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Javad Mashreghi (Université Laval)
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1 Overview of the Field

The spaces mentioned in the title are two interesting families of Hilbert spaces of holomorphic functions,

both contained inside H2, the classical Hardy space on the unit disk D.

1.1 Weighted Dirichlet spaces

Given a non-negative function ω ∈ L1(D, dA) and f ∈ H2, we define the weighted Dirichlet integral

Dω(f) :=
1

π

∫

D

|f ′(z)|2 ω(z) dA(z).

The weighted Dirichlet space Dω is the set of f ∈ H2 such that Dω(f) < ∞. It is a Hilbert space with

respect to the norm ‖ · ‖Dω
defined by ‖f‖2Dω

:= ‖f‖2
H2 +Dω(f).

The case of primary interest is where ω is a positive superharmonic function on D. In this case, there is a

unique positive finite measure µ on D such that

ω(z) =

∫

D

log
∣∣∣1− ζz

ζ − z

∣∣∣ 1

1− |ζ|2
dµ(ζ) +

∫

T

1− |z|2

|ζ − z|2
dµ(ζ) (z ∈ D).

We then write Dµ for Dω. It can be shown that, if f ∈ Dµ, then f has radial limits µ-a.e. on T, and

Dµ(f) =

∫

D

∫

T

∣∣∣f(λ)− f(ζ)

λ− ζ

∣∣∣
2 |dλ|

2π
dµ(ζ). (1)

The classical Dirichlet space is obtained by taking µ to be normalized Lebesgue measure on T. When µ is

a general measure on T, we obtain the harmonically weighted Dirichlet spaces, first introduced by Richter [9]

as part of his analysis of closed shift-invariant subspaces of the classical Dirichlet space, and subsequently

studied by Richter and Sundberg in [10] (see also [6, Chapter 7]). The study of general superharmonic

weights was initiated by Aleman [1]. They have the advantage of including both the harmonic weights and

the important family of radial weights ω(z) = (1 − |z|2)α for 0 < α < 1.
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1.2 De Branges–Rovnyak spaces

Let b be a holomorphic function on D such that |b| ≤ 1. The de Branges–Rovnyak space Hb is the Hilbert

space of holomorphic functions on D with reproducing kernel (1− b(w)b(z))/(1 − wz).
If b is an inner function, then Hb = H2 ⊖ bH2, a closed subspace of H2 often called a model subspace.

In this project, we are interested exclusively in the ‘opposite’ case, namely when log(1− |b|2) ∈ L1(T).
This condition is equivalent to b being a non-extreme point of the unit ball of H∞. It is also equivalent to Hb

containing the polynomials. Henceforth, we always assume that b satisfies this condition.

Under this hypothesis on b, there is a unique outer function a such that a(0) > 0 and |a|2 + |b|2 = 1 a.e.

on T. It can be shown that f ∈ Hb iff Tbf ∈ Ta(H
2), where Ta, Tb denote the Toeplitz operators associated

to a, b respectively. In this case there is a unique function f+ ∈ H2 such that Tbf = Ta(f
+), and

‖f‖2Hb
= ‖f‖2H2 + ‖f+‖2H2 . (2)

We write φ := b/a. Note that φ ∈ N+, the Smirnov class. Conversely, every φ ∈ N+ is of the form

φ = b/a for a unique pair (b, a) as above. Thus, specifying φ is equivalent to specifying b, and it is often

more convenient to work in terms of φ.

The spaces Hb were introduced by de Branges and Rovnyak in the appendix of [4] and further studied

in [5]. The initial motivation was to provide canonical model spaces for certain types of contractions on

Hilbert spaces. Subsequently it was realized that these spaces have numerous connections with other topics

in complex analysis and operator theory, in particular through Toeplitz operators. For further information

on this topic, we refer to the books of de Branges and Rovnyak [5], Sarason [11], and the forthcoming

monograph of Fricain and Mashreghi [7].

2 Recent Developments and Open Problems

Sarason [12] discovered a strong connection between certain Dirichlet spaces and de Branges–Rovnyak

spaces. He showed that, if µ is the Dirac mass at a point ζ ∈ T, then the Dirichlet space Dµ is isometrically

equal to the de Branges–Rovnyak space Hb, where b corresponds to the function φ(z) := z/(1 − ζz). For

this choice of φ, it is quite easy to see that dilation is a contraction on Hb, in other words ‖fr‖Hb
≤ ‖f‖Hb

,

where fr(z) := f(rz). Sarason used this to deduce that dilation is also a contraction on Dµ.

The authors of [2] obtained a converse to Sarason’s result: the only measures µ on T for which Dµ is

isometrically equal to some Hb are point masses. The proof made use of a formula expressing the norm

of certain functions in Hb in terms of their Taylor coefficients and those of φ: if f is holomorphic in a

neighbourhood of D, then
∑
j≥0

f̂(j + k)φ̂(j) converges absolutely for each k, and

‖f‖2Hb
=

∑

k≥0

|f̂(k)|2 +
∑

k≥0

∣∣∣
∑

j≥0

f̂(j + k)φ̂(j)
∣∣∣
2

. (3)

It was left open whether this same formula is valid for all f ∈ Hb.

It was also shown in [2] that, for certain b, dilation is no longer a contraction on Hb, and even that

lim supr→1 ‖fr‖Hb
= ∞ for some f ∈ Hb. It was left open whether lim sup can be replaced by lim inf .

This was of interest because the only proofs that polynomials are dense in Hb were non-constructive, and

knowing that we always have lim infr→1 ‖fr‖Hb
<∞ would open the door to the construction of polynomial

approximants to f .

The question of when Dµ is isomorphically equal to Hb (as opposed to isometrically equal) was raised in

[2] and studied in [3] for the case of measures µ on T. It was shown that, in order for Dµ to be isomorphically

equal to some Hb, it is necessary that µ be singular with respect to Lebesgue measure on T, and sufficient

that µ have finite support. It was left open whether there are any examples of µ with infinite support.

In the classical Dirichlet space, it is known that every function has tangential limits at almost every point

of the unit circle, where the tangential approach region at ζ is of the form |z − ζ| = O(| log(1 − |z|)|) (see

[8]). It is still an open problem to determine the optimal approach region for Dµ for general µ.
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3 Scientific Progress Made

3.1 Dilation in Hb

We solved affirmatively the problem of whether lim sup can be replaced by lim inf .

Theorem 3.1. There exist b and f ∈ Hb such that ‖fr‖Hb
→ ∞ as r → 1.

The proof actually gives a little more, namely an example such that |(fr)
+(0)| → ∞ as r → 1. From

this, it is a simple matter to deduce that formula (3) does not hold for general f ∈ Hb. Indeed:

Corollary 3.2. There exist b and f ∈ Hb such that
∑

j≥0
f̂(j)φ̂(j) diverges.

3.2 Polynomial approximation in Hb

Though the preceding theorem kills off the possibility of obtaining polynomial approximants in Hb via dila-

tions, we did find another method for constructing such approximants, based on the following result.

Theorem 3.3. Let (ψn) be a sequence inH∞ such that ‖ψn‖H∞ → 1 and ψn(0) → 1. Then, for all f ∈ Hb,

we have ‖Tψ
n

f − f‖Hb
→ 0.

If p is a polynomial, then so is Tψ
n

p. If, in addition, ψn ∈ aH∞, then Tψ
n

is a bounded operator from

H2 into Hb with norm at most ‖ψn/a‖H∞ . Combined with the theorem, this leads to a constructive proof of

Corollary 3.4. Polynomials are dense in Hb.

3.3 Isometric equality between Dµ and Hb

We extended the results of [12] and [2] from harmonic weights to superharmonic weights.

Theorem 3.5. Let µ be a finite positive measure on D and let φ ∈ N+ (with corresponding b). Then

Dµ = Hb with equality of norms if and only if there exist ζ ∈ D and α ∈ C such that

µ = |α|2δζ and φ(z) = αz/(1− ζz).

The ‘if’ part of the theorem leads quickly to the following corollary.

Corollary 3.6. If µ is a finite positive measure on D, then

Dµ(fr) ≤
2r

1 + r
Dµ(f) (0 < r < 1).

3.4 Isomorphic equality between Dµ and Hb

With the ultimate aim of constructing new examples of pairs (µ, b) with Dµ = Hb isomorphically, we studied

a family of examples of Hb-spaces for which it is possible to compute the norm exactly.

Theorem 3.7. Let ν be a complex measure on D, and let φ(z) := z
∫
(1 − ζz)−1 dν(ζ) (z ∈ D). Then, for

all f holomorphic in a neighborhood of D, we have

‖f‖2Hb
= ‖f‖2H2 +

∫

T

∣∣∣
∫

D

f(λ)− f(ζ)

λ− ζ
dν(ζ)

∣∣∣
2 |dλ|

2π
.

If, in addition, ν ≪ µ and dν/dµ ∈ L2(µ), then Dµ ⊂ Hb.

3.5 Tangential approach regions for Dµ

We had just enough time for a summary discussion of this problem. It seems likely that the optimal approach

region should be expressed in terms of the reproducing kernel of Dµ. Although there is no explicit expression

for this kernel, there are now precise estimates for its norm. We intend to return to this problem.
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4 Outcome of the Meeting

The results obtained have now been written up as a detailed report with a view to eventual publication. It

is a pleasure to thank BIRS for the opportunity to advance our work in such a pleasant setting. We also

acknowledge with thanks financial support from the UMI-CRM.
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