Statistical Regular Pavings in Bayesian Nonparametric Density Estimation

Raazesh Sainudiin

joint work with: Jennifer Harlow, Dominic Lee, Carey Priebe, Gloria Teng and Warwick Tucker

Department of Mathematics and Statistics, University of Canterbury, Christchurch, New Zealand

March 4, 2014,

Scalable Bayesian Computation Workshop, Banff, Canada, March 4, 2014
Massive Metric Data Streams

Synthetic Examples (Teng, Harlow, Lee and S., ACM Trans. Mod. & Comp. Sim., [r. 2] 2012)

Theory of Regular Pavings (RPs)

Theory of Real Mapped Regular Pavings (R-MRPs)

Statistical Regular Pavings (SRPs)

Adaptive Histograms
 S.E.B. Priority Queue – L_1 Consistent Initialization

Smoothing by Averaging

Posterior Expectation over Histograms in $S_{0,\infty}$

Examples - good, bad and ugly

Conclusions and References
Massive Metric Data Streams – Introduction

- A massive metric data stream is:
 \[\ldots, X_{-3}, X_{-2}, X_{-1}, X_0, X_1, X_2, X_3, X_n, X_{n+1}, \ldots \sim F, \quad X_i \in \mathbb{R}^d. \]

- Large Dimension: \(1 \leq d \leq 1000 \)
- Huge Observations: \(10^6 \leq n \leq 10^{10} \)
- Need an **efficient** and **sufficient** multi-dimensional metric data-structure for non-parametric inference that is capable of:
 1. \(L_1 \)-consistent density estimation – adaptive histograms
 2. Extend arithmetic over a dense class of histograms with different partitions
Massive Metric Data Streams – Air Traffic Example

On a Sunny Day
Massive Metric Data Streams – Air Traffic Example

On a Rainy Day
Massive Metric Data Streams – Synthetic Examples

Take millions of realizations of a possibly ‘challenging’ density
Massive Metric Data Streams – Synthetic Examples

and produce a consistent estimate of the density
Intervals and Boxes in \mathbb{R}^d

Intervals and *Boxes* as interval vectors:

$$
\mathbf{x} = [x_1, \bar{x}_1] \times [x_2, \bar{x}_2] \times \ldots \times [x_d, \bar{x}_d], \ x_i \leq \bar{x}_i.
$$

Figure: Boxes in 1D, 2D, and 3D.
An RP tree a root interval $x_\rho \in \mathbb{IR}^d$

The regularly paved boxes of x_ρ can be represented by nodes of finite rooted binary (frb-trees) of geometric group theory.

An operation of bisection on a box is equivalent to performing the operation on its corresponding node in the tree:
An RP tree a root interval \(x_\rho \in \mathbb{IR}^d \)

The regularly paved boxes of \(x_\rho \) can be represented by nodes of finite rooted binary (frb-trees) of geometric group theory.

An operation of bisection on a box is equivalent to performing the operation on its corresponding node in the tree:

Leaf boxes of RP tree partition the root interval \(x_\rho \in \mathbb{IR}^1 \)

Bisect at the midpoint of the chosen leaf interval
An RP tree a root interval $x_\rho \in \mathbb{IR}^d$

The regularly paved boxes of x_ρ can be represented by nodes of finite rooted binary (frb-trees) of geometric group theory.

An operation of bisection on a box is equivalent to performing the operation on its corresponding node in the tree:

Leaf boxes of RP tree partition the root interval $x_\rho \in \mathbb{IR}^2$

Bisect at the midpoint of the first widest side of the chosen leaf box.
An RP tree a root interval $\mathbf{x}_\rho \in \mathbb{I}\mathbb{R}^d$

The regularly paved boxes of \mathbf{x}_ρ can be represented by nodes of finite rooted binary (frb-trees) of geometric group theory.

An operation of bisection on a box is equivalent to performing the operation on its corresponding node in the tree:

Leaf boxes of RP tree partition the root interval $\mathbf{x}_\rho \in \mathbb{I}\mathbb{R}^2$

Bisect at the midpoint of the first widest side of the chosen leaf box

By this “RP Peano’s curve” frb-trees encode paritions of $\mathbf{x}_\rho \in \mathbb{I}\mathbb{R}^d$
Algebraic Structure and Combinatorics of RPs

There are C_k RPs with k splits

- $C_0 = 1$
- $C_1 = 1$
- $C_2 = 2$
- $C_3 = 5$
- $C_4 = 14$
- $C_5 = 42$
- \ldots
- $C_k = \frac{(2k)!}{(k+1)!k!}$
- \ldots
- $C_{15} = 9694845$
- \ldots
- $C_{20} = 6564120420$
Hasse (transition) Diagram of Regular Pavings

Transition diagram over $S_{0:3}$ with split/reunion operations

Hasse (transition) Diagram of Regular Pavings

Transition diagram over $S_{0:4}$ with split/reunion operations

1. The above state space is denoted by $S_{0:4}$
2. Number of RPs with k splits is the Catalan number C_k
3. There is more than one way to reach a RP by k splits
4. Randomized algorithms are Markov chains on $S_{0:∞}$
RPs are closed under union operations

\[s^{(1)} \cup s^{(2)} = s \] is union of two RPs \(s^{(1)} \) and \(s^{(2)} \) of \(x_\rho \in \mathbb{R}^2 \).
RPs are closed under union operations

Lemma 1: The algebraic structure of frb-trees (underlying Thompson’s group) is closed under union operations.
RPs are closed under union operations

Lemma 1: The algebraic structure of frb-trees (underlying Thompson’s group) is closed under union operations.

Proof: by a “transparency overlay process” argument (cf. Meier 2008).

\[s^{(1)} \cup s^{(2)} = s \text{ is union of two RPs } s^{(1)} \text{ and } s^{(2)} \text{ of } \mathbf{x}_\rho \in \mathbb{R}^2. \]
Algorithm 1: $\text{RPUnion}(\rho^{(1)}, \rho^{(2)})$

input : Root nodes $\rho^{(1)}$ and $\rho^{(2)}$ of RPs $s^{(1)}$ and $s^{(2)}$, respectively, with root box $x_{\rho^{(1)}} = x_{\rho^{(2)}}$

output : Root node ρ of RP $s = s^{(1)} \cup s^{(2)}$

if $\text{IsLeaf}(\rho^{(1)}) \& \text{IsLeaf}(\rho^{(2)})$ then
 $\rho \leftarrow \text{Copy}(\rho^{(1)})$
 return ρ
end

else if $\neg\text{IsLeaf}(\rho^{(1)}) \& \text{IsLeaf}(\rho^{(2)})$ then
 $\rho \leftarrow \text{Copy}(\rho^{(1)})$
 return ρ
end

else if $\text{IsLeaf}(\rho^{(1)}) \& \neg\text{IsLeaf}(\rho^{(2)})$ then
 $\rho \leftarrow \text{Copy}(\rho^{(2)})$
 return ρ
end

else
 $\neg\text{IsLeaf}(\rho^{(1)}) \& \neg\text{IsLeaf}(\rho^{(2)})$
end

Make ρ as a node with $x_{\rho} \leftarrow x_{\rho^{(1)}}$

Graft onto ρ as left child the node $\text{RPUnion}(\rho^{(1)}L, \rho^{(2)}L)$

Graft onto ρ as right child the node $\text{RPUnion}(\rho^{(1)}R, \rho^{(2)}R)$

return ρ

Note: this is not the minimal union of the (Boolean mapped) RPs of Jaulin et. al. 2001
Dfn: Real Mapped Regular Paving (\mathbb{R}-MRP)

Let $s \in S_{0:\infty}$ be an RP with root node ρ and root box $x_\rho \in \mathbb{IR}^d$.
Dfn: Real Mapped Regular Paving (\(\mathbb{R}\)-MRPs)

- Let \(s \in S_{0:}\infty\) be an RP with root node \(\rho\) and root box \(x_\rho \in \mathbb{R}^d\).
- Let \(V(s)\) and \(L(s)\) denote the sets all nodes and leaf nodes of \(s\), respectively.
Dfn: Real Mapped Regular Paving (R-MRP)

- Let $s \in S_{0:\infty}$ be an RP with root node ρ and root box $x_\rho \in \mathbb{R}^d$.
- Let $V(s)$ and $L(s)$ denote the sets all nodes and leaf nodes of s, respectively.
- Let $f : V(s) \rightarrow \mathbb{R}$ map each node of s to an element in \mathbb{R} as follows:
 $$\{ \rho v \mapsto f_{\rho v} : \rho v \in V(s), f_{\rho v} \in \mathbb{R} \}.$$
Dfn: Real Mapped Regular Paving (\mathbb{R}-MRP)

- Let $s \in \mathbb{S}_{0:\infty}$ be an RP with root node ρ and root box \(\mathbf{x}_{\rho} \in \mathbb{R}^d \).
- Let $\mathcal{V}(s)$ and $\mathcal{L}(s)$ denote the sets all nodes and leaf nodes of s, respectively.
- Let $f : \mathcal{V}(s) \rightarrow \mathbb{R}$ map each node of s to an element in \mathbb{R} as follows:
 \[
 \left\{ \rho \mathbf{v} \mapsto f_{\rho \mathbf{v}} : \rho \mathbf{v} \in \mathcal{V}(s), f_{\rho \mathbf{v}} \in \mathbb{R} \right\}.
 \]
- Such a map f is called a \mathbb{R}-mapped regular paving (\mathbb{R}-MRP).
Dfn: Real Mapped Regular Paving (\mathbb{R}-MRP)

- Let $s \in \mathbb{S}_{0:\infty}$ be an RP with root node ρ and root box $x_\rho \in \mathbb{IR}^d$.
- Let $V(s)$ and $L(s)$ denote the sets all nodes and leaf nodes of s, respectively.
- Let $f : V(s) \to \mathbb{R}$ map each node of s to an element in \mathbb{R} as follows:
 \[\{ \rho v \mapsto f_{\rho v} : \rho v \in V(s), f_{\rho v} \in \mathbb{R} \} . \]
- Such a map f is called a \mathbb{R}-mapped regular paving (\mathbb{R}-MRP).
- Thus, a \mathbb{R}-MRP f is obtained by augmenting each node ρv of the RP tree s with an additional data member $f_{\rho v}$.
Example of an \mathbb{R}-MRP

Simple functions over an RP tree partition

\mathbb{R}-MRP over s_{221} with $x_\rho = [0, 8]$
If $\star : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ then we can extend \star point-wise to two \mathbb{R}-MRPs f and g with root nodes $\rho^{(1)}$ and $\rho^{(2)}$ via $\text{MRPOperate}(\rho^{(1)}, \rho^{(2)}, \star)$. This is done using $\text{MRPOperate}(\rho^{(1)}, \rho^{(2)}, +)$.
R-MRP Addition by \(\text{MRPOperate}(\rho^{(1)}, \rho^{(2)}, +) \)

adding two piece-wise constant functions or \(\mathbb{R}\text{-MRPs} \)
Algorithm 2: MRPOperate($\rho^{(1)}, \rho^{(2)}, \star$)

input: two root nodes $\rho^{(1)}$ and $\rho^{(2)}$ with same root box $x_{\rho^{(1)}} = x_{\rho^{(2)}}$ and binary operation \star.

output: the root node ρ of \mathbb{R}-MRP $h = f \star g$.

Make a new node ρ with box and image

$x_{\rho} \leftarrow x_{\rho^{(1)}}$; $h_{\rho} \leftarrow f_{\rho^{(1)}} \star g_{\rho^{(2)}}$

if $\text{IsLeaf}(\rho^{(1)})$ & $\neg\text{IsLeaf}(\rho^{(2)})$ then

Make temporary nodes L', R'

$x_{L'} \leftarrow x_{\rho^{(1)}_L}$; $x_{R'} \leftarrow x_{\rho^{(1)}_R}$

$f_{L'} \leftarrow f_{\rho^{(1)}_L}$; $f_{R'} \leftarrow f_{\rho^{(1)}}$

Graft onto ρ as left child the node $\text{MRPOperate}(L', \rho^{(2)}_L, \star)$

Graft onto ρ as right child the node $\text{MRPOperate}(R', \rho^{(2)}_R, \star)$

end

else if $\neg\text{IsLeaf}(\rho^{(1)})$ & $\text{IsLeaf}(\rho^{(2)})$ then

Make temporary nodes L', R'

$x_{L'} \leftarrow x_{\rho^{(2)}_L}$; $x_{R'} \leftarrow x_{\rho^{(2)}_R}$

$g_{L'} \leftarrow g_{\rho^{(2)}_L}$; $g_{R'} \leftarrow g_{\rho^{(2)}}$

Graft onto ρ as left child the node $\text{MRPOperate}(\rho^{(1)}_L, L', \star)$

Graft onto ρ as right child the node $\text{MRPOperate}(\rho^{(1)}_R, R', \star)$

end

else if $\neg\text{IsLeaf}(\rho^{(1)})$ & $\neg\text{IsLeaf}(\rho^{(2)})$ then

Graft onto ρ as left child the node $\text{MRPOperate}(\rho^{(1)}_L, \rho^{(2)}_L, \star)$

Graft onto ρ as right child the node $\text{MRPOperate}(\rho^{(1)}_R, \rho^{(2)}_R, \star)$

end

return ρ
Unary transformations are easy too

Let $\text{MRPTransform}(\rho, \tau)$ apply the unary transformation $\tau : \mathbb{R} \rightarrow \mathbb{R}$ to a given \mathbb{R}-MRP f with root node ρ as follows:

- copy f to g
- recursively set $f_{\rho v} = \tau(f_{\rho v})$ for each node ρv in g
- return g as $\tau(f)$
Minimal Representation of \mathbb{R}-MRP

Algorithm 3: MinimiseLeaves(ρ)

input: ρ, the root node of \mathbb{R}-MRP f.

output: Modify f into $\land(f)$, the unique \mathbb{R}-MRP with fewest leaves.

if $\text{IsLeaf}(\rho)$ then
 MinimiseLeaves(ρ_L)
 MinimiseLeaves(ρ_R)
 if $\text{IsCherry}(\rho)$ & ($f_{\rho_L} = f_{\rho_R}$) then
 $f_{\rho} \leftarrow f_{\rho_L}$
 Prune(ρ_L)
 Prune(ρ_R)
 end
end
Arithmetic and Algebra of \mathbb{R}-MRPs

Thus, we can obtain any \mathbb{R}-MRP arithmetical expression that is specified by finitely many sub-expressions involving:

1. constant \mathbb{R}-MRP,
Arithmetic and Algebra of \mathbb{R}-MRPs

Thus, we can obtain any \mathbb{R}-MRP arithmetical expression that is specified by finitely many sub-expressions involving:

1. constant \mathbb{R}-MRP,
2. binary arithmetic operation $\star \in \{+,-,\cdot,/\}$ over two \mathbb{R}-MRPs,
Thus, we can obtain any \mathbb{R}-MRP arithmetical expression that is specified by finitely many sub-expressions involving:

1. constant \mathbb{R}-MRP,
2. binary arithmetic operation $\star \in \{+,-,\cdot,/\}$ over two \mathbb{R}-MRPs,
3. standard transformations of \mathbb{R}-MRPs by elements of $\mathbb{G} := \{\exp, \sin, \cos, \tan, \ldots\}$ and
Thus, we can obtain any \(\mathbb{R} \)-MRP arithmetical expression that is specified by finitely many sub-expressions involving:

1. constant \(\mathbb{R} \)-MRP,
2. binary arithmetic operation \(\star \in \{+,-,\cdot,/\} \) over two \(\mathbb{R} \)-MRPs,
3. standard transformations of \(\mathbb{R} \)-MRPs by elements of \(\mathbb{G} := \{\exp, \sin, \cos, \tan, \ldots\} \) and
4. their compositions.
Theorem

Let \mathcal{F} be the class of \mathbb{R}-MRPs with the same root box x_ρ. Then \mathcal{F} is dense in $C(x_\rho, \mathbb{R})$, the algebra of real-valued continuous functions on x_ρ.

Stone-Wierstrass Theorem: \mathbb{R}-MRPs Dense in $C(x_\rho, \mathbb{R})$
Theorem

Let \mathcal{F} be the class of \mathbb{R}-MRPs with the same root box \mathbf{x}_ρ. Then \mathcal{F} is dense in $C(\mathbf{x}_\rho, \mathbb{R})$, the algebra of real-valued continuous functions on \mathbf{x}_ρ.

Proof:

Since $\mathbf{x}_\rho \in \mathbb{IR}^d$ is a compact Hausdorff space, by the Stone-Weierstrass theorem we can establish that \mathcal{F} is dense in $C(\mathbf{x}_\rho, \mathbb{R})$ with the topology of uniform convergence, provided that \mathcal{F} is a sub-algebra of $C(\mathbf{x}_\rho, \mathbb{R})$ that separates points in \mathbf{x}_ρ and which contains a non-zero constant function.
Stone-Wierstrass Theorem: \(\mathbb{R} \)-MRPs Dense in \(C(x_\rho, \mathbb{R}) \)

Theorem

Let \(\mathcal{F} \) be the class of \(\mathbb{R} \)-MRPs with the same root box \(x_\rho \). Then \(\mathcal{F} \) is dense in \(C(x_\rho, \mathbb{R}) \), the algebra of real-valued continuous functions on \(x_\rho \).

Proof:

Since \(x_\rho \in \mathbb{R}^d \) is a compact Hausdorff space, by the Stone-Weierstrass theorem we can establish that \(\mathcal{F} \) is dense in \(C(x_\rho, \mathbb{R}) \) with the topology of uniform convergence, provided that \(\mathcal{F} \) is a sub-algebra of \(C(x_\rho, \mathbb{R}) \) that separates points in \(x_\rho \) and which contains a non-zero constant function.

We will show all these conditions are satisfied by \(\mathcal{F} \).
Stone-Wierstrass Theorem Contd.: \mathbb{R}-MRPs Dense in $C(x_\rho, \mathbb{R})$

- \mathcal{F} is a sub-algebra of $C(x_\rho, \mathbb{R})$ since it is closed under addition and scalar multiplication.
Stone-Wierstrass Theorem Contd.:

\mathcal{F} is a sub-algebra of $C(x_\rho, \mathbb{R})$ since it is closed under addition and scalar multiplication.

\mathcal{F} contains non-zero constant functions.
Stone-Wierstrass Theorem Contd.: \mathbb{R}-MRPs Dense in $C(x_\rho, \mathbb{R})$

- \mathcal{F} is a sub-algebra of $C(x_\rho, \mathbb{R})$ since it is closed under addition and scalar multiplication.
- \mathcal{F} contains non-zero constant functions.
- Finally, RPs can clearly separate distinct points $x, x' \in x_\rho$ into distinct leaf boxes by splitting deeply enough.
Stone-Wierstrass Theorem Contd.: \mathbb{R}-MRPs Dense in $C(x_\rho, \mathbb{R})$

- \mathcal{F} is a sub-algebra of $C(x_\rho, \mathbb{R})$ since it is closed under addition and scalar multiplication.
- \mathcal{F} contains non-zero constant functions
- Finally, RPs can clearly separate distinct points $x, x' \in x_\rho$ into distinct leaf boxes by splitting deeply enough.
- Thus, \mathcal{F}, the class of \mathbb{R}-MRPs with the same root box x_ρ, is dense in $C(x_\rho, \mathbb{R})$, the algebra of real-valued continuous functions on x_ρ.
Stone-Wierstrass Theorem Contd.: \mathbb{R}-MRPs Dense in $C(\mathbf{x}_\rho, \mathbb{R})$

- \mathcal{F} is a sub-algebra of $C(\mathbf{x}_\rho, \mathbb{R})$ since it is closed under addition and scalar multiplication.
- \mathcal{F} contains non-zero constant functions.
- Finally, RPs can clearly separate distinct points $\mathbf{x}, \mathbf{x}' \in \mathbf{x}_\rho$ into distinct leaf boxes by splitting deeply enough.
- Thus, \mathcal{F}, the class of \mathbb{R}-MRPs with the same root box \mathbf{x}_ρ, is dense in $C(\mathbf{x}_\rho, \mathbb{R})$, the algebra of real-valued continuous functions on \mathbf{x}_ρ.
- Q.E.D.
Kernel Density Estimate (visualization of a procedure)

(a) True density.

(c) MCMC bandwidth KDE.
Approximating Kernel Density Estimates by \mathbb{R}-MRPs

(a) $\overline{\psi} = 0.001$ (187 leaves).

(b) $\overline{\psi} = 0.005$ (316 leaves).

(c) $\overline{\psi} = 0.0001$ (919 leaves).

(d) $\overline{\psi} = 0.00001$ (4420 leaves).
Table J.4: 5-d case: estimated errors for KDE and RMRP-KDE approximations.

<table>
<thead>
<tr>
<th></th>
<th>\hat{d}_{KL}</th>
<th>\hat{L}_1 error</th>
<th>Time (s)</th>
<th>Leaves</th>
</tr>
</thead>
<tbody>
<tr>
<td>KDE ($n_K = 2,000$)</td>
<td>0.41</td>
<td>0.66</td>
<td>7,350–8,880</td>
<td>n/a</td>
</tr>
<tr>
<td>RMRP-KDE approximations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\overline{\psi} = 0.0001$</td>
<td>5.06</td>
<td>0.96</td>
<td>1.0</td>
<td>2,363</td>
</tr>
<tr>
<td>$\overline{\psi} = 0.00005$</td>
<td>4.85</td>
<td>0.91</td>
<td>2.3</td>
<td>4,639</td>
</tr>
<tr>
<td>$\overline{\psi} = 0.00001$</td>
<td>4.51</td>
<td>0.85</td>
<td>8.7</td>
<td>17,759</td>
</tr>
<tr>
<td>$\overline{\psi} = 0.000005$</td>
<td>4.49</td>
<td>0.84</td>
<td>17.2</td>
<td>31,335</td>
</tr>
<tr>
<td>$\overline{\psi} = 0.000001$</td>
<td>3.33</td>
<td>0.76</td>
<td>66.1</td>
<td>133,493</td>
</tr>
<tr>
<td>$\overline{\psi} = 0.0000005$</td>
<td>3.31</td>
<td>0.75</td>
<td>131.0</td>
<td>237,561</td>
</tr>
<tr>
<td>$\overline{\psi} = 0.00000001$</td>
<td>3.54</td>
<td>0.74</td>
<td>470.0</td>
<td>895,012</td>
</tr>
</tbody>
</table>
Finding image of \mathbb{R}-MRP is by fast look-ups

Algorithm 4: \texttt{PointWiseImage(ρ, x)}

\begin{algorithm}
\textbf{input} : ρ with box x_ρ, the root node of \mathbb{R}-MRP f with RP s, and a point $x \in x_\rho$.
\textbf{output} : Return $f_{\eta(x)}$ at the leaf node $\eta(x)$ that is associated with the box $x_{\eta(x)}$ containing x.

\begin{algorithmic}
\If{IsLeaf(ρ)}
 \State return f_ρ
\EndIf
\Else
 \If{$x \in x_{\rho_R}$}
 \State \texttt{PointWiseImage(ρ_R, x)}
 \Else
 \State \texttt{PointWiseImage(ρ_L, x)}
 \EndIf
\EndElse
\end{algorithmic}
\end{algorithm}
Finding image of \mathbb{R}-MRP is by fast look-ups

Algorithm 5: *PointWiseImage(ρ, x)*

- **input:** ρ with box x_ρ, the root node of \mathbb{R}-MRP f with RP s, and a point $x \in x_\rho$.
- **output:** Return $f_{\eta(x)}$ at the leaf node $\eta(x)$ that is associated with the box $x_{\eta(x)}$ containing x.

```
if IsLeaf($\rho$) then
    return $f_\rho$
else
    if $x \in x_{\rho_R}$ then
        PointWiseImage($\rho_R, x$)
    else
        PointWiseImage($\rho_L, x$)
end
```

- Cost of KDE image $\sim O(n)$ KFLOPs (FLOPs for kernel evaluation procedure)
Finding image of R-MRP is by fast look-ups

Algorithm 6: PointWiseImage(ρ, x)

```plaintext
input : $\rho$ with box $x_\rho$, the root node of R-MRP $f$ with RP $s$, and a point $x \in x_\rho$.
output : Return $f_{\eta(x)}$ at the leaf node $\eta(x)$ that is associated with the box $x_{\eta(x)}$ containing $x$.
```

```plaintext
if IsLeaf($\rho$) then
    return $f_\rho$
else
    if $x \in x_{\rho_R}$ then
        PointWiseImage($\rho_R, x$)
    else
        PointWiseImage($\rho_L, x$)
    end
end
```

- Cost of KDE image $\sim O(n)$ KFLOPs (FLOPs for kernel evaluation procedure)
- 10-fold CV cost $\sim 10 \times O\left(\frac{1}{10} n^{\frac{9}{10}} n\right) = O(n^2)$ KFLOPs
Finding image of \(\mathbb{R} \)-MRP is by fast look-ups

\[
\textbf{Algorithm 7:} \text{PointWiseImage}(\rho, x)
\]

\begin{itemize}
 \item input : \(\rho \) with box \(x_{\rho} \), the root node of \(\mathbb{R} \)-MRP \(f \) with RP \(s \), and a point \(x \in x_{\rho} \).
 \item output : Return \(f_{\eta(x)} \) at the leaf node \(\eta(x) \) that is associated with the box \(x_{\eta(x)} \) containing \(x \).
 \item if IsLeaf(\(\rho \)) then
 \item return \(f_{\rho} \)
 \item end
 \item else
 \item if \(x \in x_{\rho_R} \) then
 \item PointWiseImage(\(\rho_R, x \))
 \item end
 \item else
 \item PointWiseImage(\(\rho_L, x \))
 \item end
 \item end
\end{itemize}

\begin{itemize}
 \item Cost of KDE image \(\sim O(n) \text{ KFLOPs} \) (FLOPs for kernel evaluation procedure)
 \item 10-fold CV cost \(\sim 10 \times O\left(\frac{1}{10}n\frac{9}{10}n \right) = O(n^2) \text{ KFLOPs} \)
 \item But using \(\mathbb{R} \)-MRP approximation to KDE requires \(10 \times O\left(\frac{1}{10}n \lg \left(\frac{9}{10}n \right) \right) = O(n \lg(n)) \text{ tree-look-ups} \)
\end{itemize}
Coverage, Marginal & Slice Operators of \(\mathbb{R} \)-MRP

\(\mathbb{R} \)-MRP approximation to Levy density and its coverage regions with \(\alpha = 0.9 \) (light gray), \(\alpha = 0.5 \) (dark gray) and \(\alpha = 0.1 \) (black)
Coverage, Marginal & Slice Operators of \mathbb{R}-MRP

Marginal densities $f^{1}(x_1)$ and $f^{2}(x_2)$ along each coordinate of \mathbb{R}-MRP approximation
Coverage, Marginal & Slice Operators of \mathbb{R}-MRP

The slices of a simple \mathbb{R}-MRP in 2D
Statistical Regular Pavings (SRPs)

- Extended from the RP;
- Caches recursively computable statistics at each box or node as data falls through;
- These statistics include:
 - the sample count;
 - the sample mean vector;
 - the sample variance-covariance matrix;
 - and the volume of the box.

Caching the sample count in each node (or box).
Statistical Regular Pavings (SRPs)

- Extended from the RP;
- Caches recursively computable statistics at each box or node as data falls through;
- These statistics include:
 - the sample count;
 - the sample mean vector;
 - the sample variance-covariance matrix;
 - and the volume of the box.

Caching the sample count in each node (or box).
Statistical Regular Pavings (SRPs)

- Extended from the RP;
- Caches recursively computable statistics at each box or node as data falls through;
- These statistics include:
 - the sample count;
 - the sample mean vector;
 - the sample variance-covariance matrix;
 - and the volume of the box.

Caching the sample count in each node (or box).
SRPs as Adaptive Histograms

SRP estimate of f from random vectors $X_1, X_2, \ldots, X_n \sim f$ is

$$f_{n,\hat{s}}(x) = \frac{1}{n} \sum_{i=1}^{n} \frac{1 (x_i \in x(x))}{\text{vol}(x(x))},$$

$x(x) \in \ell(\hat{s})$ is the leaf box containing x with volume $\text{vol}(x(x))$.

Figure: A SRP as a histogram estimate.
SRPs as Adaptive Histograms

SRP estimate of f from random vectors $X_1, X_2, \ldots, X_n \overset{iid}{\sim} f$ is

$$f_{n,\hat{s}}(x) = \frac{1}{n} \sum_{i=1}^{n} \frac{1 \left(x_i \in x(x) \right)}{\text{vol}(x(x))},$$

$x(x) \in \ell(\hat{s})$ is the leaf box containing x with volume $\text{vol}(x(x))$.

Figure: A SRP as a histogram estimate.
Nonparametric Density Estimation – Recap

Problem: Take **samples** from an unknown density f and consistently reconstruct f
Nonparametric Density Estimation – Recap

Approach: Use **statistical regular paving** to get \mathbb{R}-MRP data-adaptive histogram

(a) An SRP to visualize entropy

(b) An SRP histogram architecture
Nonparametric Density Estimation – Recap

Solution: \(\mathbb{R}\)-MRP histogram averaging allows us to produce a consistent Bayesian estimate of the density (up to 10 dimensions)

(Teng, Harlow, Lee and S., *ACM Trans. Mod. & Comp. Sim.*, 2013)
As data arrives, order the leaf boxes of the SRP so that the leaf box with **the most number of points** will be chosen for the next bisection.

Algorithm SplitMostCounts
A Prioritized Queue based Algorithm (for L_1 Consistent Initialization)

Algorithm \texttt{SplitMostCounts}

As data arrives, order the leaf boxes of the SRP so that the leaf box with \textbf{the most number of points} will be chosen for the next bisection.

Split the root box.
A Prioritized Queue based Algorithm (for L_1 Consistent Initialization)

Algorithm SplitMostCounts

As data arrives, order the leaf boxes of the SRP so that the leaf box with the most number of points will be chosen for the next bisection.

Two or more boxes with the most number of points?
A Prioritized Queue based Algorithm (for L_1 Consistent Initialization)

Algorithm SplitMostCounts

As data arrives, order the leaf boxes of the SRP so that the leaf box with **the most number of points** will be chosen for the next bisection.

Break such ties by randomising the next bisection.

![Diagram of split most counts]
A Prioritized Queue based Algorithm (for L_1 Consistent Initialization)

Algorithm SplitMostCounts

As data arrives, order the leaf boxes of the SRP so that the leaf box with **the most number of points** will be chosen for the next bisection.

Bisect until each box has $\leq k_n$ points (let $k_n = 3$ here).
A Prioritized Queue based Algorithm (for L_1 Consistent Initialization)

Algorithm SplitMostCounts

As data arrives, order the leaf boxes of the SRP so that the leaf box with the most number of points will be chosen for the next bisection.

Final state
The **SplitMostCounts Algorithm**

Input: (i) data: \(x_1, \ldots, x_n \subseteq \mathbb{R}^d\); (ii) root box: \(x_\rho\) // optional; (iii) padding to handle pulsed data: \(\psi \geq 0\) // optional; (iv) S.E.B. max: \(k_n\); (v) maximum partition size: \(m_n\).

Output: histogram estimate \(f_{n,s}\).

Algorithm:

1. initialize \(i \leftarrow 1; s \leftarrow x_\rho + \psi\);
2. repeat until \(\#x_{\rho v} \leq k_n\) for each \(x_{\rho v} \in \ell(s)\) and \(i \leq m_n\) //
 - \(\ell(s) = \{\text{leaf boxes}\}\)
 - \(x_{\rho v} \leftarrow \text{Uniform}(\hat{\ell}(s))\) // randomized PQ on leaf boxes
 - \(s \leftarrow \text{biset}(s, x_{\rho v})\) // bisect leaf box \(x_{\rho v}\) of \(s\) recursively update counts in \(s\);
 - \(i \leftarrow i + 1;\)
3. return \(f_{n,s}\).
Let S_i be the set of all RPs of x_ρ made of i splits and for $i, j \in \mathbb{N}$ with $i \leq j$, let $S_{i:j}$ be the set of RPs with k splits, $i \leq k \leq j$.

![Transition Diagram of Randomized PQ Markov chain](image-url)

All possible RP partitions in $S_{0:4}$.
Proposition: L_1-Consistency of Histogram Estimates from SplitMostCounts

Let X_1, X_2, \ldots be independent and identical random vectors in \mathbb{R}^d whose common distribution μ has a non-atomic density f, i.e., $f \ll \lambda^d$. Let $\{S_n(i)\}_{i=0}^i$ on $\mathbb{S}_0: \infty$ be the Markov chain formed using SplitMostCounts with terminal state \hat{s} and histogram estimate $f_{n,\hat{s}}$ over the collection of partitions \mathcal{L}_n. As $n \to \infty$, if $\overline{k}_n \to \infty$, $n^{-1}\overline{k}_n \to 0$, $\overline{m}_n \geq n/\overline{k}_n$, and $\overline{m}_n/n \to 0$ then the density estimate $f_{n,\hat{s}}$ is strongly consistent in L_1, i.e.

$$\int |f(x) - f_{n,\hat{s}}(x)| \, dx \to 0 \text{ with probability 1.}$$
Proof Sketch

We will assume that \(k_n \to \infty \), \(n^{-1}k_n \to 0 \), \(\bar{m}_n \geq n/k_n \), and \(\bar{m}_n/n \to 0 \), as \(n \to \infty \), and show that the three conditions:

(a) \(n^{-1} m(\mathcal{L}_n) \to 0 \),
(b) \(n^{-1} \log \Delta^*_n(\mathcal{L}_n) \to 0 \), and
(c) \(\mu(x : \text{diam}(x(x)) > \gamma) \to 0 \) with probability 1 for every \(\gamma > 0 \),

are satisfied. Then by Theorem 1 of Lugosi and Nobel, 1996 our density estimate \(f_{n,s} \) is strongly consistent in \(L_1 \).

These conditions mean:

(a) sub-linear growth of the number of leaf boxes
(b) sub-exponential growth of a combinatorial complexity measure of the growth of the partition
(c) shrinking leaf boxes in the partition
Complementary PQ to “carve out” Support

\texttt{SplitMostCounts} uses priority $= \mu_n(x_{\rho v})$.

(a) 20 leaves.

(b) 40 leaves.
Complementary PQ to “carve out” Support

SupportCarver uses priority = \((1 - \mu_n(x_{\rho V}))\text{vol}(x_{\rho V})\).

\[\begin{align*}
\text{(a) 20 leaves.} \\
\text{(b) 40 leaves.}
\end{align*} \]

Necessary to use SupportCarver for high-dimensional structured densities before using SplitMostCounts.
Some Examples

Figure: Histogram density estimates their corresponding pavings for the bivariate Gaussian, Levy and Rosenbrock densities.
Choice of k_n

Figure: Two histogram density estimates for the standard bivariate gaussian density with different choices of k_n. The histogram is under-smoothed when k_n is relatively smaller than n and over-smoothed when k_n is relatively larger.
Adding and Averaging SRPs

Adding \(m \) SRP histogram density estimates

\[
\sum_{i=1}^{m} f_{n,s(i)} = f_{n,s(1)} + f_{n,s(2)} + f_{n,s(3)} + \ldots + f_{n,s(m)} \\
= \left(\left(\left(f_{n,s(1)} + f_{n,s(2)} \right) + f_{n,s(3)} \right) + \ldots + f_{n,s(m)} \right).
\]
Adding and Averaging SRPs

Adding m SRP histogram density estimates

$$\sum_{i=1}^{m} f_{n,s(i)} = f_{n,s(1)} + f_{n,s(2)} + f_{n,s(3)} + \cdots + f_{n,s(m)}$$

$$= \left(\left(f_{n,s(1)} + f_{n,s(2)} \right) + f_{n,s(3)} \right) + \cdots + f_{n,s(m)} \right) .$$

Averaging m SRP histogram density estimates recursively yields the sample mean SRP histogram

$$\bar{f}_{n,m} = \frac{1}{m} \sum_{i=1}^{m} f_{n,s(i)} .$$
Posterior Distribution over Histograms in $S_{0:\infty}$

- Let \hat{f}_s be a histogram with partition $\ell(s)$ given by the leaves of RP s with k splits and $k + 1$ leaves in S_k.
Posterior Distribution over Histograms in \(S_{0:\infty} \)

- Let \(\hat{f}_s \) be a histogram with partition \(\ell(s) \) given by the leaves of RP \(s \) with \(k \) splits and \(k + 1 \) leaves in \(S_k \)
- Then for this partition, the most likely histogram estimate is

\[
\hat{f}_s(x; \text{data}) = \frac{1}{n} \hat{f}_s(x; X_{1:n}) = \sum_{i=1}^{n} \frac{1 \ (x_i \in x(x))}{\text{vol}(x(x))}
\]
Posterior Distribution over Histograms in $S_{0:\infty}$

- Let \hat{f}_s be a histogram with partition $\ell(s)$ given by the leaves of RP s with k splits and $k + 1$ leaves in S_k
- Then for this partition, the most likely histogram estimate is

$$\hat{f}_s(x; \text{data}) = \frac{1}{n} \hat{f}_s(x; X_{1:n}) = \sum_{i=1}^{n} \frac{1 \, (x_i \in x(x))}{\text{vol}(x(x))}$$

- Let the prior probability be $P(s) \propto \frac{1}{C_k^2}$, $s \in S_{0:\infty}$
Posterior Distribution over Histograms in $S_{0:\infty}$

Let \hat{f}_s be a histogram with partition $\ell(s)$ given by the leaves of RP s with k splits and $k + 1$ leaves in S_k

Then for this partition, the most likely histogram estimate is

$$\hat{f}_s(x; \text{data}) = \frac{1}{n} \hat{f}_s(x; X_{1:n}) = \sum_{i=1}^{n} \frac{\mathbf{1}(x_i \in x(x))}{\text{vol}(x(x))}$$

Let the prior probability be $P(s) \propto \frac{1}{C_k^2}$, $s \in S_{0:\infty}$

Then the posterior density of histogram \hat{f}_s with k splits is

$$P(\hat{f}_s|X_{1:n}) \propto P(X_{1:n}|s)P(s) = \prod_{x_{\rho v} \in \ell(s)} \left(\frac{\# x_{\rho v}}{n \text{vol}(x_{\rho v})}\right)^{n_{x_{\rho v}}} \frac{1}{C_k^2}$$
Metropolis-Hastings Algorithm

- Use a proposal density \(q(s'|s^{(i)}) \) which depends on current state \(s^{(i)} \), to generate a new proposed state \(s' \)

- We propose uniformly at random to split a leaf or merge a cherry of current SRP state \(s^{(i)} \)

- Repeat
 - Draw \(u \sim U(0, 1) \)
 - If \(u < \frac{P(\hat{f}_{s'}|X_{1:n})}{P(\hat{f}_{s}|X_{1:n})} \frac{q(s^{(i)}|s')}{q(s'|s^{(i)})} \) then \(s^{(i+1)} \leftarrow s' \)
 - Else \(s^{(i+1)} \leftarrow s^{(i)} \)

- With a “long enough” burn-in time, this Markov chain will be at the desired stationary distribution \(P(\hat{f}_s|X_{1:n}) \) over \(S_{0:\infty} \)
Metropolis-Hastings Algorithm

- Start from some initial state m^0
- Burn-in: run until initial state is ‘forgotten’
- States after burn-in are sample histograms
Histogram Estimates - Standard Bivariate Gaussian

Four sample histograms
Histogram Estimates - Standard Bivariate Gaussian

Average of the four sampled histograms
Histogram Estimates - Standard Bivariate Gaussian

Average of the four sampled histograms with Gaussian PDF
Histogram Estimates - Standard Bivariate Gaussian

A much better estimate
Statistical Regular Pavings in Bayesian Nonparametric Density Estimation

Examples - good, bad and ugly

Combining Randomized PQ with MCMC

Log-posterior traces of SEB RPQ Vs. MCMC started from root node

(a) Initial SEB phase compared with MCMC from root node.

(b) Combined log-posterior trace to $t = 1,000,000$.

(data drawn from 6D Gaussian Density) – Initialize from highest log-posterior states visited by RPQ
Combining Randomized PQ with MCMC

Multiple MCMC chains started from high log-posterior region

(a) Selection region.

(b) Leaf trace for three chains.

(data drawn from mixture of two 3D Gaussian Densities)
Statistical Regular Pavings in Bayesian Nonparametric Density Estimation

Examples - good, bad and ugly

Histogram Estimates - Bivariate Levy Density

Data points = 10000, Number of states = 30000, Burn-in = 10000, Thin-out = 100, Averaged over 201 states, Time taken = 14.16s
Histogram Estimates - Bivariate Levy Density

Data points = 100000, Number of states = 30000, Burn-in = 10000, Thin-out = 100, Averaged over 201 states, Time taken = 50.59s
Simulations for MCMC from root box

MIAE (std. err.) for n samples from uniform density in various dimensions (CPU Times $< \mathcal{O}(1\text{minute})$).

<table>
<thead>
<tr>
<th>n</th>
<th>1D</th>
<th>2D</th>
<th>10D</th>
<th>100D</th>
<th>1000D</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^2</td>
<td>0.1112 (0.0707)</td>
<td>0.1425 (0.0882)</td>
<td>0.1170 (0.0723)</td>
<td>0.0958 (0.0605)</td>
<td>0.1111 (0.0524)</td>
</tr>
<tr>
<td>10^3</td>
<td>0.0366 (0.0192)</td>
<td>0.0363 (0.0219)</td>
<td>0.0442 (0.0275)</td>
<td>0.0413 (0.0196)</td>
<td>0.0305 (0.0195)</td>
</tr>
<tr>
<td>10^4</td>
<td>0.0164 (0.0095)</td>
<td>0.0124 (0.0073)</td>
<td>0.0115 (0.0070)</td>
<td>0.0111 (0.0083)</td>
<td>0.0089 (0.0065)</td>
</tr>
<tr>
<td>10^5</td>
<td>0.0041 (0.0020)</td>
<td>0.0040 (0.0026)</td>
<td>0.0041 (0.0028)</td>
<td>0.0050 (0.0030)</td>
<td>0.0043 (0.0025)</td>
</tr>
<tr>
<td>10^6</td>
<td>0.0011 (0.0005)</td>
<td>0.0016 (0.0007)</td>
<td>0.0010 (0.0006)</td>
<td>0.0012 (0.0001)</td>
<td>0.0010 (0.0004)</td>
</tr>
<tr>
<td>10^7</td>
<td>0.0004 (0.0003)</td>
<td>0.0003 (0.0002)</td>
<td>0.0003 (0.0002)</td>
<td>0.0002 (0.0001)</td>
<td>-</td>
</tr>
<tr>
<td>10^8</td>
<td>0.0001 (0.0009)</td>
<td>0.0002 (0.0002)</td>
<td>0.0001 (0.0001)</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Simulations for MCMC and SplitMostCounts PQ

MIAE (std. err.) for n samples from approximated 1D-, 2D- and 10D-Gaussian densities, and 2D- and 10D-Rosenbrock densities (L_1-minimal Simple function approximation in S_Λ).

Λ	n	Standard Gaussian densities			Rosenbrock densities	
		1D	2D	10D	2D	10D
10^2	10^2	0.2665 (0.0415)	0.4856 (0.0491)	0.1192 (0.0662)	0.5089 (0.0924)	0.0323 (0.0511)
	10^3	0.1390 (0.0192)	0.2558 (0.0127)	0.0543 (0.0172)	0.1712 (0.0224)	0.0095 (0.0191)
	10^4	0.0620 (0.0047)	0.0992 (0.0067)	0.0382 (0.0036)	0.0498 (0.0081)	0.0025 (0.0050)
	10^5	0.0262 (0.0016)	0.0279 (0.0019)	0.0259 (0.0017)	0.0143 (0.0025)	0.0009 (0.0015)
	10^6	0.0099 (0.0008)	0.0086 (0.0006)	0.0073 (0.0009)	0.0045 (0.0005)	0.0004 (0.0005)
	10^7	0.0026 (0.0002)	0.0027 (0.0003)	0.0025 (0.0004)	0.0017 (0.0010)	0.0001 (0.0003)
10^3	10^2	0.2946 (0.0678)	0.6046 (0.1299)	0.1702 (0.0907)	1.0027 (0.0437)	0.0323 (0.0511)
	10^3	0.1418 (0.0226)	0.2973 (0.0174)	0.0739 (0.0183)	0.4747 (0.0191)	0.0039 (0.0075)
	10^4	0.0648 (0.0052)	0.1586 (0.0067)	0.0555 (0.0045)	0.2139 (0.0054)	0.0013 (0.0028)
	10^5	0.0292 (0.0014)	0.0768 (0.0016)	0.0295 (0.0020)	0.0789 (0.0023)	0.0004 (0.0006)
	10^6	0.0136 (0.0006)	0.0297 (0.0006)	0.0108 (0.0005)	0.0267 (0.0058)	0.0001 (0.0002)
	10^7	0.0061 (0.0002)	0.0091 (0.0003)	0.0045 (0.0003)	0.0082 (0.0011)	0.0001 (0.0002)
10^4	10^2	0.2864 (0.0487)	0.5508 (0.0590)	0.5210 (0.0799)	1.1391 (0.0545)	0.1941 (0.0820)
	10^3	0.1380 (0.0152)	0.3301 (0.0120)	0.2719 (0.0251)	0.6018 (0.0139)	0.0791 (0.0223)
	10^4	0.0664 (0.0062)	0.1736 (0.0038)	0.1157 (0.0047)	0.3163 (0.0047)	0.0391 (0.0041)
	10^5	0.0293 (0.0017)	0.0957 (0.0014)	0.0870 (0.0014)	0.1691 (0.0053)	0.0209 (0.0021)
	10^6	0.0138 (0.0005)	0.0495 (0.0005)	0.0788 (0.0009)	0.0882 (0.0048)	0.0123 (0.0012)
	10^7	0.0063 (0.0001)	0.0244 (0.0008)	0.0563 (0.0018)	0.0479 (0.0057)	0.0096 (0.0017)
KDE (diagonal bandwidth) Vs. SRP MCMC

Figure B.2: Density II, \(d = 2 \).

When \(d = 2 \) Density II is a mixture of two bivariate Normal densities and is the same as Density A studied in Zhang et al. (2006):

\[
\mu_a = \begin{pmatrix} 2 \\ 2 \end{pmatrix}, \quad \Sigma_a = \begin{pmatrix} 1 & -0.9 \\ -0.9 & 1 \end{pmatrix}, \quad \mu_b = \begin{pmatrix} -1.5 \\ -1.5 \end{pmatrix}, \quad \Sigma_b = \begin{pmatrix} 1 & 0.3 \\ 0.3 & 1 \end{pmatrix}.
\]
KDE (diagonal badwidth) Vs. SRP MCMC

Density II is a mixture of two multivariate Normal densities for $x \in \mathbb{R}^d$. Density II has high correlation between data coordinates and high bimodality:

$$f_{II}(x \mid \mu_a, \Sigma_a, \mu_b, \Sigma_b) = \frac{1}{2} \varphi(x \mid \mu_a, \Sigma_a) + \frac{1}{2} \varphi(x \mid \mu_b, \Sigma_b),$$

where $\varphi(x \mid \mu, \Sigma)$ is the multivariate Normal density with mean $\mu \in \mathbb{R}^d$ and $d \times d$ variance-covariance matrix Σ, and

$$\mu_a = \begin{pmatrix} 2.0 \\ \vdots \\ 2.0 \end{pmatrix}, \quad \Sigma_a = \begin{pmatrix} \sigma_a(x_1, x_1) & \sigma_a(x_1, x_2) & \cdots & \sigma_a(x_1, x_d) \\ \sigma_a(x_2, x_1) & \sigma_a(x_2, x_2) & \cdots & \sigma_a(x_2, x_d) \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_a(x_d, x_1) & \sigma_a(x_d, x_2) & \cdots & \sigma_a(x_d, x_d) \end{pmatrix},$$

$$\mu_b = \begin{pmatrix} -1.5 \\ \vdots \\ -1.5 \end{pmatrix}, \quad \Sigma_b = \begin{pmatrix} \sigma_b(x_1, x_1) & \sigma_b(x_1, x_2) & \cdots & \sigma_b(x_1, x_d) \\ \sigma_b(x_2, x_1) & \sigma_b(x_2, x_2) & \cdots & \sigma_b(x_2, x_d) \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_b(x_d, x_1) & \sigma_b(x_d, x_2) & \cdots & \sigma_b(x_d, x_d) \end{pmatrix},$$

and

$$\sigma_a(x_i, x_j) = \begin{cases} 1 & \text{if } i = j, \\ -0.9^{|i-j|} & \text{if } i \neq j, \end{cases}, \quad \sigma_b(x_i, x_j) = \begin{cases} 1 & \text{if } i = j, \\ 0.3^{|i-j|} & \text{if } i \neq j, \end{cases}$$
KDE (diagonal badwidth) Vs. SRP MCMC

Table 7.2: Estimated errors for KDE and averaged SRP histogram RMRP.

<table>
<thead>
<tr>
<th>Dimension</th>
<th>KDE ($n_K = 2,000$)</th>
<th>Averaged RMRP histogram</th>
<th>Averaged RMRP histogram</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>\hat{d}_{KL}</td>
<td>\hat{L}_1 error</td>
<td>Time (s)</td>
</tr>
<tr>
<td></td>
<td>min.</td>
<td>max.</td>
<td>min.</td>
</tr>
<tr>
<td>2-d</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KDE ($n_K = 2,000$)</td>
<td>0.04</td>
<td>0.20</td>
<td>5,000</td>
</tr>
<tr>
<td>Averaged RMRP histogram</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$n = 10,000$</td>
<td>0.06</td>
<td>0.22</td>
<td>2</td>
</tr>
<tr>
<td>$n = 50,000$</td>
<td>0.03</td>
<td>0.15</td>
<td>15</td>
</tr>
<tr>
<td>3-d</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KDE ($n_K = 2,000$)</td>
<td>0.13</td>
<td>0.35</td>
<td>5,600</td>
</tr>
<tr>
<td>Averaged RMRP histogram</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$n = 10,000$</td>
<td>0.24</td>
<td>0.41</td>
<td>21</td>
</tr>
<tr>
<td>$n = 50,000$</td>
<td>0.12</td>
<td>0.30</td>
<td>295</td>
</tr>
<tr>
<td>4-d</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KDE ($n_K = 2,000$)</td>
<td>0.25</td>
<td>0.51</td>
<td>7,200</td>
</tr>
<tr>
<td>Averaged RMRP histogram</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$n = 50,000$</td>
<td>0.32</td>
<td>0.47</td>
<td>2,524</td>
</tr>
<tr>
<td>$n = 100,000$</td>
<td>0.25</td>
<td>0.42</td>
<td>10,382</td>
</tr>
<tr>
<td>5-d</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KDE ($n_K = 2,000$)</td>
<td>0.41</td>
<td>0.66</td>
<td>7,350</td>
</tr>
<tr>
<td>Averaged RMRP histogram</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$n = 50,000$</td>
<td>0.65</td>
<td>0.67</td>
<td>28,841</td>
</tr>
<tr>
<td>$n = 100,000$</td>
<td>0.53</td>
<td>0.60</td>
<td>24,244</td>
</tr>
</tbody>
</table>
KDE (diagonal badwidth) Vs. SRP MCMC

(a) $d = 2$, $x_2 = -1.5$, $n = 50,000$.

(b) $d = 2$, $x_1 = 2.0$, $n = 50,000$.

(c) $d = 3$, $x_2 = x_3 = -1.5$, $n = 50,000$.

(d) $d = 3$, $x_1 = x_3 = 2.0$, $n = 50,000$.

Figure 7.5: Density II, KDE and averaged RMRP histogram slice.
Anomaly Detection in Graph Time Series (joint with Carey E. Priebe)

Consider the following two block-specific edge probability matrices:

\[
B = \begin{bmatrix}
0.42 & 0.42 \\
0.42 & 0.50
\end{bmatrix}, \quad B' = \begin{bmatrix}
0.42 & 0.42 \\
0.42 & 0.40
\end{bmatrix}
\]

and the following two prior block probabilities:

\[
\pi = (0.6, 0.4) \quad \text{and} \quad \pi' = (0.4, 0.6)
\]

In both anomaly simulation scenarios,

- the initial burst is drawn from \(SBM(B, \pi, n)\)
- and all eight non-anomalous bursts are embedded by \(SBM(B, \pi, m)\).
- The 5-th anomalous burst is embedded:
 - in Scenario B5 by \(SBM(B, \pi, m)\)
 - in Scenario C5 by \(SBM(B, \pi, m)\).
Anomaly Detection in Graph Time Series (joint with Carey E. Priebe)

We use \mathbb{R}-MRP based (10-fold CV) “prior selection”
$\pi(s) \propto \exp(-t \times \#\text{leaves})$ to estimate densities from a
low-dimensional point-cloud obtained from the Eigen decomposition
of the adjacency matrix of each graph.

Fig. 1. Density estimates of the embedding of $SBM(B, \pi, n = 3000)$ and $SBM(B, \pi', n = 3000)$.
Anomaly Detection in Graph Time Series (joint with Carey E. Priebe)

We use \mathbb{R}-MRP based L_1 computations between all graphs.

Fig. 2. Pairwise L_1 distances (left) and mean and consecutive L_1 distances (right) between the nine bursts (dimensions 1 and 2) in Scenario C5 with $n = 5000$, $d = K = 2$, $m = 500$.
We use \mathbb{R}-MRP based L_1 computations between all marginal densities of each joint density (4 blocks).
Air Traffic “Arithmetic” → dynamic air-space configuration

On a Good Day
Air Traffic “Arithmetic” → dynamic air-space configuration

$\mathbb{Z}_+\text{-MRP On a Good Day}$
Air Traffic “Arithmetic” → dynamic air-space configuration

On a Bad Day
Air Traffic “Arithmetic” → dynamic air-space configuration

\(\mathbb{Z}_+ \)-MRP On a Bad Day
Air Traffic “Arithmetic” → dynamic air-space configuration

$\mathbb{Z}_+\text{-MRP}$ pattern for Good Day – Bad Day
Conclusions

- Statistical Regular Paving (SRP) is a sufficient statistical data-structure for density estimation and many decisions in massive IID experiments.
Conclusions

- Statistical Regular Paving (SRP) is a sufficient statistical data-structure for density estimation and many decisions in massive IID experiments.
- We can quickly grow or prune the SRP tree data-adaptively.
Conclusions

- Statistical Regular Paving (SRP) is a sufficient statistical data-structure for density estimation and many decisions in massive IID experiments.
- We can quickly grow or prune the SRP tree data-adaptively.
- Arithmetic can be efficiently extended to SRPs through \mathbb{R}-MRPs.
Conclusions

- Statistical Regular Paving (SRP) is a sufficient statistical data-structure for density estimation and many decisions in massive IID experiments.
- We can quickly grow or prune the SRP tree data-adaptively.
- Arithmetic can be efficiently extended to SRPs through \(\mathbb{R} \)-MRPs.
- Combining PQ-based \((L_1\text{-consistent})\) initialization + Bayesian MCMC is powerful NFL: MCMC convergence issues exist!
Conclusions

- Statistical Regular Paving (SRP) is a sufficient statistical data-structure for density estimation and many decisions in massive IID experiments.
- We can quickly grow or prune the SRP tree data-adaptively.
- Arithmetic can be efficiently extended to SRPs through \mathbb{R}-MRPs.
- Combining PQ-based (L_1-consistent) initialization + Bayesian MCMC is powerful NFL: MCMC convergence issues exist!
- Further decisions can be made with appropriate \mathbb{R}-MRP arithmetic (regression, anomaly detection, RPABC+AABC, etc.).

Acknowledgements

- RS’s external consulting revenues from the New Zealand Ministry of Tourism
- WT’s Swedish Research Council Grant 2008-7510 that enabled RS’s visits to Uppsala in 2006, 2009, 2012
- Erskine grant from University of Canterbury that enabled WT’s visit to Christchurch in 2011 & 2014
- University of Canterbury MSc Scholarship to JH.
- Marie Curie International Research Staff Exchange Scheme (IRSES), 2014 - 2017
Thank you!