgroup of G

Assume that M is a finite-dimensional split reductive group.

αP : simple root corresponding to P

Write ∆M = ∆ \ {αP}.

$P : fundamental weight corresponding to P

H = {a ∈ A : aα = ±1, α ∈ ∆M}

H+: identity component of H

L: subgroup of M(R) generated by χ±α(t), α ∈ ∆M , t ∈ R

Then we have M = LH.

Kyu-Hwan Lee (UConn) July 27, 2016 16 / 23



5. Cuspidal Eisenstein series

P = MN: maximal parabolic subgroup of G

Assume that M is a finite-dimensional split reductive group.

αP : simple root corresponding to P

Write ∆M = ∆ \ {αP}.

$P : fundamental weight corresponding to P

H = {a ∈ A : aα = ±1, α ∈ ∆M}

H+: identity component of H

L: subgroup of M(R) generated by χ±α(t), α ∈ ∆M , t ∈ R

Then we have M = LH.

Kyu-Hwan Lee (UConn) July 27, 2016 16 / 23



5. Cuspidal Eisenstein series

P = MN: maximal parabolic subgroup of G

Assume that M is a finite-dimensional split reductive group.

αP : simple root corresponding to P

Write ∆M = ∆ \ {αP}.

$P : fundamental weight corresponding to P

H = {a ∈ A : aα = ±1, α ∈ ∆M}

H+: identity component of H

L: subgroup of M(R) generated by χ±α(t), α ∈ ∆M , t ∈ R

Then we have M = LH.

Kyu-Hwan Lee (UConn) July 27, 2016 16 / 23



5. Cuspidal Eisenstein series

P = MN: maximal parabolic subgroup of G

Assume that M is a finite-dimensional split reductive group.

αP : simple root corresponding to P

Write ∆M = ∆ \ {αP}.

$P : fundamental weight corresponding to P

H = {a ∈ A : aα = ±1, α ∈ ∆M}

H+: identity component of H

L: subgroup of M(R) generated by χ±α(t), α ∈ ∆M , t ∈ R

Then we have M = LH.

Kyu-Hwan Lee (UConn) July 27, 2016 16 / 23



5. Cuspidal Eisenstein series

P = MN: maximal parabolic subgroup of G

Assume that M is a finite-dimensional split reductive group.

αP : simple root corresponding to P

Write ∆M = ∆ \ {αP}.

$P : fundamental weight corresponding to P

H = {a ∈ A : aα = ±1, α ∈ ∆M}

H+: identity component of H

L: subgroup of M(R) generated by χ±α(t), α ∈ ∆M , t ∈ R

Then we have M = LH.

Kyu-Hwan Lee (UConn) July 27, 2016 16 / 23



5. Cuspidal Eisenstein series

P = MN: maximal parabolic subgroup of G

Assume that M is a finite-dimensional split reductive group.

αP : simple root corresponding to P

Write ∆M = ∆ \ {αP}.

$P : fundamental weight corresponding to P

H = {a ∈ A : aα = ±1, α ∈ ∆M}

H+: identity component of H

L: subgroup of M(R) generated by χ±α(t), α ∈ ∆M , t ∈ R

Then we have M = LH.

Kyu-Hwan Lee (UConn) July 27, 2016 16 / 23



5. Cuspidal Eisenstein series

P = MN: maximal parabolic subgroup of G

Assume that M is a finite-dimensional split reductive group.

αP : simple root corresponding to P

Write ∆M = ∆ \ {αP}.

$P : fundamental weight corresponding to P

H = {a ∈ A : aα = ±1, α ∈ ∆M}

H+: identity component of H

L: subgroup of M(R) generated by χ±α(t), α ∈ ∆M , t ∈ R

Then we have M = LH.

Kyu-Hwan Lee (UConn) July 27, 2016 16 / 23



Using the Iwasawa decomposition GR = NMK , we define

IwL : GR → L/L ∩ K , IwH+ : GR → H+ ∼= H/H ∩ K .

For s ∈ C, define the auxiliary Eisenstein series

E(s,g) =
∑

γ∈Γ∩P\Γ

IwH+(γg)s$P .

For an unramified cusp form f on L(Z)\L(R), we define the

cuspidal Eisenstein series

Ef (s,g) =
∑

γ∈Γ∩P\Γ

IwH+(γg)s$P f
(
IwL(γg)

)
.

Kyu-Hwan Lee (UConn) July 27, 2016 17 / 23



Using the Iwasawa decomposition GR = NMK , we define

IwL : GR → L/L ∩ K , IwH+ : GR → H+ ∼= H/H ∩ K .

For s ∈ C, define the auxiliary Eisenstein series

E(s,g) =
∑

γ∈Γ∩P\Γ

IwH+(γg)s$P .

For an unramified cusp form f on L(Z)\L(R), we define the

cuspidal Eisenstein series

Ef (s,g) =
∑

γ∈Γ∩P\Γ

IwH+(γg)s$P f
(
IwL(γg)

)
.

Kyu-Hwan Lee (UConn) July 27, 2016 17 / 23



Using the Iwasawa decomposition GR = NMK , we define

IwL : GR → L/L ∩ K , IwH+ : GR → H+ ∼= H/H ∩ K .

For s ∈ C, define the auxiliary Eisenstein series

E(s,g) =
∑

γ∈Γ∩P\Γ

IwH+(γg)s$P .

For an unramified cusp form f on L(Z)\L(R), we define the

cuspidal Eisenstein series

Ef (s,g) =
∑

γ∈Γ∩P\Γ

IwH+(γg)s$P f
(
IwL(γg)

)
.

Kyu-Hwan Lee (UConn) July 27, 2016 17 / 23



Using the Iwasawa decomposition GR = NMK , we define

IwL : GR → L/L ∩ K , IwH+ : GR → H+ ∼= H/H ∩ K .

For s ∈ C, define the auxiliary Eisenstein series

E(s,g) =
∑

γ∈Γ∩P\Γ

IwH+(γg)s$P .

For an unramified cusp form f on L(Z)\L(R), we define the

cuspidal Eisenstein series

Ef (s,g) =
∑

γ∈Γ∩P\Γ

IwH+(γg)s$P f
(
IwL(γg)

)
.

Kyu-Hwan Lee (UConn) July 27, 2016 17 / 23



6. Holomorphy of Cuspidal Eisenstein series

Set W M = {w ∈W : w−1α > 0, α ∈ ∆M}.

For w ∈W , define

Φ′w = Φ+ ∩ wΦ− = {α ∈ Φ : α > 0,w−1α < 0}.
Definition
A maximal parabolic subgroup P = MN with a finite dimensional Levi
subgroup M is said to be ample if there exist constants C,D > 0 such
that for every w ∈W M , w 6= id,

(P1) (C$P − ρ)(α∨) > 0 for α ∈ Φ′w ,

(P2) (D$P + ρM)(α∨) < 0 for α ∈ Φ′w ,

(P3) w−1(D$P + ρM) is a positive linear combination of simple roots.
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Proposition
If P satisfies condition (P1), then for Re s ≥ s0 and any compact

subset S of AC, there exists a measure zero subset S0 of US such

that E(s,g) converges absolutely for g ∈ USK off the set S0K .

Theorem
If the maximal parabolic subgroup P is ample, then for any compact

subset S of AC, there exists a measure zero subset S0 of US such

that Ef (s,g) is an entire function of s ∈ C for g ∈ USK off the set S0K .

We use rapid decay of cusp forms due to Miller and Schmid.
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Let A1 = A ∩ L and A+
1
∼= A1/A1 ∩ K .

(Rapid Decay) For any n > 0 there exists a constant C1 > 0

depending on n such that

|f (g)| ≤ C1 IwA+
1

(g)−nρM .

Take n = (s0 − Re s)/D > 0, with D given in the definition of ample

parabolic subgroup.

Now we have ∣∣IwH+(γg)s$P f
(
IwL(γg)

)∣∣
≤C1 IwH+(γg)(Re s)$P IwA+

1
◦ IwL(γg)−nρM

≤C1 IwH+(γg)(Re s)$P IwH+(γg)nD$P

=C1 IwH+(γg)s0$P .
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7. Ample parabolic subgroups

Proposition
Assume that G is infinite dimensional.

If 〈αi , α
∨〉 ≤ 0 for any αi ∈ ∆, α ∈ Φ′w where w−1αi > 0,

then every maximal parabolic P with a finite dimensional Levi is ample.

The condition in the above proposition implies that the group G

satisfies Property (?).
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If G is finite dimensional, then G does not have any ample

parabolic subgroup.

If G is a rank 2 hyperbolic group, then every maximal parabolic is

ample.

Feingold–Frenkel algebra: both maximal parabolic subgroups with

finite dimensional Levi are ample.
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Thank You
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