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@ Eisenstein series on infinite dimensional Kac—Moody groups
o Affine case:

@ Convergence (Garland, 2006)

@ Meromorphic continuation of minimal parabolic Eisenstein series
(Garland, 2007)

@ Holomorphy of cuspidal Eisenstein series
(Garland, Miller, Patnaik, 2013)

@ Function field analogue (Braverman, Kazhdan, 2012)
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o Almost everywhere convergence
e Holomorphy of cuspidal Eisenstein series
o Computation of degenerate Fourier-Whittaker coefficients

@ General Kac—Moody case (Fleig, Kleinschmidt, Persson, 2013):

e Formal computation of degenerate Fourier-Whittaker coefficients
e Study of special cases of Eg, Eqq, E14
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@ Question:
Can we generalize convergence and holomorphy

to arbitrary Kac—Moody groups?

@ Today’s Answer:
Yes, if we assume some interesting combinatorial conditions for

the Kac—Moody groups.
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@ Why do we care about Kac-Moody Eisenstein series?
Potential Applications:

e Extension of the Langlands—Shahidi method to study automorphic
L-functions

e Moments of L-functions through multiple Dirichlet series as
envisioned by Bump, Friedberg and Hoffstein

@ String theory as will be explained in the talks of Persson and

Kleinschmidt
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A = (aj)i jes- nonsingular symmetrizable G.C.M.
(h, A, AV): realization of A
Thatis, A = {a,...,ar} Ch*and AY = {ay,...,a)} C b
satisfy (oj,a)) = ajfori,j e I.
g = g(A): Kac—-Moody algebra associated to (h, A, AY)
® = o Ud: set of roots of g
o' coroot corresponding to o € ¢
w; € b*, i=1,...,r: fundamental weights

W: Weyl group generated by simple reflections w;, i € |
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@ V: integrable highest weight module for gc
V. Z-form of V
Then we have

e—’n(VZ) CcVz and Z:(VZ) CVz for neN, iel,
thanks to the local nilpotence of e; and f;.

o Vi =R®yz V;

Fors,te Randi e I, set

00 0 f.”
Xa, Z FI, X—a; t) = Ztn#

n=0

Then x,,(s) and x_q,(t) define elements in Aut( V).
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@ Set G2 = (Xo;(8); X—ay(1) : S, t €R, i € I) C Aut(VR).
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@ Set G2 = (Xo;(8); X—ay(1) : S, t €R, i € I) C Aut(VR).

V = {vq, vo,... }: coherently ordered basis of V&

BO: subgroup consisting of upper triangular matrices w.r.t. ¥

Ui = Span{vy, vp,..., v} fort € Z-g, BOU; C U for each t

B;: image of B% in Aut(U)

Define B to be the projective limit of the projective family {B;}.
@ Topology on Gﬂ%: for a base of neighborhoods of the identity, we

take

Vi={geGl:gvi=v, i=12 ... t.

Define Gg to be the completion of GY w.r.t. this topology.
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@ We define the following subgroups of Gg:
U = completion of the subgroup generated by x,,a €
K = {k € Gg : Kk preserves {,) on Vi3 }
A= (hy(s):seR*,iel) and AT = (hy(s):s€eR,,i€l),
where Wy, (t) = Xa,(t)X—a,(—t~ ") xa,(t) and
ho,; (1) = Wo, (t)Wa, (1)1 for i € I for t € R*.
Fr=Gz={yeGr:v Vz C Vz}

@ We have the lwasawa decomposition
Gr = UATK

with uniqueness of expression.
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3. Eisenstein series and their constant terms

@ Write g = uak € Gg and consider a quasi-character \ : At — C*,
Define ¢, : Gg — C* by

d(g) = at?,

where (p, /) =1,i € .

@ Define the Eisenstein series on Gg to be the infinite formal sum

Ex@) = > ®\(19)

~yelNB\T

We define for all g € Gk the constant term
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@ Applying the Gindikin—Karpelevich formula, we obtain

EX(g) = a(@)" rc(\, w),

weW

where

_ §((A a”))
o= I oy

a>0,wa<0

and £(s) is the completed Riemann zeta function.
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@ Applying the Gindikin—Karpelevich formula, we obtain

EX(g) = a(@)" rc(\, w),

weW

where

_ §((A a”))
o= I oy

a>0,wa<0
and £(s) is the completed Riemann zeta function.
eC={xebh:{(apx)>0,icl}, €& W-orbitofC
Usingexp: h — AT, set Ac = expC and As = exp €.
C={xebh*:(\o/)>0,iel}, € Ch*:dualofc
P: weight lattice
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Lemma (Looijenga)
Let KC be a compact subset of € and ;. € P N &*. If A ,.(N) is the

number of ' € W - {u} whose maximum on K is > —N, then
Arc(N) = O(N") as N — oo.
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Lemma (Looijenga)
Let KC be a compact subset of € and ;. € P N &*. If A ,.(N) is the
number of ' € W - {u} whose maximum on K is > —N, then

Ak (N) = O(N") as N — oo.

Theorem

Assume that X € hi with Re(\) — p € C*. Then Eﬁ(g) converges
absolutely for g € UA:K.

Corollary

| A

For \ € bi. with Re(\) — p € C*, there exists a measure zero subset Sy

of UG such that the series E\(g) converges absolutely for g € USK

off the set SoK, where & is an arbitrary compact subset of A¢.
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4. Convergence of Eisenstein series

@ Assume that A — p € C*. Then there exists a constant M > 0

depending on A such that, for « € A, x € R and g = uak € Gg,

> a(Walla(x + mg)™* < Ma" (1 + &),
mez

where a(g) is the A*-component of g.
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4. Convergence of Eisenstein series

@ Assume that A — p € C*. Then there exists a constant M > 0

depending on A such that, for a« € A, x € R and g = uak € Gg,
3 a(Walia(x + m)g)** < Ma"+o)(1 4 a%),
meZ
where a(g) is the A*-component of g.
@ Using induction, we want to have, for w = wg, ... wg,,

(%) D a(ws,ug, (x1 + my) - ws,ug, (X + mg)g)*

my,....MyEZ

< MEaW*1()\+p) H (1 _{_aa)‘

a>0,wa<0
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@ However, we need the following property to prove (é).
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@ However, we need the following property to prove (é).
Property (x): Assume that A\ — p € C*. Every w # id € W can be
written as w = vwg where 3 € A and ¢(v) < {(w), such that for

any subset S of . Nv~'d_ one has

(v +p)+ D @, 8Y) > 1.

a€S

Assume Property (x) and Re(\) — p € C*. Then the series E»(9)

converges absolutely for g € UA¢K.

@ Use the inequality (&) and bound E,(g) by its constant term.
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@ Property (x) holds in the following cases:

e All rank 2 root systems
e |gj| > 2foralli,j € Ifor the Cartan matrix A = (aj)
e Feingold—Frenkel rank 3 hyperbolic algebra

@ In general, Property (%) is not true. For example, the root system

Az and w the longest element.

@ Property (%) is related to holomorphy of cuspidal Eisenstein series.
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@ P = MN: maximal parabolic subgroup of G
Assume that M is a finite-dimensional split reductive group.
ap: simple root corresponding to P
Write Ay = A\ {ap}.
wp: fundamental weight corresponding to P
H={acA:a*=+1,a€ Ay}
H™*: identity component of H
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5. Cuspidal Eisenstein series

@ P = MN: maximal parabolic subgroup of G
Assume that M is a finite-dimensional split reductive group.
ap: simple root corresponding to P
Write Ay = A\ {ap}.
wp: fundamental weight corresponding to P
H={acA: a*=+1,ac Ay}
H™*: identity component of H
@ L: subgroup of M(R) generated by x+.(f), « € Ay, t€R
Then we have M = LH.
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@ Using the Iwasawa decomposition Gz = NMK, we define

Iw,: Gr — L/LOK, Iwy::Gr — H" 2 H/HNK.
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@ Using the Iwasawa decomposition Gz = NMK, we define
Iw,: Gr — L/LOK, Iwy::Gr — H" 2 H/HNK.
@ For s € C, define the auxiliary Eisenstein series

E(s,9)= Y Iwu:(79)°"

~yEFNP\I

@ For an unramified cusp form f on L(Z)\L(R), we define the
cuspidal Eisenstein series

Ei(s,9)= Y Twu:(79)*" f(lwi(79))-

~yeMNP\I
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6. Holomorphy of Cuspidal Eisenstein series
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6. Holomorphy of Cuspidal Eisenstein series

eSet WM={weW:w'la>0acAy}.

For w € W, define

d,=d, Nwd_={acd:a>0w"a<0}.

Definition
A maximal parabolic subgroup P = MN with a finite dimensional Levi
subgroup M is said to be ample if there exist constants C, D > 0 such

that for every w ¢ WM, w +#£ id,
(P1) (Cwp — p)(a") > 0for a € &,

(P2) (Dwp + pm)(a¥) < 0 for a € @Y,

(P3) w—(Dwp + pu) is a positive linear combination of simple roots.

Kyu-Hwan Lee (UConn) July 27,2016  18/23



Kyu-Hwan Lee (UConn) July 27,2016  19/23



Proposition
If P satisfies condition (P1), then for Re s > sy and any compact

subset G of Ag, there exists a measure zero subset Sy of US such

that E(s, g) converges absolutely for g € USK off the set SyK.
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Proposition
If P satisfies condition (P1), then for Re s > sy and any compact

subset G of Ag, there exists a measure zero subset Sy of US such

that E(s, g) converges absolutely for g € USK off the set SyK.

Theorem
If the maximal parabolic subgroup P is ample, then for any compact

| \

subset & of Ag, there exists a measure zero subset Sy of US such

that E¢(s, g) is an entire function of s € C for g € USK off the set SyK.

@ We use rapid decay of cusp forms due to Miller and Schmid.
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@ letAi=ANnL and ATgA1/A1ﬂK

Kyu-Hwan Lee (UConn) July 27,2016  20/23



@ letAi=ANnL and AT%A1/A1DK
@ (Rapid Decay) For any n > 0 there exists a constant Cy > 0
depending on n such that

(9] < Cilwa:(g)~ "M,
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@ letAi=ANnL and AT%A1/A1DK
@ (Rapid Decay) For any n > 0 there exists a constant Cy > 0

depending on n such that

(9] < Cilwa:(g)~ "M,

@ Take n= (sp —Res)/D > 0, with D given in the definition of ample
parabolic subgroup.
@ Now we have
[T (79)°7P f (Iwi (7)) |
<Ci Iwh+ (79) eI w42 0 Iwy (vg) "™
<C1 Iwps (79) P Iwyy (19)"0F

=CqIwy+ ('yg)SWF’.
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7. Ample parabolic subgroups

Proposition
Assume that G is infinite dimensional.

If (aj, V) <0 forany aj € A, o € !, where w—'a; > 0,

Kyu-Hwan Lee (UConn) July 27,2016 21/23



7. Ample parabolic subgroups

Proposition
Assume that G is infinite dimensional.
If (aj, V) <0 forany aj € A, o € !, where w—'a; > 0,

then every maximal parabolic P with a finite dimensional Levi is ample.

Kyu-Hwan Lee (UConn) July 27,2016 21/23



7. Ample parabolic subgroups

Proposition
Assume that G is infinite dimensional.
If (aj, V) <0 forany aj € A, o € !, where w—'a; > 0,

then every maximal parabolic P with a finite dimensional Levi is ample.

@ The condition in the above proposition implies that the group G
satisfies Property ().
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@ If Gis finite dimensional, then G does not have any ample
parabolic subgroup.
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@ If Gis finite dimensional, then G does not have any ample

parabolic subgroup.

@ If Gis a rank 2 hyperbolic group, then every maximal parabolic is

ample.

@ Feingold—Frenkel algebra: both maximal parabolic subgroups with

finite dimensional Levi are ample.
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Thank You
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