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The classical corona theorem

In 1941, Kakutani asked if there was a corona in the maximal ideal
space 4 of H∞ (D), i.e whether or not the disk D was dense in 4.

Figure: The sun’s corona

E. T. Sawyer (McMaster University) Corona Theorem April 6, 2015 2 / 31



Carleson’s Corona Theorem

In 1962 Lennart Carleson

showed that if ϕ =
{

ϕj

}N
j=1
∈ ⊕NH∞ (D) satisfies

|ϕ (z)| =

√√√√ N

∑
j=1

∣∣∣ϕj (z)∣∣∣2 ≥ δ > 0, z ∈ D, (1)

then there is f = {fj}Nj=1 in ⊕NH∞ (D) with

f (z) · ϕ (z) =
N

∑
j=1
fj (z) ϕj (z) = 1, z ∈ D. (2)
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Bezout’s equation

Bezout’s equation,

f · ϕ = 1 where f , ϕ ∈ H∞ (D) , (3)

can be interpreted as exhibiting a bounded holomorphic inverse
f = (f1, ..., fN ) for the bounded holomorphic vector function
ϕ = (ϕ1, ..., ϕN ) relative to the dot product.

The key feature here is the holomorphicity of the solution. The
‘trivial’function f = ϕ

|ϕ|2 is a nonholomorphic inverse to ϕ.

Bezout’s equation is equivalent to the weak * density of D (point
evaluations) in the maximal ideal space 4 of H∞, hence to the
absence of a ‘corona’.

Despite intense efforts, the corona theorem remains open for H∞ (Bn)
when n > 1, the bounded analytic functions on the unit ball in Cn.
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Generalizations of the corona problem

The disk D in (3) has been replaced with a general domain Ω in Cn.

The dot product · has been replaced in (3) with operator composition
of bounded operators from one Hilbert space to another (Arveson,
Schubert, Douglas, Helton), for example: ϕ is an n×m matrix with
m ≤ n that is left invertible, equivalently ϕ∗ϕ < δ2 > 0. One can
take m < ∞ and n = ∞, but counterexamples (Treil 1989) show that
m = n = ∞ fails in general, leading to the Operator Corona Problem.
The algebra H∞ (D) has been replaced with more general algebra
function spaces, and in the case of a multiplier algebra MH of a
Hilbert space H, the lower bound (1) has been strengthened to the
operator lower bound TϕT ∗ϕ ≥ δ2.
The target 1 has been replaced with more general ψ ∈ H∞ (D) and
(1) weakened accordingly, leading to the Ideal Problem. The
necessary condition |ϕ| & |ψ| is not suffi cient in general (Rao),
raising the question of for which h we have that the inequality
h (|ϕ|) & |ψ| is suffi cient for f · ϕ = ψ.
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Corona theorems in higher complex dimension

1 There are lots of examples of planar domains Ω for which the
H∞ (Ω) corona theorem is known to hold, but there are no
counterexamples in C for which the H∞ (Ω) corona theorem is known
to fail (B. Cole has a counterexample of an infinitely connected
Riemann surface Ω for which the H∞ (Ω) corona theorem fails).

2 Quite the opposite is true in higher dimensions. There are some
counterexamples of domains of holomorphy Ω in Cn for which the
H∞ (Ω) corona theorem is known to fail, but there are no examples
of domains Ω in Cn for which the H∞ (Ω) corona theorem is known
to hold (Costea, Sawyer and Wick 2011 have shown that the MH 2n
corona theorem holds where H2n is the Drury-Arveson Hardy space on
the ball).

3 Key differences in higher dimensions are the existence of ‘tangential’
analytic disks near the boundary, and the complexity of zero sets.
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Overview of the talk

We introduce kernel multiplier spaces associated with a Hilbert
function space, and show that they are algebras in familiar situations.

We prove an alternate Toeplitz Corona Theorem for kernel multiplier
algebras in Hilbert function spaces of continuous functions enjoying a
Montel property, and whose reproducing kernels are invertible
multipliers.

This suggests yet another approach to Carleson’s Corona Theorem in
the disk.

We prove a corona theorem for kernel multiplier spaces in the disk.
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Six different proofs in the disk
none of which extend to higher dimension

the original argument of Carleson using Blaschke products,
interpolation, Carleson measures, duality, and then the Riemann
mapping theorem,

Hörmander’s argument using bounded solutions to the d-bar
equation ∂u = µ with µ a Carleson measure, and the Koszul
complex, but with a complicated µ,
Wolff’s argument starting with a ‘trivial’µ and identifying the
appropriate Carleson measure conditions that work with duality,
Jones’argument using an exponential damping factor that
exploited the positivity of Re 1

1−wz and the fact that there are no
compatibility conditions required in solving the dbar equation,
the ‘baby corona property’and the Toeplitz corona theorem due to
Schubert, Ball, Trent and Vinnikov; also Ambrosie and Timotin,
the argument of Trent and Wick exploiting the properties of outer
functions in the disk.
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The problem of obtaining sup control

All of the above six proofs split into two separate parts.

1 The first part constructs a holomorphic solution to Bezout’s equation
whose sup is uncontrolled. This ‘linear’part typically extends to
higher dimensions.

2 The second part shows that among all holomorphic solutions, there is
one whose sup is controlled. This is the ‘nonlinear’part that currently
has no extension to higher dimensions.

In many cases, one can exploit the fact that a ‘nice’holomorphic
function in the disk can be recovered from its boundary values on the
circle via the Poisson integral, and hence it suffi ces for such a
function to control the sup on the circle alone. This fact extends to
higher dimension.
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Duality and Carleson measures

In the disk, the duality and Carleson measure sup control can be
rephrased as i

∫
T
u
(
e iθ
)
k
(
e iθ
)
e iθdθ equals∫

∂D
u (z) k (z) dz =

∫
D
d (u (z) k (z) dz)

=
∫

D

(
∂+ ∂

)
(u (z) k (z) dz) =

∫
D

∂u (z) k (z) dz ∧ dz

=
∫

D
k (z) dµ (z) , for all ∂ [k (z) dz ] = 0.

In higher dimensions this becomes∫
∂Bn

u ∧ k =
∫

Bn

µ ∧ k,

for all k = ∑n
j=1 kj (z) d̂z

(j) ∧ dz ∈ C∞
n,n−1 (Bn) such that ∂k = 0 in

a neighbourhood of Bn, i.e.
∂ki
∂z j
(z) = ∂kj

∂z i
(z) for i 6= j .
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The Varopolous counterexample
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The Varopolous counterexample
The Hopf map

Parameterize ∂B2 \ {(z1, z2) : z1 = 0} by the Hopf variables
(u, θ) ∈ C× [0, 2π) where z1 = e iθ√

1+|u|2
and z2 = ue iθ√

1+|u|2
.

If f (u) ∈ BMO
(
R2
)
\ L∞ (R2

)
has compact support, then

f̃ (u, θ) = f (u) ∈ BMO (∂B2; d) and there is no decomposition of
the form

f̃ = ϕ+ ψ, (4)

where ϕ ∈ L∞ (∂B2) is bounded and ψ ∈ H2 (∂B2) is in the classical
Hardy space.
Indeed, integrating in θ over the Hopf fibres and using that
ψ ∈ H2 (B2) we contradict the assumption that f /∈ L∞ (R2

)
:

f (u) =
1
2π

∫ 2π

0
f̃ (u, θ) dθ =

1
2π

∫ 2π

0
[ϕ (u, θ) + ψ (u, θ)] dθ

=
1
2π

∫ 2π

0
ϕ (u, θ) dθ + ψu (0) =

1
2π

∫ 2π

0
ϕ (u, θ) dθ + ψ (0) .
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ψ ∈ H2 (B2) we contradict the assumption that f /∈ L∞ (R2

)
:

f (u) =
1
2π

∫ 2π

0
f̃ (u, θ) dθ =

1
2π

∫ 2π

0
[ϕ (u, θ) + ψ (u, θ)] dθ

=
1
2π

∫ 2π

0
ϕ (u, θ) dθ + ψu (0) =

1
2π

∫ 2π

0
ϕ (u, θ) dθ + ψ (0) .
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The Varopolous counterexample

Varopolous claims there is a ∂-closed (0, 1)-form Carleson measure µ
on the unit ball B2 in C2 such that the d-bar boundary equation
∂bu = µ has no bounded solution u ∈ L∞ (∂B2).

Assume this fails. Given f̃ ∈ BMO (∂B2), a theorem of Varopoulos
gives a bounded function w ∈ L∞ (∂B2) and a ∂-closed (0, 1)-form
Carleson measure µ such that

∂b

(
f̃ − w

)
= µ, i .e.

∫
∂B2

(
f̃ − w

)
∧ k =

∫
B2

µ ∧ k,

for all k ∈ C∞
2,1 (B2) such that ∂k = 0 in a neighbourhood of B2.

By our assumption of failure, there is a bounded function
u ∈ L∞ (∂B2) such that

∂bu = µ.
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The Varopolous counterexample

So both w and u are bounded and ∂b

(
f̃ − w − u

)
= 0,hence

f̃ − w − u ∈ H2 (∂B2), hence

f̃ ∈ L∞ (∂B2) +H2 (∂B2) ,

which contradicts (4).

The Carleson measure µ = ∂b

(
f̃ − w

)
above is unlike that,

µ = ∂
ϕ

|ϕ|2 , appearing in the Hörmander or Wolff proof since f̃ behaves

worse (unbounded) in the complex tangential directions than in the
slice directions (constant); whereas the holomorphic ϕ′ behaves
better in the complex tangential directions than in the slice
directions.
So it might be possible to solve the d-bar equation with a bounded
solution for corona data measures;
Or it might be necessary to use a soft approach like the Toeplitz
Corona Theorem.
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The multiplier algebra approach
Schubert, Arveson, Douglas and Helton

The multiplier algebra MH 2(D) of the classical Hardy space H
2 (D) is

H∞ (D). If Bezout’s equation (3) can be solved in H∞ (D), then the
following baby version for H2 (D) holds: for every h ∈ H2 (D) there
are f1, ..., fN ∈ H2 (D) such that the baby Bezout equation holds:

f · ϕ = h in D. (5)

To obtain (5) from Bezout (3), simply multiply f · ϕ = 1 by h to get
(fh) · ϕ = h, and note that fh ∈ H2 (D) since f ∈ MH 2(D).
The Toeplitz corona theorem, which requires the reproducing kernel√
1−|w |2
1−wz of H2 (D) to be a complete Pick kernel, shows that if the

baby corona theorem holds for H2 (D) with bounds, then the corona
theorem holds for H∞ (D) with the same bounds, thus giving the
necessary sup control.
In the baby corona theorem, sup control is no longer needed, and it
turns out that the baby theorem can be generalized to higher
dimensions - but not the Toeplitz corona theorem!
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Failure of the complete Pick property

A kernel function k (x , y) is said to be a complete Pick kernel if it
‘looks like’ 1

1−〈b(x ),b(y )〉K
for some auxillary Hilbert space K.

For example, the kernel k (z ,w) = 1
1−w ·z on the ball Bn is a

complete Pick kernel, but the Cauchy kernel
( 1
1−w ·z

)n
on the ball is

not. The Drury-Arveson Hardy space H2n on the ball has reproducing
kernel 1

1−w ·z , and the classical Hardy space H
2 (Bn) on the ball has

reproducing kernel
( 1
1−w ·z

)n
. The two spaces coincide only when

n = 1.

The Toeplitz corona theorem asserts that if a Hilbert function space
has a complete Pick kernel, then the baby corona theorem for a
Hilbert function space H is equivalent to the corona theorem for its
multiplier algebra MH , and moreover with identical bounds. While the
baby corona theorem is known for the classical Hardy space H2 (Bn),
the Toeplitz corona theorem doesn’t apply when n > 1 to give the
corona theorem for its multiplier algebra H∞ (Bn).
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The outer function approach
Agler-McCarthy, Amar, Trent-Wick

Agler and McCarthy used Ando’s theorem to reduce the corona
theorem in the bidisc D2 to establishing baby estimates on a family
of weighted Hardy spaces.

Amar then introduced the use of the von Neumann minimax theorem
to circumvent Ando’s theorem and go beyond the bidisc to the ball
and polydisc.

Trent and Wick then further reduced matters to checking weights
whose densities are the modulus squared of nonvanishing H∞

functions whose boundary values have bounded reciprocals (but the
reciprocals may not be well-behaved in the ball or polydisc).

In dimension n = 1 the existence and properties of outer functions
establishes the weighted estimates of Trent-Wick, giving the necessary
sup control, and thus they obtain yet another proof of the corona
theorem in the disk.
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Nonexistence of good outer functions

If lnψ ∈ L1 (T), the outer function

h (z) ≡ exp
{
1
2π

∫ 2π

0

e it + z
e it − z lnψ

(
e it
)
dt
}
, z ∈ D,

satisfies
∣∣h∗ (e it)∣∣ = ψ

(
e it
)
for almost every 0 ≤ t < 2π. Moreover

if lnψ is bounded, then h, 1h ∈ H∞ (D).

In the ball, Alexandrov and L /ow have constructed counterparts of
such outer functions, but even when ψ is a continuous positive
function on the sphere, the bounded holomorphic functions h with
|h∗| = ψ a.e. that they construct have horrible reciprocals 1h , not
belonging to any nice class of holomorphic functions on the ball.
In the polydisc, Rudin proved much earlier that if f is a continuous
positive function on Tn, then there is a positive singular measure σ
on Tn such that the Poisson integral P (f − σ) (z) of the real
measure f − σ is the real part of a holomorphic function. Alexandrov
and L /ow proved a version of this on the ball and used it to solve the
famous inner function problem in the ball.
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Quick review of Hilbert function spaces

A Hilbert space H is a Hilbert function space (aka a reproducing
kernel Hilbert space) on a set Ω if the elements of H are
complex-valued functions f on Ω with the usual vector space
structure, such that each point evaluation on H is a nonzero
continuous linear functional.

There is then a unique element kx ∈ H such that

f (x) = 〈f , kx 〉H for all x ∈ Ω.

satisfying
ky (x) = 〈ky , kx 〉H , x , y ∈ Ω.

The function k (y , x) ≡ 〈kx , ky 〉H = kx (y) is self-adjoint and positive
semidefinite, written k < 0. We call such a function k a kernel
function.
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Quick review of Hilbert function spaces

Given any kernel function k on Ω×Ω, define an inner product
〈·, ·〉Hk on finite linear combinations ∑N

i=1 ξ ikxi of the functions
kxi (ζ) = k (ζ, xi ), ζ ∈ Ω, by〈

N

∑
i=1

ξ ikxi ,
N

∑
j=1

ηjkxj

〉
Hk

=
N

∑
i ,j=1

ξ iηjk (xj , xi ) , (6)

and define the Hilbert function space Hk to be the completion of the
functions ∑N

i=1 ξ ikxi under the corresponding norm.

The Hilbert space Hk has kernel k , and if H and H′ are Hilbert
function spaces on Ω that have the same kernel function k, then
there is an isometry from H onto H′ that preserves the kernel
functions kx , x ∈ Ω.
The shifted space Ha is the Hilbert space with inner product
〈f , g〉Ha =

〈
k̃af , k̃ag

〉
H
, where k̃a = ka

‖ka‖ is the normalized kernel.
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〉
Hk

=
N

∑
i ,j=1

ξ iηjk (xj , xi ) , (6)

and define the Hilbert function space Hk to be the completion of the
functions ∑N

i=1 ξ ikxi under the corresponding norm.

The Hilbert space Hk has kernel k , and if H and H′ are Hilbert
function spaces on Ω that have the same kernel function k, then
there is an isometry from H onto H′ that preserves the kernel
functions kx , x ∈ Ω.
The shifted space Ha is the Hilbert space with inner product
〈f , g〉Ha =

〈
k̃af , k̃ag

〉
H
, where k̃a = ka

‖ka‖ is the normalized kernel.
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Quick review of Hilbert function spaces
Multiplier and kernel multiplier algebras

The Banach algebra MH of (pointwise) multipliers of H consists of all
functions ϕ on Ω for which

‖ϕ‖MH ≡
∥∥Mϕ

∥∥
H→H ≡ sup

f ∈H: f 6=0

‖ϕf ‖H
‖f ‖H

< ∞.

We assume 1 ∈ H and ‖1‖H = 1 so that MH ↪→ H.

The Banach space KH of kernel multipliers of H consists of all
functions ϕ on Ω for which

‖ϕ‖KH ≡ max
{
‖ϕ‖H , sup

a∈Ω

∥∥∥ϕk̃a
∥∥∥
H

}
< ∞.

We have MH ↪→ KH ↪→ H∩ L∞. KH is an algebra for all of the
Hardy-Sobolev spaces in higher dimension.
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The convex Poisson condition

Definition
Let H be a Hilbert function space on a set Ω with nonvanishing kernel,
and let Ha be the shifted Hilbert space for a ∈ Ω. We say that a vector
ϕ ∈ ⊕N`=1L∞ (Ω) satisfies the H−convex Poisson condition with positive
constant C if for every finite collection of points a = (a1, . . . , aM ) ∈ ΩM

and every collection of nonnegative numbers θ = {θm}Mm=0 summing to

1 =
M
∑
m=0

θm , there is a vector ga,θ ∈ ⊕N`=1H satisfying

ϕ (z) · ga,θ (z) = 1, z ∈ Ω, (7)∥∥∥ga,θ∥∥∥2
⊕N`=1Ha,θ

= θ0

∥∥∥ga,θ∥∥∥2
⊕N`=1H

+
M

∑
m=1

θm

∥∥∥ga,θ∥∥∥2
⊕N`=1Ham

≤ C 2 .

We denote the smallest such constant C by ‖ϕ‖cPc .
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Convex Poisson Property

We obtain an analogue of the Toeplitz Corona Theorem for the kernel
multiplier space KH when it is an algebra. The role of the Baby Corona
Property for H will be played by the following property.

Definition
Let H be a Hilbert function space with kernel k on a set Ω, and let
c ,C > 0. We say that the space H has the Convex Poisson Property with
positive constants c,C if for all vectors ϕ ∈ ⊕NKH satisfying
‖ϕ‖⊕NKH ≤ 1 and

|ϕ1 (z)|
2 + · · ·+ |ϕN (z)|

2 ≥ c2 > 0, z ∈ Ω, (8)

the vector ϕ satisfies the H−convex Poisson condition with constant C .
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Multiplier stable and the Poisson reproducing formula

1 We say that the Hilbert function space H is multiplier stable if

1 the reproducing kernel functions kx are nonvanishing and are invertible
multipliers on H, i.e. kx ∈ MH and 1

kx
∈ MH, for all x ∈ Ω, and

2 the map x → kx from Ω to MH is lower semicontinuous.
3 Note that we make no assumptions regarding the size of the norms of
the multipliers kx and 1

kx
in this definition. All the Hardy-Sobolev

spaces on the ball are multiplier stable, as well as the Bergman and
Hardy spaces on strictly pseudoconvex domains with C2 boundary.

2 A consequence of the multiplier stable assumption is the H-Poisson
reproducing formula. Suppose H is a Hilbert function space on a set
Ω with nonvanishing kernel and containing the constant functions.
Suppose furthermore that kx ∈ MH for all x ∈ Ω. Then for each
a ∈ Ω we have

f (a) = 〈f , 1〉Ha , f ∈ H (Ω) , a ∈ Ω. (9)
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Montel property

Definition
Let Ω be a topological space. A Hilbert function space H of continuous
functions on Ω is said to be have the Montel property if there is a dense
subset S of Ω with the property that for every sequence {fn}∞

n=1 in the
unit ball of H, there are a subsequence {fnk }

∞
k=1 and a function g in the

unit ball of H, such that

lim
k→∞

fnk (x) = g (x) , x ∈ S .
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Invertible Multiplier Property

Definition
Let H = Hk be a multiplier stable Hilbert function space on a set Ω with
reproducing kernel k, and containing the constant functions. We say that
the kernel k has the Invertible Multiplier Property if for every
(a, θ) ∈ ΩM × ΣM (0), there is a normalized invertible multiplier
k̃a,θ ∈ MH such that

〈f , g〉Ha,θ =
〈
k̃a,θf , k̃a,θg

〉
H
, f , g ∈ H. (10)

The normalized invertible multiplier k̃a,θ in (10) is uniquely
determined.

This property fails for the classical Hardy spaces H2 on the ball and
polydisc in dimension greater than 1.
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An alternate Toeplitz corona theorem
Sawyer-Wick - there is different alternate theorem by Douglas and Sarkar

Theorem
Suppose that H is a multiplier stable Hilbert function space of continuous
functions on Ω that contains the constant functions, and enjoys the
Montel property. Suppose further that the space of kernel multipliers KH
is an algebra.

1 Then KH, with the direct sum ⊕NKH normed by ‖·‖⊕NKH , satisfies
the Corona Property with positive constants c ,C if and only if H
satisfies the Convex Poisson Property with positive constants c,C.

2 Suppose in addition that H satisfies the Invertible Multiplier Property
and that MH = KH isometrically. Equip the direct sum ⊕NMH with
the norm ‖·‖⊕NMH .

1 Then H satisfies the Baby Corona Property with constants c ,C if MH
satisfies the Corona Property with the constants c,C.

2 Conversely, MH satisfies the Corona Property with constants c ,C
√
N

if H satisfies the Baby Corona Property with constants c ,C.
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A seventh approach to Carleson’s Corona Theorem

The formula kakz = 1
z−a (zkz − aka) for the Szegö kernel shows that

the operator T a,θ defined by 〈f , g〉Ha,θ =
〈
f ,T a,θg

〉
H is given by

T a,θ =
M

∑
m=0

θm
(
1− |am |2

)
M∗kamMkam

=
M

∑
m=0

θm |am |2 [kam ⊗ kam ] +
M

∑
m=0

θm
(
1− |am |2

)
MkamM

∗
kam

.

The reproducing kernel ka,θ (z ,w) for the space Ha,θ is given by

ka,θw (z) =
(
T a,θ

)−1
kw (z) .

The convex Poisson property for the Szegö kernel can then be verified
by hand in some simple cases of a, θ.
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The corona theorem for kernel multiplier spaces
Sawyer-Wick

The Corona theorem holds for the one-dimensional algebras of kernel
multipliers KH on the Hilbert spaces H = Bσ

2 (D) for 0 < σ ≤ 1
2 where

Bσ
2 (D) ≡

{
f ∈ H (D) :

∫
D

∣∣∣f (1−σ) (z)
∣∣∣2 dA (z) < ∞

}
.

Theorem

Let N ≥ 2, 0 < σ ≤ 1
2 and suppose that ϕ1, . . . , ϕN ∈ KB σ

2 (D)
satisfy

1 ≥ max
{
|ϕ1 (z)|

2 , . . . , |ϕN (z)|
2
}
≥ c > 0, z ∈ D.

Then there are a positive constant C and f1, . . . , fN ∈ KB σ
2 (D)

satisfying

max
{
|f1 (z)|2 , . . . , |fN (z)|2

}
≤ C , z ∈ Ω,

ϕ1 (z) f1 (z) + · · ·+ ϕN (z) fN (z) = 1, z ∈ Ω.
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Selected Open Problems

Do the algebras H∞ (Bn) ,H∞ (Dn) of bounded analytic functions on
the ball and polydisc have a corona in their maximal ideal spaces?
Obstacles include the lack of Blaschke products, the failure of the
complete Pick property for H2 (Bn) ,H2 (Dn), and the failure of the
invertible multiplier property on the ball and polydisc.

Can we verify the Convex Poisson Property for the kernel multiplier
algebras on the ball? Even in the range where the kernel is a
complete Pick kernel?

Can we prove a corona theorem for any algebra in higher dimensions
that is not the multiplier algebra of a Hilbert space with the complete
Pick property? E.g. some kernel multiplier algebras?

Thanks!
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