Convergence and Holomorphy of Kac–Moody Eisenstein Series

Kyu-Hwan Lee

joint work with L. Carbone, H. Garland, D. Liu and S. D. Miller.

July 27, 2016

Eisenstein series on reductive groups

- Eisenstein series on reductive groups
 - Convergence (Godement, 1962)

- Eisenstein series on reductive groups
 - Convergence (Godement, 1962)
 - Meromorphic continuation (Langlands, 196?–1976)

- Eisenstein series on reductive groups
 - Convergence (Godement, 1962)
 - Meromorphic continuation (Langlands, 196?–1976)
- Eisenstein series on infinite dimensional Kac–Moody groups

- Eisenstein series on reductive groups
 - Convergence (Godement, 1962)
 - Meromorphic continuation (Langlands, 196?–1976)
- Eisenstein series on infinite dimensional Kac–Moody groups
 - Affine case:

- Eisenstein series on reductive groups
 - Convergence (Godement, 1962)
 - Meromorphic continuation (Langlands, 196?–1976)
- Eisenstein series on infinite dimensional Kac–Moody groups
 - Affine case:
 - Convergence (Garland, 2006)

- Eisenstein series on reductive groups
 - Convergence (Godement, 1962)
 - Meromorphic continuation (Langlands, 196?–1976)
- Eisenstein series on infinite dimensional Kac–Moody groups
 - Affine case:
 - Convergence (Garland, 2006)
 - Meromorphic continuation of minimal parabolic Eisenstein series (Garland, 2007)

- Eisenstein series on reductive groups
 - Convergence (Godement, 1962)
 - Meromorphic continuation (Langlands, 196?–1976)
- Eisenstein series on infinite dimensional Kac-Moody groups
 - Affine case:
 - Convergence (Garland, 2006)
 - Meromorphic continuation of minimal parabolic Eisenstein series (Garland, 2007)
 - Holomorphy of cuspidal Eisenstein series (Garland, Miller, Patnaik, 2013)

- Eisenstein series on reductive groups
 - Convergence (Godement, 1962)
 - Meromorphic continuation (Langlands, 196?–1976)
- Eisenstein series on infinite dimensional Kac–Moody groups
 - Affine case:
 - Convergence (Garland, 2006)
 - Meromorphic continuation of minimal parabolic Eisenstein series (Garland, 2007)
 - Holomorphy of cuspidal Eisenstein series (Garland, Miller, Patnaik, 2013)
 - Function field analogue (Braverman, Kazhdan, 2012)

• Rank 2 hyperbolic case (Carbone, Liu, L., 2013):

- Rank 2 hyperbolic case (Carbone, Liu, L., 2013):
 - Almost everywhere convergence

- Rank 2 hyperbolic case (Carbone, Liu, L., 2013):
 - Almost everywhere convergence
 - Holomorphy of cuspidal Eisenstein series

- Rank 2 hyperbolic case (Carbone, Liu, L., 2013):
 - Almost everywhere convergence
 - Holomorphy of cuspidal Eisenstein series
 - Computation of degenerate Fourier-Whittaker coefficients

- Rank 2 hyperbolic case (Carbone, Liu, L., 2013):
 - Almost everywhere convergence
 - Holomorphy of cuspidal Eisenstein series
 - Computation of degenerate Fourier-Whittaker coefficients
- General Kac-Moody case (Fleig, Kleinschmidt, Persson, 2013):

- Rank 2 hyperbolic case (Carbone, Liu, L., 2013):
 - Almost everywhere convergence
 - Holomorphy of cuspidal Eisenstein series
 - Computation of degenerate Fourier-Whittaker coefficients
- General Kac–Moody case (Fleig, Kleinschmidt, Persson, 2013):
 - Formal computation of degenerate Fourier-Whittaker coefficients

- Rank 2 hyperbolic case (Carbone, Liu, L., 2013):
 - Almost everywhere convergence
 - Holomorphy of cuspidal Eisenstein series
 - Computation of degenerate Fourier-Whittaker coefficients
- General Kac–Moody case (Fleig, Kleinschmidt, Persson, 2013):
 - Formal computation of degenerate Fourier-Whittaker coefficients
 - Study of special cases of E₉, E₁₀, E₁₁

• Question:

Can we generalize convergence and holomorphy to arbitrary Kac–Moody groups?

• Question:

Can we generalize convergence and holomorphy to arbitrary Kac–Moody groups?

Today's Answer:

Yes, if we assume some interesting combinatorial conditions for the Kac–Moody groups. • Why do we care about Kac-Moody Eisenstein series?

Why do we care about Kac–Moody Eisenstein series?
 Potential Applications:

- Why do we care about Kac–Moody Eisenstein series?
 Potential Applications:
 - Extension of the Langlands–Shahidi method to study automorphic
 L-functions

- Why do we care about Kac–Moody Eisenstein series?
 Potential Applications:
 - Extension of the Langlands–Shahidi method to study automorphic
 L-functions
 - Moments of L-functions through multiple Dirichlet series as envisioned by Bump, Friedberg and Hoffstein

- Why do we care about Kac

 Moody Eisenstein series?
 Potential Applications:
 - Extension of the Langlands–Shahidi method to study automorphic
 L-functions
 - Moments of L-functions through multiple Dirichlet series as envisioned by Bump, Friedberg and Hoffstein
 - String theory as will be explained in the talks of Persson and Kleinschmidt

•
$$I = \{1, 2, \dots, r\}$$

• $I = \{1, 2, ..., r\}$ $A = (a_{ij})_{i,j \in I}$: nonsingular symmetrizable G.C.M.

• $I = \{1, 2, ..., r\}$ $A = (a_{ij})_{i,j \in I}$: nonsingular symmetrizable G.C.M. ($\mathfrak{h}, \Delta, \Delta^{\vee}$): realization of A

• $I=\{1,2,\ldots,r\}$ $A=(a_{ij})_{i,j\in I}$: nonsingular symmetrizable G.C.M. $(\mathfrak{h},\Delta,\Delta^{\vee})$: realization of AThat is, $\Delta=\{\alpha_1,...,\alpha_r\}\subset \mathfrak{h}^*$ and $\Delta^{\vee}=\{\alpha_1^{\vee},...,\alpha_r^{\vee}\}\subset \mathfrak{h}$ satisfy $\langle \alpha_j,\alpha_j^{\vee}\rangle=a_{ij}$ for $i,j\in I$.

• $I = \{1, 2, ..., r\}$ $A = (a_{ij})_{i,j \in I}$: nonsingular symmetrizable G.C.M. $(\mathfrak{h}, \Delta, \Delta^{\vee})$: realization of AThat is, $\Delta = \{\alpha_1, ..., \alpha_r\} \subset \mathfrak{h}^*$ and $\Delta^{\vee} = \{\alpha_1^{\vee}, ..., \alpha_r^{\vee}\} \subset \mathfrak{h}$ satisfy $\langle \alpha_j, \alpha_i^{\vee} \rangle = a_{ij}$ for $i, j \in I$. $\mathfrak{g} = \mathfrak{g}(A)$: Kac–Moody algebra associated to $(\mathfrak{h}, \Delta, \Delta^{\vee})$

• $I = \{1, 2, \ldots, r\}$ $A = (a_{ij})_{i,j \in I}$: nonsingular symmetrizable G.C.M. $(\mathfrak{h}, \Delta, \Delta^{\vee})$: realization of AThat is, $\Delta = \{\alpha_1, ..., \alpha_r\} \subset \mathfrak{h}^*$ and $\Delta^{\vee} = \{\alpha_1^{\vee}, ..., \alpha_r^{\vee}\} \subset \mathfrak{h}$ satisfy $\langle \alpha_j, \alpha_i^{\vee} \rangle = a_{ij}$ for $i, j \in I$. $\mathfrak{g} = \mathfrak{g}(A)$: Kac–Moody algebra associated to $(\mathfrak{h}, \Delta, \Delta^{\vee})$ $\Phi = \Phi^+ \cup \Phi^-$: set of roots of \mathfrak{g}

• $I = \{1, 2, \dots, r\}$ $A = (a_{ii})_{i,i \in I}$: nonsingular symmetrizable G.C.M. $(\mathfrak{h}, \Delta, \Delta^{\vee})$: realization of A That is, $\Delta = \{\alpha_1, ..., \alpha_r\} \subset \mathfrak{h}^*$ and $\Delta^{\vee} = \{\alpha_1^{\vee}, ..., \alpha_r^{\vee}\} \subset \mathfrak{h}$ satisfy $\langle \alpha_i, \alpha_i^{\vee} \rangle = a_{ii}$ for $i, j \in I$. $\mathfrak{g} = \mathfrak{g}(A)$: Kac–Moody algebra associated to $(\mathfrak{h}, \Delta, \Delta^{\vee})$ $\Phi = \Phi^+ \cup \Phi^-$: set of roots of \mathfrak{a} α^{\vee} : coroot corresponding to $\alpha \in \Phi$

2. Kac-Moody Groups

• $I = \{1, 2, \dots, r\}$ $A = (a_{ii})_{i,i \in I}$: nonsingular symmetrizable G.C.M. $(\mathfrak{h}, \Delta, \Delta^{\vee})$: realization of A That is, $\Delta = \{\alpha_1, ..., \alpha_r\} \subset \mathfrak{h}^*$ and $\Delta^{\vee} = \{\alpha_1^{\vee}, ..., \alpha_r^{\vee}\} \subset \mathfrak{h}$ satisfy $\langle \alpha_i, \alpha_i^{\vee} \rangle = a_{ii}$ for $i, j \in I$. $\mathfrak{g} = \mathfrak{g}(A)$: Kac–Moody algebra associated to $(\mathfrak{h}, \Delta, \Delta^{\vee})$ $\Phi = \Phi^+ \cup \Phi^-$: set of roots of \mathfrak{a} α^{\vee} : coroot corresponding to $\alpha \in \Phi$ $\varpi_i \in \mathfrak{h}^*, i = 1, \dots, r$: fundamental weights

2. Kac-Moody Groups

• $I = \{1, 2, \dots, r\}$ $A = (a_{ii})_{i,i \in I}$: nonsingular symmetrizable G.C.M. $(\mathfrak{h}, \Delta, \Delta^{\vee})$: realization of A That is, $\Delta = \{\alpha_1, ..., \alpha_r\} \subset \mathfrak{h}^*$ and $\Delta^{\vee} = \{\alpha_1^{\vee}, ..., \alpha_r^{\vee}\} \subset \mathfrak{h}$ satisfy $\langle \alpha_i, \alpha_i^{\vee} \rangle = a_{ii}$ for $i, j \in I$. $\mathfrak{g} = \mathfrak{g}(A)$: Kac–Moody algebra associated to $(\mathfrak{h}, \Delta, \Delta^{\vee})$ $\Phi = \Phi^+ \cup \Phi^-$: set of roots of \mathfrak{a} α^{\vee} : coroot corresponding to $\alpha \in \Phi$ $\varpi_i \in \mathfrak{h}^*, i = 1, \ldots, r$: fundamental weights W: Weyl group generated by simple reflections w_i , $i \in I$

 $V_{\mathbb{Z}}$: \mathbb{Z} -form of V

 $V_{\mathbb{Z}}$: \mathbb{Z} -form of V

Then we have

$$rac{e_i^n}{n!}(V_{\mathbb{Z}}) \subseteq V_{\mathbb{Z}} \quad ext{ and } \quad rac{f_i^n}{n!}(V_{\mathbb{Z}}) \subseteq V_{\mathbb{Z}} \quad ext{for } n \in \mathbb{N}, \ i \in I,$$

thanks to the local nilpotence of e_i and f_i .

 $V_{\mathbb{Z}}$: \mathbb{Z} -form of V

Then we have

$$rac{e_i^n}{n!}(V_{\mathbb{Z}})\subseteq V_{\mathbb{Z}} \quad ext{ and } \quad rac{f_i^n}{n!}(V_{\mathbb{Z}})\subseteq V_{\mathbb{Z}} \quad ext{for } n\in\mathbb{N}, \ i\in I,$$

thanks to the local nilpotence of e_i and f_i .

$$ullet$$
 $V_{\mathbb{R}}=\mathbb{R}\otimes_{\mathbb{Z}}V_{\mathbb{Z}}$

 $V_{\mathbb{Z}}$: \mathbb{Z} -form of V

Then we have

$$rac{e_i^n}{n!}(V_{\mathbb{Z}}) \subseteq V_{\mathbb{Z}} \quad ext{ and } \quad rac{f_i^n}{n!}(V_{\mathbb{Z}}) \subseteq V_{\mathbb{Z}} \quad ext{for } n \in \mathbb{N}, \ i \in I,$$

thanks to the local nilpotence of e_i and f_i .

ullet $V_{\mathbb{R}}=\mathbb{R}\otimes_{\mathbb{Z}}V_{\mathbb{Z}}$

For $s, t \in \mathbb{R}$ and $i \in I$, set

$$\chi_{\alpha_i}(s) = \sum_{n=0}^{\infty} s^n \frac{e_i^n}{n!}, \quad \chi_{-\alpha_i}(t) = \sum_{n=0}^{\infty} t^n \frac{f_i^n}{n!}.$$

Then $\chi_{\alpha_i}(s)$ and $\chi_{-\alpha_i}(t)$ define elements in $\operatorname{Aut}(V_{\mathbb{R}})$.

• Set $G^0_{\mathbb{R}} = \langle \chi_{\alpha_i}(s), \chi_{-\alpha_i}(t) : s, t \in \mathbb{R}, i \in I \rangle \subset \operatorname{Aut}(V_{\mathbb{R}}).$

• Set $G^0_{\mathbb{R}} = \langle \chi_{\alpha_i}(s), \chi_{-\alpha_i}(t) : s, t \in \mathbb{R}, i \in I \rangle \subset \operatorname{Aut}(V_{\mathbb{R}}).$ $\Psi = \{v_1, v_2, \dots\}$: coherently ordered basis of $V_{\mathbb{R}}$ • Set $G^0_{\mathbb{R}} = \langle \chi_{\alpha_i}(s), \chi_{-\alpha_i}(t) : s, t \in \mathbb{R}, i \in I \rangle \subset \operatorname{Aut}(V_{\mathbb{R}}).$

 $\Psi = \{ \emph{v}_1, \emph{v}_2, \dots \}$: coherently ordered basis of $\emph{V}_{\mathbb{R}}$

 B^0 : subgroup consisting of upper triangular matrices w.r.t. Ψ

• Set $G^0_{\mathbb{R}} = \langle \chi_{\alpha_i}(s), \chi_{-\alpha_i}(t) : s, t \in \mathbb{R}, i \in I \rangle \subset \operatorname{Aut}(V_{\mathbb{R}}).$ $\Psi = \{v_1, v_2, \dots\}: \text{ coherently ordered basis of } V_{\mathbb{R}}$ $B^0: \text{ subgroup consisting of upper triangular matrices w.r.t. } \Psi$ $U_t = \operatorname{Span}\{v_1, v_2, \dots, v_t\} \text{ for } t \in \mathbb{Z}_{>0}, \quad B^0 U_t \subset U_t \text{ for each } t$

• Set $G_{\mathbb{R}}^0 = \langle \chi_{\alpha_i}(s), \chi_{-\alpha_i}(t) : s, t \in \mathbb{R}, i \in I \rangle \subset \operatorname{Aut}(V_{\mathbb{R}}).$ $\Psi = \{v_1, v_2, \dots\}: \text{ coherently ordered basis of } V_{\mathbb{R}}$ $B^0: \text{ subgroup consisting of upper triangular matrices w.r.t. } \Psi$ $U_t = \operatorname{Span}\{v_1, v_2, \dots, v_t\} \text{ for } t \in \mathbb{Z}_{>0}, \quad B^0 U_t \subseteq U_t \text{ for each } t$ $B_t: \text{ image of } B^0 \text{ in } \operatorname{Aut}(U_t)$

• Set $G^0_{\mathbb{R}} = \langle \chi_{\alpha_i}(s), \chi_{-\alpha_i}(t) : s, t \in \mathbb{R}, i \in I \rangle \subset \operatorname{Aut}(V_{\mathbb{R}}).$ $\Psi = \{v_1, v_2, \dots\}: \text{ coherently ordered basis of } V_{\mathbb{R}}$ $B^0: \text{ subgroup consisting of upper triangular matrices w.r.t. } \Psi$ $U_t = \operatorname{Span}\{v_1, v_2, \dots, v_t\} \text{ for } t \in \mathbb{Z}_{>0}, \quad B^0U_t \subseteq U_t \text{ for each } t$ $B_t: \text{ image of } B^0 \text{ in } \operatorname{Aut}(U_t)$

Define B to be the projective limit of the projective family $\{B_t\}$.

- Set $G^0_{\mathbb{R}} = \langle \chi_{\alpha_i}(s), \chi_{-\alpha_i}(t) : s, t \in \mathbb{R}, i \in I \rangle \subset \operatorname{Aut}(V_{\mathbb{R}}).$ $\Psi = \{v_1, v_2, \dots\}$: coherently ordered basis of $V_{\mathbb{R}}$ B^0 : subgroup consisting of upper triangular matrices w.r.t. Ψ $U_t = \operatorname{Span}\{v_1, v_2, \dots, v_t\}$ for $t \in \mathbb{Z}_{>0}$, $B^0 U_t \subseteq U_t$ for each t B_t : image of B^0 in $\operatorname{Aut}(U_t)$ Define B to be the projective limit of the projective family $\{B_t\}$.
- Topology on $G^0_{\mathbb{R}}$: for a base of neighborhoods of the identity, we take

$$V_t = \{g \in G^0_{\mathbb{R}} : gv_i = v_i, i = 1, 2, \dots, t\}.$$

Kyu-Hwan Lee (UConn)

• Set $G_{\mathbb{R}}^0 = \langle \chi_{\alpha_i}(s), \chi_{-\alpha_i}(t) : s, t \in \mathbb{R}, i \in I \rangle \subset \operatorname{Aut}(V_{\mathbb{R}}).$ $\Psi = \{v_1, v_2, \dots\}$: coherently ordered basis of $V_{\mathbb{R}}$ B^0 : subgroup consisting of upper triangular matrices w.r.t. Ψ $U_t = \operatorname{Span}\{v_1, v_2, \dots, v_t\}$ for $t \in \mathbb{Z}_{>0}$, $B^0 U_t \subseteq U_t$ for each t B_t : image of B^0 in $\operatorname{Aut}(U_t)$ Define B to be the projective limit of the projective family $\{B_t\}$.

• Topology on $G^0_{\mathbb{R}}$: for a base of neighborhoods of the identity, we take

$$V_t = \{g \in G^0_{\mathbb{R}} : gv_i = v_i, i = 1, 2, \dots, t\}.$$

Define $G_{\mathbb{R}}$ to be the completion of $G_{\mathbb{R}}^0$ w.r.t. this topology.

4 D > 4 D > 4 E > 4 E > E 900

U =completion of the subgroup generated by $\chi_{\alpha}, \alpha \in \Phi^+$

 ${\it U}=$ completion of the subgroup generated by $\chi_{\alpha}, \alpha\in\Phi^+$

 $K = \{k \in G_{\mathbb{R}} : k \text{ preserves } \langle, \rangle \text{ on } V_{\mathbb{R}}^{\lambda}\}$

 $U = \text{completion of the subgroup generated by } \chi_{\alpha}, \alpha \in \Phi^+$

$$K = \{k \in G_{\mathbb{R}} : k \text{ preserves } \langle, \rangle \text{ on } V_{\mathbb{R}}^{\lambda}\}$$

$$A = \langle h_{\alpha_i}(s) : s \in \mathbb{R}^{\times}, i \in I \rangle$$
 and $A^+ = \langle h_{\alpha_i}(s) : s \in \mathbb{R}_+, i \in I \rangle$,

 $egin{aligned} & \emph{\emph{U}} = \text{completion of the subgroup generated by } \chi_{lpha}, lpha \in \Phi^+ \ & \emph{\emph{K}} = \{k \in \emph{\emph{G}}_{\mathbb{R}} : k \text{ preserves } \langle, \rangle \text{ on } \emph{\emph{V}}_{\mathbb{R}}^{\lambda}\} \ & \emph{\emph{A}} = \langle \emph{\emph{h}}_{\alpha_i}(\emph{\emph{s}}) : \emph{\emph{s}} \in \mathbb{R}^{\times}, \emph{\emph{i}} \in \emph{\emph{I}} \rangle \text{ and } \emph{\emph{\emph{A}}}^+ = \langle \emph{\emph{h}}_{\alpha_i}(\emph{\emph{\emph{s}}}) : \emph{\emph{\emph{s}}} \in \mathbb{R}_+, \emph{\emph{\emph{i}}} \in \emph{\emph{\emph{I}}} \rangle, \ \text{where } \emph{\emph{\emph{w}}}_{\alpha_i}(t) = \chi_{\alpha_i}(t)\chi_{-\alpha_i}(-t^{-1})\chi_{\alpha_i}(t) \text{ and} \end{aligned}$

 $egin{aligned} & \emph{U} = ext{completion of the subgroup generated by } \chi_{lpha}, lpha \in \Phi^+ \ & \emph{K} = \{k \in G_{\mathbb{R}} : k ext{ preserves } \langle, \rangle ext{ on } V_{\mathbb{R}}^{\lambda} \} \ & \emph{A} = \langle h_{lpha_i}(s) : s \in \mathbb{R}^{\times}, i \in \emph{I} \rangle ext{ and } \emph{A}^+ = \langle h_{lpha_i}(s) : s \in \mathbb{R}_+, i \in \emph{I} \rangle, \ & \text{where } \emph{w}_{lpha_i}(t) = \chi_{lpha_i}(t)\chi_{-lpha_i}(-t^{-1})\chi_{lpha_i}(t) ext{ and } \ & h_{lpha_i}(t) = \emph{w}_{lpha_i}(t)\emph{w}_{lpha_i}(1)^{-1} ext{ for } \emph{t} \in \mathbb{R}^{\times}. \end{aligned}$

 $\Gamma = G_{\mathbb{Z}} = \{ \gamma \in G_{\mathbb{R}} : \gamma \cdot V_{\mathbb{Z}} \subseteq V_{\mathbb{Z}} \}$

We have the Iwasawa decomposition

$$G_{\mathbb{R}} = UA^+K$$

with uniqueness of expression.

• Write $g = uak \in G_{\mathbb{R}}$ and consider a quasi-character $\lambda : A^+ \to \mathbb{C}^{\times}$.

• Write $g = uak \in G_{\mathbb{R}}$ and consider a quasi-character $\lambda : A^+ \to \mathbb{C}^{\times}$.

Define $\Phi_{\lambda}: \emph{G}_{\mathbb{R}}
ightarrow \mathbb{C}^{ imes}$ by

$$\Phi_{\lambda}(g) = a^{\lambda+\rho},$$

where $\langle \rho, \alpha_i^{\vee} \rangle = 1$, $i \in I$.

• Write $g=\mathit{uak}\in G_{\mathbb{R}}$ and consider a quasi-character $\lambda:A^+\to\mathbb{C}^{\times}$. Define $\Phi_{\lambda}:G_{\mathbb{R}}\to\mathbb{C}^{\times}$ by

$$\Phi_{\lambda}(g) = a^{\lambda+\rho},$$

where $\langle \rho, \alpha_i^{\vee} \rangle = 1$, $i \in I$.

• Define the Eisenstein series on $G_{\mathbb{R}}$ to be the infinite formal sum

$$\mathsf{E}_{\lambda}(g) = \sum_{\gamma \in \Gamma \cap B \setminus \Gamma} \Phi_{\lambda}(\gamma g).$$

• Write $g = uak \in G_{\mathbb{R}}$ and consider a quasi-character $\lambda : A^+ \to \mathbb{C}^{\times}$. Define $\Phi_{\lambda} : G_{\mathbb{R}} \to \mathbb{C}^{\times}$ by

$$\Phi_{\lambda}(g) = a^{\lambda+
ho},$$

where $\langle \rho, \alpha_i^{\vee} \rangle = 1$, $i \in I$.

• Define the Eisenstein series on $G_{\mathbb{R}}$ to be the infinite formal sum

$$\mathsf{E}_{\lambda}(g) = \sum_{\gamma \in \Gamma \cap B \setminus \Gamma} \Phi_{\lambda}(\gamma g).$$

We define for all $g \in G_{\mathbb{R}}$ the constant term

$$\mathsf{E}^\sharp_\lambda(g) = \int_{\mathsf{\Gamma} \cap \mathsf{U} \setminus \mathsf{U}} \mathsf{E}_\lambda(\mathsf{u} g) \mathsf{d} \mathsf{u}.$$

$$E^{\sharp}_{\lambda}(g) = \sum_{w \in W} a(g)^{w\lambda + \rho} c(\lambda, w),$$

where

$$c(\lambda, w) = \prod_{\alpha > 0, w\alpha < 0} \frac{\xi(\langle \lambda, \alpha^{\vee} \rangle)}{\xi(1 + \langle \lambda, \alpha^{\vee} \rangle)},$$

and $\xi(s)$ is the completed Riemann zeta function.

$$E_{\lambda}^{\sharp}(g) = \sum_{w \in W} a(g)^{w\lambda + \rho} c(\lambda, w),$$

where

$$c(\lambda, w) = \prod_{\alpha > 0, w\alpha < 0} \frac{\xi(\langle \lambda, \alpha^{\vee} \rangle)}{\xi(1 + \langle \lambda, \alpha^{\vee} \rangle)},$$

and $\xi(s)$ is the completed Riemann zeta function.

• $C = \{x \in \mathfrak{h} : \langle \alpha_i, x \rangle > 0, i \in I\},$ \mathfrak{C} : W-orbit of C

$$E^{\sharp}_{\lambda}(g) = \sum_{w \in W} a(g)^{w\lambda + \rho} c(\lambda, w),$$

where

$$c(\lambda, w) = \prod_{\alpha > 0, w\alpha < 0} \frac{\xi(\langle \lambda, \alpha^{\vee} \rangle)}{\xi(1 + \langle \lambda, \alpha^{\vee} \rangle)},$$

and $\xi(s)$ is the completed Riemann zeta function.

• $C = \{x \in \mathfrak{h} : \langle \alpha_i, x \rangle > 0, \ i \in I\},$ \mathfrak{C} : W-orbit of CUsing $\exp : \mathfrak{h} \to A^+$, $\operatorname{set} A_{\mathcal{C}} = \exp C$ and $A_{\mathfrak{C}} = \exp \mathfrak{C}$.

$$E_{\lambda}^{\sharp}(g) = \sum_{w \in W} a(g)^{w\lambda + \rho} c(\lambda, w),$$

where

$$c(\lambda, w) = \prod_{\alpha > 0, w\alpha < 0} \frac{\xi(\langle \lambda, \alpha^{\vee} \rangle)}{\xi(1 + \langle \lambda, \alpha^{\vee} \rangle)},$$

and $\xi(s)$ is the completed Riemann zeta function.

• $\mathcal{C} = \{x \in \mathfrak{h} : \langle \alpha_i, x \rangle > 0, \ i \in I\},$ \mathfrak{C} : W-orbit of \mathcal{C} Using $\exp : \mathfrak{h} \to A^+$, $\det A_{\mathcal{C}} = \exp \mathcal{C}$ and $A_{\mathfrak{C}} = \exp \mathfrak{C}$. $\mathcal{C}^* = \{\lambda \in \mathfrak{h}^* : \langle \lambda, \alpha_i^\vee \rangle > 0, \ i \in I\},$ $\mathfrak{C}^* \subset \mathfrak{h}^*$: dual of \mathfrak{C} Applying the Gindikin–Karpelevich formula, we obtain

$$E_{\lambda}^{\sharp}(g) = \sum_{w \in W} a(g)^{w\lambda + \rho} c(\lambda, w),$$

where

$$c(\lambda, w) = \prod_{\alpha > 0, w\alpha < 0} \frac{\xi(\langle \lambda, \alpha^{\vee} \rangle)}{\xi(1 + \langle \lambda, \alpha^{\vee} \rangle)},$$

and $\xi(s)$ is the completed Riemann zeta function.

• $\mathcal{C} = \{x \in \mathfrak{h} : \langle \alpha_i, x \rangle > 0, \ i \in I\},$ \mathfrak{C} : W-orbit of \mathcal{C} Using $\exp : \mathfrak{h} \to A^+$, $\det A_{\mathcal{C}} = \exp \mathcal{C}$ and $A_{\mathfrak{C}} = \exp \mathfrak{C}$. $\mathcal{C}^* = \{\lambda \in \mathfrak{h}^* : \langle \lambda, \alpha_i^\vee \rangle > 0, \ i \in I\}, \quad \mathfrak{C}^* \subset \mathfrak{h}^*$: dual of \mathfrak{C} P: weight lattice

Lemma (Looijenga)

Let $\mathcal K$ be a compact subset of $\mathfrak C$ and $\mu \in P \cap \mathfrak C^*$. If $A_{\mathcal K,\mu}(N)$ is the number of $\mu' \in W \cdot \{\mu\}$ whose maximum on $\mathcal K$ is $\geq -N$, then $A_{\mathcal K,\mu}(N) = O(N^r)$ as $N \to \infty$.

Lemma (Looijenga)

Let $\mathcal K$ be a compact subset of $\mathfrak C$ and $\mu \in P \cap \mathfrak C^*$. If $A_{\mathcal K,\mu}(N)$ is the number of $\mu' \in W \cdot \{\mu\}$ whose maximum on $\mathcal K$ is $\ge -N$, then $A_{\mathcal K,\mu}(N) = O(N^r)$ as $N \to \infty$.

Theorem

Assume that $\lambda \in \mathfrak{h}_{\mathbb{C}}^*$ with $Re(\lambda) - \rho \in \mathcal{C}^*$. Then $E_{\lambda}^{\sharp}(g)$ converges absolutely for $g \in UA_{\mathcal{C}}K$.

Lemma (Looijenga)

Let $\mathcal K$ be a compact subset of $\mathfrak C$ and $\mu \in P \cap \mathfrak C^*$. If $A_{\mathcal K,\mu}(N)$ is the number of $\mu' \in W \cdot \{\mu\}$ whose maximum on $\mathcal K$ is $\ge -N$, then $A_{\mathcal K,\mu}(N) = O(N^r)$ as $N \to \infty$.

Theorem

Assume that $\lambda \in \mathfrak{h}_{\mathbb{C}}^*$ with $Re(\lambda) - \rho \in \mathcal{C}^*$. Then $E_{\lambda}^{\sharp}(g)$ converges absolutely for $g \in UA_{\mathfrak{C}}K$.

Corollary

For $\lambda \in \mathfrak{h}_{\mathbb{C}}^*$ with $\text{Re}(\lambda) - \rho \in \mathcal{C}^*$, there exists a measure zero subset S_0 of US such that the series $E_{\lambda}(g)$ converges absolutely for $g \in USK$ off the set S_0K , where S is an arbitrary compact subset of $A_{\mathfrak{C}}$.

←□ ト ←□ ト ← □ ト ← □ ・ り へ ○

4. Convergence of Eisenstein series

4. Convergence of Eisenstein series

• Assume that $\lambda - \rho \in \mathcal{C}^*$. Then there exists a constant M > 0 depending on λ such that, for $\alpha \in \Delta$, $x \in \mathbb{R}$ and $g = uak \in G_{\mathbb{R}}$,

$$\sum_{m\in\mathbb{Z}}a(w_{\alpha}u_{\alpha}(x+m)g)^{\lambda+\rho}\leq M\,a^{w_{\alpha}(\lambda+\rho)}(1+a^{\alpha}),$$

where a(g) is the A^+ -component of g.

4. Convergence of Eisenstein series

• Assume that $\lambda - \rho \in \mathcal{C}^*$. Then there exists a constant M > 0 depending on λ such that, for $\alpha \in \Delta$, $x \in \mathbb{R}$ and $g = uak \in G_{\mathbb{R}}$,

$$\sum_{m\in\mathbb{Z}}a(w_{\alpha}u_{\alpha}(x+m)g)^{\lambda+\rho}\leq M\,a^{w_{\alpha}(\lambda+\rho)}(1+a^{\alpha}),$$

where a(g) is the A^+ -component of g.

• Using induction, we want to have, for $w = w_{\beta_1} \dots w_{\beta_\ell}$,

$$(\clubsuit) \sum_{m_1,\ldots,m_\ell \in \mathbb{Z}} a(w_{\beta_1} u_{\beta_1}(x_1 + m_1) \cdots w_{\beta_\ell} u_{\beta_\ell}(x_\ell + m_\ell) g)^{\lambda + \rho} \\ \leq M^\ell a^{w^{-1}(\lambda + \rho)} \prod_{\alpha > 0, w\alpha < 0} (1 + a^\alpha).$$

 4
 □
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √
 √

• However, we need the following property to prove (♣).

• However, we need the following property to prove (♣). Property (*): Assume that $\lambda - \rho \in \mathcal{C}^*$. Every $w \neq \mathrm{id} \in W$ can be written as $w = \nu w_\beta$ where $\beta \in \Delta$ and $\ell(\nu) < \ell(w)$, such that for

any subset S of $\Phi_+ \cap v^{-1}\Phi_-$ one has

$$\langle v^{-1}(\lambda + \rho) + \sum_{\alpha \in S} \alpha, \beta^{\vee} \rangle > 1.$$

However, we need the following property to prove (♣).
 Property (★): Assume that λ − ρ ∈ C*. Every w ≠ id ∈ W can be written as w = vw_β where β ∈ Δ and ℓ(v) < ℓ(w), such that for any subset S of Φ₊ ∩ v⁻¹Φ₋ one has

$$\langle v^{-1}(\lambda + \rho) + \sum_{\alpha \in S} \alpha, \beta^{\vee} \rangle > 1.$$

Theorem

Assume Property (\star) and $Re(\lambda) - \rho \in C^*$. Then the series $E_{\lambda}(g)$ converges absolutely for $g \in UA_{\mathcal{E}}K$.

However, we need the following property to prove (♣).
 Property (★): Assume that λ − ρ ∈ C*. Every w ≠ id ∈ W can be written as w = vw_β where β ∈ Δ and ℓ(v) < ℓ(w), such that for any subset S of Φ₊ ∩ v⁻¹Φ₋ one has

$$\langle v^{-1}(\lambda + \rho) + \sum_{\alpha \in S} \alpha, \beta^{\vee} \rangle > 1.$$

Theorem

Assume Property (\star) and $Re(\lambda) - \rho \in C^*$. Then the series $E_{\lambda}(g)$ converges absolutely for $g \in UA_{\mathcal{E}}K$.

• Use the inequality (\clubsuit) and bound $E_{\lambda}(g)$ by its constant term.

• Property (*) holds in the following cases:

- Property (*) holds in the following cases:
 - All rank 2 root systems

- Property (*) holds in the following cases:
 - All rank 2 root systems
 - $|a_{ij}| \ge 2$ for all $i, j \in I$ for the Cartan matrix $A = (a_{ij})$

- Property (*) holds in the following cases:
 - All rank 2 root systems
 - $|a_{ij}| \ge 2$ for all $i, j \in I$ for the Cartan matrix $A = (a_{ij})$
 - Feingold–Frenkel rank 3 hyperbolic algebra

- Property (*) holds in the following cases:
 - All rank 2 root systems
 - $|a_{ij}| \ge 2$ for all $i, j \in I$ for the Cartan matrix $A = (a_{ij})$
 - Feingold–Frenkel rank 3 hyperbolic algebra
- In general, Property (*) is not true. For example, the root system
 A₃ and w the longest element.

- Property (*) holds in the following cases:
 - All rank 2 root systems
 - $|a_{ij}| \ge 2$ for all $i, j \in I$ for the Cartan matrix $A = (a_{ij})$
 - Feingold–Frenkel rank 3 hyperbolic algebra
- In general, Property (*) is not true. For example, the root system
 A₃ and w the longest element.
- Property (*) is related to holomorphy of cuspidal Eisenstein series.

• P = MN: maximal parabolic subgroup of G

P = MN: maximal parabolic subgroup of G
 Assume that M is a finite-dimensional split reductive group.

P = MN: maximal parabolic subgroup of G
 Assume that M is a finite-dimensional split reductive group.
 α_P: simple root corresponding to P

P = MN: maximal parabolic subgroup of G
 Assume that M is a finite-dimensional split reductive group.
 α_P: simple root corresponding to P
 Write Δ_M = Δ \ {α_P}.

P = MN: maximal parabolic subgroup of G
 Assume that M is a finite-dimensional split reductive group.

 α_P : simple root corresponding to P

Write $\Delta_M = \Delta \setminus \{\alpha_P\}$.

 ϖ_P : fundamental weight corresponding to P

P = MN: maximal parabolic subgroup of G
 Assume that M is a finite-dimensional split reductive group.

 α_P : simple root corresponding to P

Write
$$\Delta_M = \Delta \setminus \{\alpha_P\}$$
.

 ϖ_P : fundamental weight corresponding to P

$$H = \{a \in A : a^{\alpha} = \pm 1, \alpha \in \Delta_M\}$$

P = MN: maximal parabolic subgroup of G
 Assume that M is a finite-dimensional split reductive group.

 α_P : simple root corresponding to P

Write $\Delta_M = \Delta \setminus \{\alpha_P\}$.

 ϖ_P : fundamental weight corresponding to P

 $H = \{ a \in A : a^{\alpha} = \pm 1, \alpha \in \Delta_M \}$

 H^+ : identity component of H

P = MN: maximal parabolic subgroup of G
 Assume that M is a finite-dimensional split reductive group.

 α_P : simple root corresponding to P

Write
$$\Delta_M = \Delta \setminus \{\alpha_P\}$$
.

 ϖ_P : fundamental weight corresponding to P

$$H = \{a \in A : a^{\alpha} = \pm 1, \alpha \in \Delta_M\}$$

 H^+ : identity component of H

• L: subgroup of $M(\mathbb{R})$ generated by $\chi_{\pm\alpha}(t)$, $\alpha\in\Delta_M$, $t\in\mathbb{R}$ Then we have M=LH. • Using the Iwasawa decomposition $G_{\mathbb{R}} = NMK$, we define

$$\operatorname{Iw}_L: G_{\mathbb{R}} \to L/L \cap K, \quad \operatorname{Iw}_{H^+}: G_{\mathbb{R}} \to H^+ \cong H/H \cap K.$$

• Using the Iwasawa decomposition $G_{\mathbb{R}} = NMK$, we define

$$\operatorname{Iw}_L: G_{\mathbb{R}} \to L/L \cap K, \quad \operatorname{Iw}_{H^+}: G_{\mathbb{R}} \to H^+ \cong H/H \cap K.$$

• For $s \in \mathbb{C}$, define the auxiliary Eisenstein series

$$E(s,g) = \sum_{\gamma \in \Gamma \cap P \setminus \Gamma} \operatorname{Iw}_{H^+}(\gamma g)^{s_{\varpi_P}}.$$

• Using the Iwasawa decomposition $G_{\mathbb{R}} = NMK$, we define

$$\operatorname{Iw}_L: G_{\mathbb{R}} \to L/L \cap K, \quad \operatorname{Iw}_{H^+}: G_{\mathbb{R}} \to H^+ \cong H/H \cap K.$$

• For $s \in \mathbb{C}$, define the auxiliary Eisenstein series

$$E(s,g) = \sum_{\gamma \in \Gamma \cap P \setminus \Gamma} \operatorname{Iw}_{H^+}(\gamma g)^{s_{\varpi_P}}.$$

• For an unramified cusp form f on $L(\mathbb{Z})\backslash L(\mathbb{R})$, we define the cuspidal Eisenstein series

$$E_f(s,g) = \sum_{\gamma \in \Gamma \cap P \setminus \Gamma} \operatorname{Iw}_{H^+}(\gamma g)^{s\varpi_P} \, f\big(\operatorname{Iw}_L(\gamma g)\big).$$

Kyu-Hwan Lee (UConn)

6. Holomorphy of Cuspidal Eisenstein series

6. Holomorphy of Cuspidal Eisenstein series

• Set $W^M = \{ w \in W : w^{-1}\alpha > 0, \alpha \in \Delta_M \}.$

6. Holomorphy of Cuspidal Eisenstein series

• Set $W^M = \{ w \in W : w^{-1}\alpha > 0, \alpha \in \Delta_M \}.$ For $w \in W$, define

$$\Phi'_{\mathbf{W}} = \Phi_{+} \cap \mathbf{W}\Phi_{-} = \{\alpha \in \Phi : \alpha > 0, \mathbf{W}^{-1}\alpha < 0\}.$$

6. Holomorphy of Cuspidal Eisenstein series

• Set $W^M = \{ w \in W : w^{-1}\alpha > 0, \alpha \in \Delta_M \}$. For $w \in W$, define

$$\Phi'_{\mathbf{w}} = \Phi_+ \cap \mathbf{w}\Phi_- = \{\alpha \in \Phi : \alpha > 0, \mathbf{w}^{-1}\alpha < 0\}.$$

Definition

A maximal parabolic subgroup P = MN with a finite dimensional Levi subgroup M is said to be *ample* if there exist constants C, D > 0 such that for every $w \in W^M$, $w \neq id$,

(P1)
$$(C\varpi_P - \rho)(\alpha^{\vee}) > 0$$
 for $\alpha \in \Phi'_w$,

(P2)
$$(D\varpi_P + \rho_M)(\alpha^{\vee}) < 0$$
 for $\alpha \in \Phi'_w$,

(P3) $w^{-1}(D\varpi_P + \rho_M)$ is a positive linear combination of simple roots.

4 L P 4 m P 4 = P 4 = P = - *) \(\)

Proposition

If P satisfies condition (P1), then for Re $s \ge s_0$ and any compact subset $\mathfrak S$ of $A_{\mathfrak C}$, there exists a measure zero subset S_0 of $U\mathfrak S$ such that E(s,g) converges absolutely for $g \in U\mathfrak S K$ off the set S_0K .

Proposition

If P satisfies condition (P1), then for Re $s \ge s_0$ and any compact subset $\mathfrak S$ of $A_{\mathfrak C}$, there exists a measure zero subset S_0 of $U\mathfrak S$ such that E(s,g) converges absolutely for $g \in U\mathfrak S K$ off the set S_0K .

Theorem

If the maximal parabolic subgroup P is ample, then for any compact subset $\mathfrak S$ of $A_{\mathfrak C}$, there exists a measure zero subset S_0 of $U\mathfrak S$ such that $E_f(s,g)$ is an entire function of $s\in \mathbb C$ for $g\in U\mathfrak S K$ off the set S_0K .

Proposition

If P satisfies condition (P1), then for Re $s \ge s_0$ and any compact subset $\mathfrak S$ of $A_{\mathfrak C}$, there exists a measure zero subset S_0 of $U\mathfrak S$ such that E(s,g) converges absolutely for $g \in U\mathfrak S K$ off the set S_0K .

Theorem

If the maximal parabolic subgroup P is ample, then for any compact subset $\mathfrak S$ of $A_{\mathfrak C}$, there exists a measure zero subset S_0 of $U\mathfrak S$ such that $E_f(s,g)$ is an entire function of $s\in \mathbb C$ for $g\in U\mathfrak S K$ off the set S_0K .

We use rapid decay of cusp forms due to Miller and Schmid.

• Let $A_1 = A \cap L$ and $A_1^+ \cong A_1/A_1 \cap K$.

- Let $A_1 = A \cap L$ and $A_1^+ \cong A_1/A_1 \cap K$.
- (Rapid Decay) For any n > 0 there exists a constant C₁ > 0 depending on n such that

$$|f(g)| \leq C_1 \operatorname{Iw}_{A_1^+}(g)^{-n\rho_M}.$$

- Let $A_1 = A \cap L$ and $A_1^+ \cong A_1/A_1 \cap K$.
- (Rapid Decay) For any n > 0 there exists a constant C₁ > 0 depending on n such that

$$|f(g)| \leq C_1 \operatorname{Iw}_{A_1^+}(g)^{-n\rho_M}.$$

• Take $n = (s_0 - \text{Re } s)/D > 0$, with D given in the definition of ample parabolic subgroup.

- Let $A_1 = A \cap L$ and $A_1^+ \cong A_1/A_1 \cap K$.
- (Rapid Decay) For any n > 0 there exists a constant C₁ > 0 depending on n such that

$$|f(g)| \leq C_1 \operatorname{Iw}_{A_1^+}(g)^{-n\rho_M}.$$

- Take $n = (s_0 \text{Re } s)/D > 0$, with D given in the definition of ample parabolic subgroup.
- Now we have

$$\begin{split} &\left|\operatorname{Iw}_{H^{+}}(\gamma g)^{s\varpi_{P}}f(\operatorname{Iw}_{L}(\gamma g))\right| \\ \leq &C_{1}\operatorname{Iw}_{H^{+}}(\gamma g)^{(\operatorname{Re}s)\varpi_{P}}\operatorname{Iw}_{A_{1}^{+}}\circ\operatorname{Iw}_{L}(\gamma g)^{-n\rho_{M}} \\ \leq &C_{1}\operatorname{Iw}_{H^{+}}(\gamma g)^{(\operatorname{Re}s)\varpi_{P}}\operatorname{Iw}_{H^{+}}(\gamma g)^{nD\varpi_{P}} \\ =&C_{1}\operatorname{Iw}_{H^{+}}(\gamma g)^{s_{0}\varpi_{P}}. \end{split}$$

7. Ample parabolic subgroups

Proposition

Assume that G is infinite dimensional.

If
$$\langle \alpha_i, \alpha^{\vee} \rangle \leq 0$$
 for any $\alpha_i \in \Delta$, $\alpha \in \Phi'_w$ where $w^{-1}\alpha_i > 0$,

7. Ample parabolic subgroups

Proposition

Assume that G is infinite dimensional.

If $\langle \alpha_i, \alpha^{\vee} \rangle \leq 0$ for any $\alpha_i \in \Delta$, $\alpha \in \Phi'_w$ where $w^{-1}\alpha_i > 0$,

then every maximal parabolic P with a finite dimensional Levi is ample.

7. Ample parabolic subgroups

Proposition

Assume that G is infinite dimensional.

If $\langle \alpha_i, \alpha^{\vee} \rangle \leq 0$ for any $\alpha_i \in \Delta$, $\alpha \in \Phi'_w$ where $w^{-1}\alpha_i > 0$, then every maximal parabolic P with a finite dimensional Levi is ample.

 The condition in the above proposition implies that the group G satisfies Property (*). • If *G* is finite dimensional, then *G* does not have any ample parabolic subgroup.

- If *G* is finite dimensional, then *G* does not have any ample parabolic subgroup.
- If G is a rank 2 hyperbolic group, then every maximal parabolic is ample.

- If *G* is finite dimensional, then *G* does not have any ample parabolic subgroup.
- If G is a rank 2 hyperbolic group, then every maximal parabolic is ample.
- Feingold–Frenkel algebra: both maximal parabolic subgroups with finite dimensional Levi are ample.

Thank You