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Outline

Application Area: Biological Ocean Models
Statistical Data Assimilation

Research Applications

1. Particles Filters

2. Location Particle Smoother

3. Emulators for uncertainty analysis/parameter estimation
4. Copulas for predictive distribution (model errors)

Directions



Problem Statement

Target Application: Lower trophic level ocean biological
processes (i.e., plankton dynamics and nutrient cycling)

Models: Ocean biology embedded within ocean circulation
models

Data: Sparse, indirect and noisy. Spatio-temporal data. Emerging
complex data types/sampling strategies (gliders)

Goals: Joint parameter and state estimation. Typically emphasize
retrospective (hindcast) studies.

Issues: Large-scale estimation problems, uncertain governing
equations and parameters, complex observation errors.



Biological Ocean Models

Research platforms (real applications) based on “PZND” or
biogeochemical models:
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These are coupled to ocean circulation models as system of
interacting non-linear tracer equations



* 1-D model of vertical ocean mixing with
biology, and vertical profile measurements
(Bermuda Atlantic Time Series)
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* 3-Dcirculation (ROMS) model(s) with biology, and
surface satellite imagery (SeaWiFS chlorophyll).
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Statistical Data Assimilation

*Nonlinear Regression:
Y=D@O)+E
*State Space Model:

x, =d(x,_,,0)+e, x, ~p(x,01x,_)
or

yt:h(xt)_l_vt nyp(ytlxt)
*Hierarchical Bayesian Model

p(X,01Y) < p(Y 1X,0)- p(X10)- p(0)

Computational Approaches:

* Nonlinear time dependent least-squares (adjoint/cost function)
* Sequential Monte Carlo: particle Filters/Smoothers and EnKF

e MCMC, particle MCMC



Elements

Single stage transition of system from time ¢-7 to time ¢
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- Recursive estimation of system state through time (prediction/assimilation)
- Use samples (ensembles) to represent distributions

- Estimate parameters via sample based likelihood, or state augmentation



1. A Particle Filter for a Large Scale System

Problem: Standard particle filtering (Sequential Importance
Resampling) suffers from “weight collapse” or sample degeneration.

This results from prediction ensemble far away from observed state
(due to small ensemble size, and high dimensional state space).
=>» Likelihood poorly represented and estimation compromised.

Working Solutions: ensemble Kalman filter, look-ahead particle filters

What basic modifications do we have to make to
implement a simple particle “filter” for our
biological ocean model?



We made the following modifications to allow for sequential MC for
our 3D ocean model:

1. Likelihood function: based on spatial distance metrics, assign
variance (=weights) via predictive skill. Treats weight collapse.

2. Error subspace, i.e. introduce stochasticity only through biological
parameters. Treats high dimensionality.

3. Fixed lag smoother, incorporate observations from multiple times
into observation update. Treats Robustness.

4. State Augmentation: provides for adaptive parameter estimates.
Treats bias.
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Particle Filtering Results: Mid Atlantic Bight
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Ensemble Member History from Parameters
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2. A Location Particle Smoother for Spatio-Temporal Systems

IDEA: run particle filter through time, but apply particle
smoother in the spatial domain at every time step.

- Relies on use of time-domain predictive distribution as
proposal distribution, and sequential importance sampling.

- Assumes conditionally independent observations errors.
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Performance of Location Particle Smoother

Prediction PDF Filter PDF: LPS
Simulation study: _ | 0=.08 | 0°=015
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PROS: outperforms EnKF for non-Gaussian likelihood
CONS: less computationally efficient, no better for Gaussian



3. Emulators

Low dimensional (=computationally efficient) representation of
complex computer code (numerical models).

Research efforts in Statistics emphasize Gaussian process
models. Used for calibration, uncertainty analysis, and
experimental design

We have used the “polynomial chaos” emulator in our work:

D(s,..0)= ), a (5,1)9,(6)

where ¢, is the polynomial (type as dictated by pdf of 8), and a,
are coefficients (obtained via Gaussian quadrature).

= Uncertainty Analysis and Parameter Estimation



Uncertainty Analysis: Gulf of Mexico “Dead Zone”
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4. Multivariate Error Distributions via Copulas

eWe want: X, ~ p(x,lx,,) - predictive density/ model error dist

*We have: x, = d(x,_,)+ e, - a numerical model to generate samples

Rather than a sample-based representation of model errors, what
about a (semi-)parametric representation?

Must be: accurate, flexible, easy to sample from, “high” dimensions...

Idea: create multivariate distributions using copulas ...

- control the marginal distributions, and dependence separately

- construction and sampling from copulas is standard statistical task

- can be derived from “ensembles” using method of moments, or
via parametric models (=@ anisotropic, non-homogenous ++)
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DIRECTIONS

Hierarchical Bayesian framework conceptually useful =2 e.g. particle
MCMC for dynamic models. Practically .. where / how to make
approximations and their consequences.

Sample based solutions. SIR is not the only particle filter — can use
generic proposals (evenKF). Also smoothers, can include priors

Model errors characterization important. How to do represent
stochastic process (via samples, distributions).

Role of Emulators? Need to incorporate emulator error in hierarchy,
i.e. p(x,|x) , and provide for efficient construction.

Validation? Design for sample-based numerical experimental for
assessing consistency, efficiency, asymptotics, robustness.

Emerging approaches for dynamic systems from Statistics.



