Application of the Implicit Particle Filter to a Model of Nearshore Circulation

Robert N. Miller

Abstract

- We apply the implicit particle filter to a model of nearshore circulation
- This is a model with \approx 30,000 state variables.
- We assimilate gridded observations of the two horizontal velocity components
- In the implicit particle filter the trajectory of each particle is informed by observations.
- In its simplest form, the implicit particle filter reduces to the method of optimal importance sampling.
- The system runs efficiently on a single workstation

A Shallow Water Model of Nearshore Circulation

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112, C11019, doi:10.1029/2007JC004117, 2007

Representer-based variational data assimilation in a nonlinear model of nearshore circulation

Alexander L. Kurapov,¹ Gary D. Egbert,¹ J. S. Allen,¹ and Robert N. Miller¹

Received 20 January 2007; revised 2 August 2007; accepted 17 August 2007; published 30 November 2007.

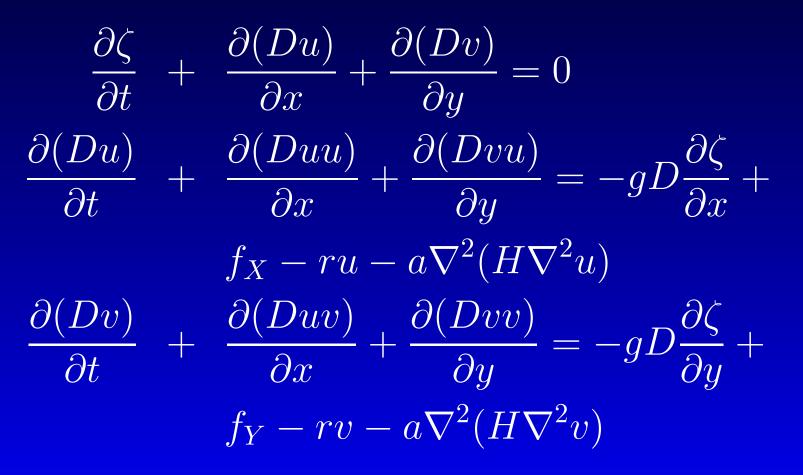
Why did I choose this model?

Full Article

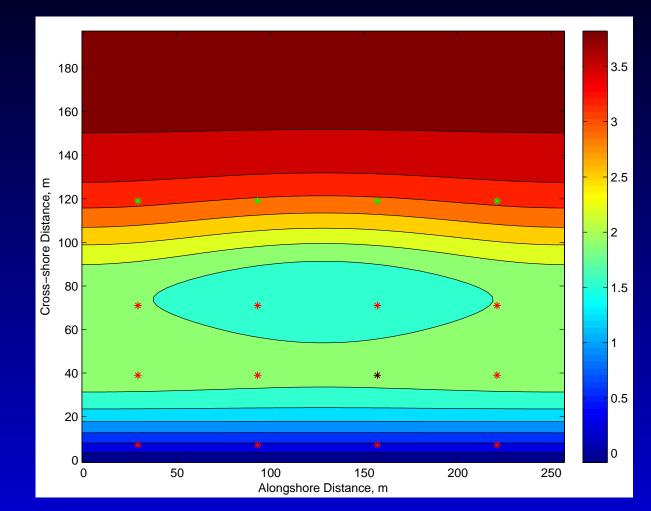
- It's a highly nonlinear model with large state dimension
- Kurapov et al. described problems with application of 4DVAR to this problem that bear investigating

A Shallow Water Model of Nearshore Circulation

• Shallow water, forcing by parameterized wave breaking



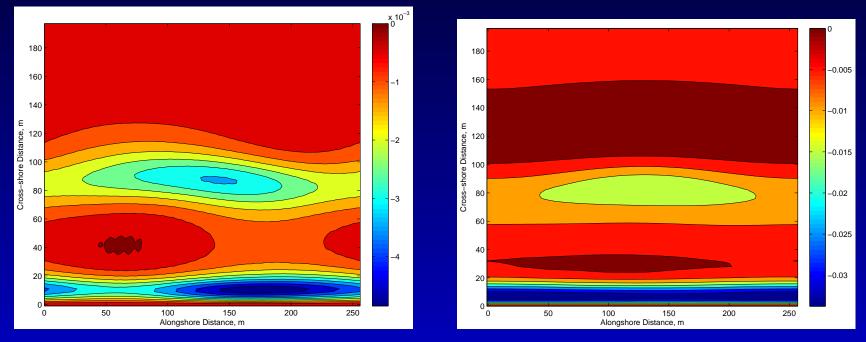
Model Domain



Periodic in x. Rigid walls at y = 0,200m. Stars show observation locations. Vector momentum assimilated at starred locations

Steady Momentum Forcing

Derived from parameterized wave breaking, Thornton & Guza, JGR 1983

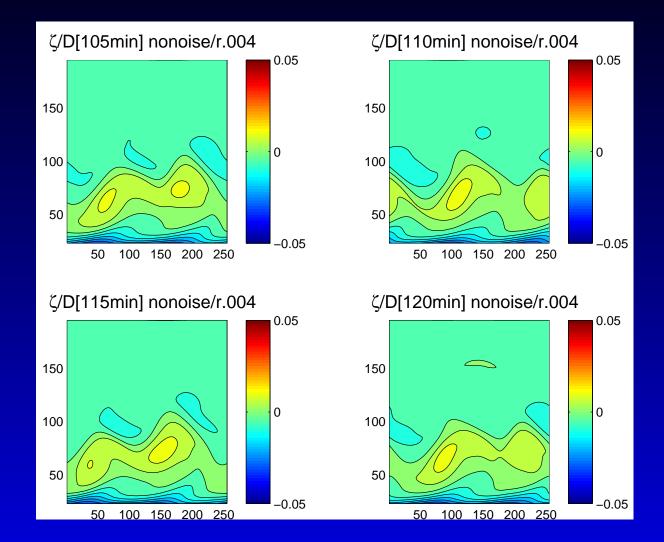


Alongshore (left) and Cross-shore (right) forcing, m^2/s^2

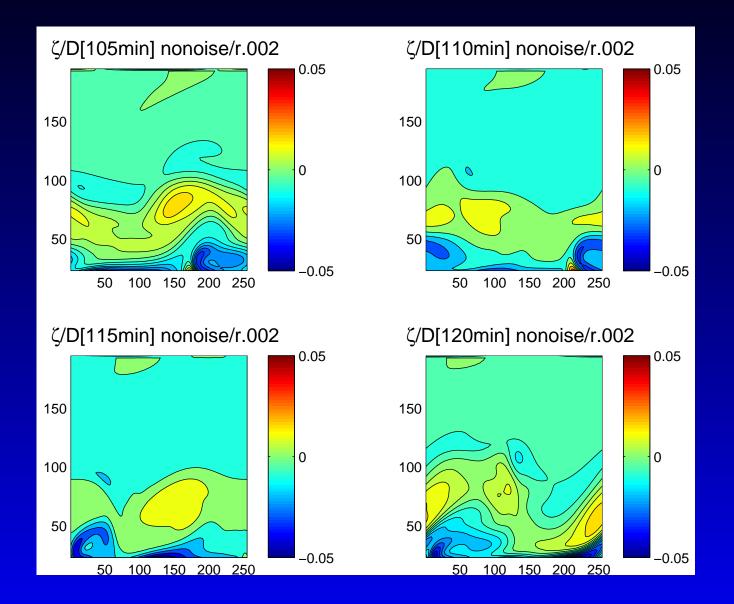
Why Did I Choose This Model?

- The linearized system is unstable, and the calculations blow up in a time comparable to the assimilation cycle
- Interesting behavior of 4DVAR
- Two distinct cases are considered:
 - High drag case, regular wavelike flow
 - Low drag case, aperiodic flow
- Assimilation fails for low drag case with assumption of steady forcing
- Must use *incorrect* assumption of unsteady forcing to get a solution to 4DVAR in the low drag case

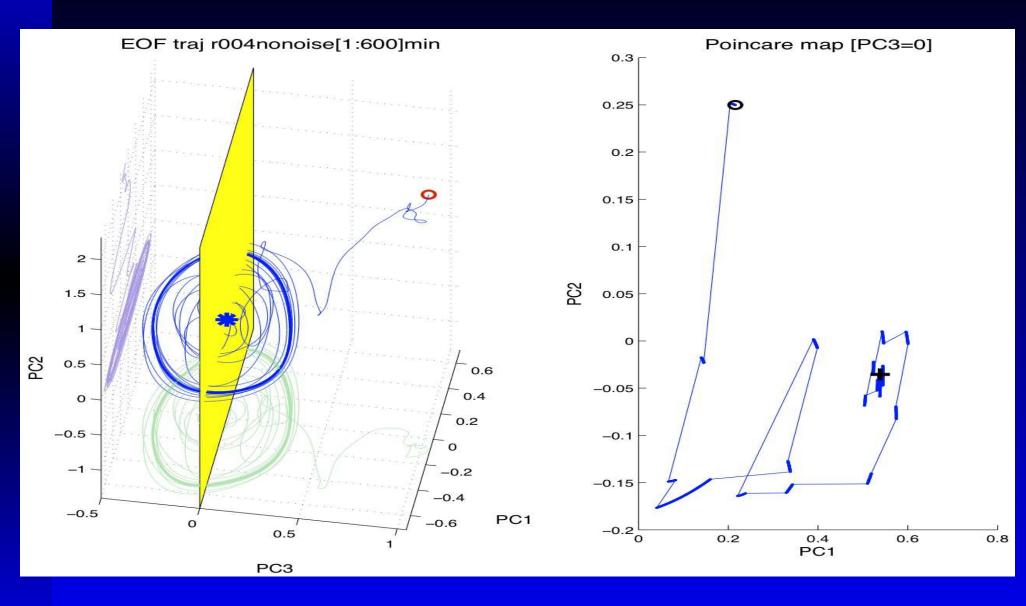
Equilibrated Wave Regime



Aperiodic Wave Regime

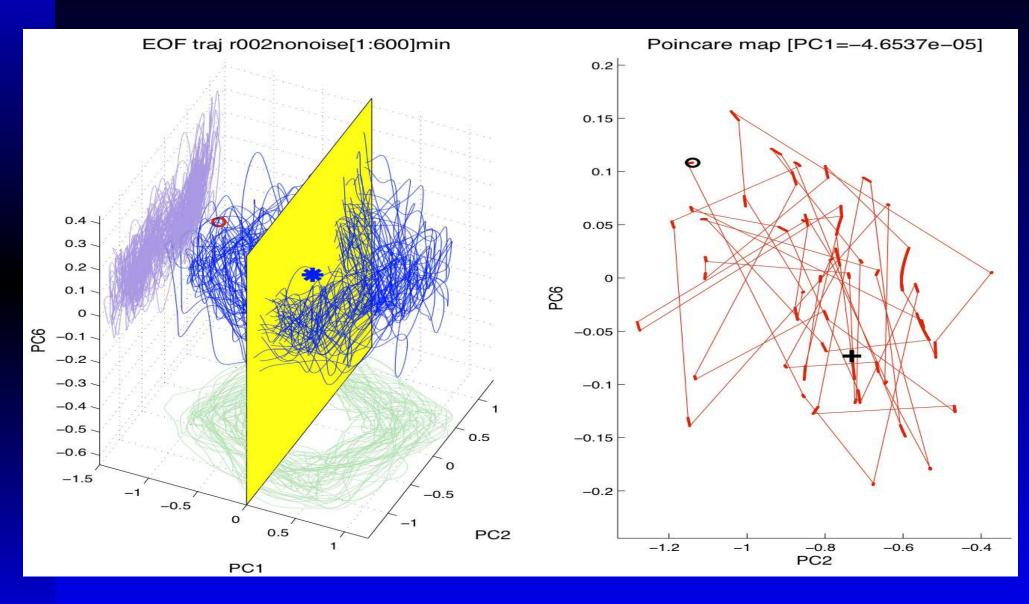


Equilibrated Wave Regime: **Projections**



Application of the Implicit Particle Filter to a Model of Nearshore Circulation – p. 10/26

Aperiodic wave Regime: Projections



Application of the Implicit Particle Filter to a Model of Nearshore Circulation – p. 11/26

• Dynamical model is an Ito SDE:

 $d\mathbf{x} = f(\mathbf{x})dt + GdW$

• W is a Brownian motion with independent increments each increment having zero mean and variance dt

The Discrete Model

• The discretized SDE

 $\mathbf{x}_{j+1} = \mathbf{x}_j + f(\mathbf{x}_j)\Delta t + (\Delta t)^{1/2}Gb_{j+1}$

where $b_j \sim N(0, I)$; $E(b_j b_k^T) = I \delta_{jk}$

• The deterministic forecast model:

$$\mathbf{x}_{j+1}^f = \mathbf{x}_j + f(\mathbf{x}_j)\Delta t$$

• Observations:

$$\mathbf{z}_{j+1} = H\mathbf{x}_{j+1} + b_{j+1}^o$$

• $E(b_{j+1}^o b_{k+1}^{oT}) = R\delta_{jk}$

$$\mathbf{x}_{j+1} - \mathbf{x}_j - \Delta t f(\mathbf{x}_j) \equiv \mathbf{x}_{j+1} - \mathbf{x}_{j+1}^f \\ \sim N(0, \Delta t G G^T)$$

For the i^{th} particle, the pdf of the state $x^{(i)}$ conditioned on an observation z at time t_{j+1} is $\propto exp(-\mathbf{F}^{(i)})$, where

$$\mathbf{F}^{(i)} = (\mathbf{x} - \mathbf{x}_{j+1}^{(i)f})^T (\Delta t G G^T)^{-1} (\mathbf{x} - \mathbf{x}_{j+1}^{(i)f})/2$$
$$+ (\mathbf{z} - H\mathbf{x})^T R^{-1} (\mathbf{z} - H\mathbf{x})/2$$

Obs & model noise assumed independent

after a bit of algebra \cdots

 $\mathbf{F} = \phi + (\mathbf{x} - m)^T (P^a)^{-1} (\mathbf{x} - m)/2$ $\phi = min(\mathbf{F})$ $= (\mathbf{z} - H\mathbf{x}^{f})^{T} (HQH^{T} + R)^{-1} (\mathbf{z} - H\mathbf{x}^{f})/2$ $\underline{m} = \mathbf{x}_{i+1}^f + K(\mathbf{z} - H\mathbf{x}_{i+1}^f)$ $Q = \Delta t G G^T$ $K = QH^T (HQH^T + R)^{-1}$ $P^a = (I - KH)Q$

- Consider the i^{th} particle, at state \mathbf{x}_j at time t_j
- Its location at time t_{j+1} , conditioned on the observation \mathbf{z} , is a random variable with pdf $\propto exp(-\mathbf{F}^{(i)})$

$$\mathbf{F}^{(i)} = (\mathbf{x} - \mathbf{x}_{j+1}^{(i)f})^T (\Delta t G G^T)^{-1} (\mathbf{x} - \mathbf{x}_{j+1}^{(i)f})/2$$
$$+ (\mathbf{z} - H \mathbf{x})^T R^{-1} (\mathbf{z} - H \mathbf{x})/2$$
$$\equiv \phi + (\mathbf{x} - m)^T (P^a)^{-1} (\mathbf{x} - m)/2$$

$$\mathbf{F}^{(i)} = (\mathbf{x} - \mathbf{x}_{j+1}^{(i)f})^T (\Delta t G G^T)^{-1} (\mathbf{x} - \mathbf{x}_{j+1}^{(i)f})/2$$
$$+ (\mathbf{z} - H \mathbf{x})^T R^{-1} (\mathbf{z} - H \mathbf{x})/2$$
$$\equiv \phi + (\mathbf{x} - m)^T (P^a)^{-1} (\mathbf{x} - m)/2$$

- ϕ and P^a are derived from algebra that is formally identical to the Kalman filter
- This is nothing more or less than minimization of a positive definite quadratic form, known long before Kalman's famous article was published in 1960.

This is nottheEnsembleKalman Filter

- We never use sample statistics from the collection of particles
- The *only* interaction among particles occurs at resampling
- We make no assumptions about sample moments In fact *the sample moments need not exist*
- We have examples in which the implicit particle filter significantly outperforms the EnKF

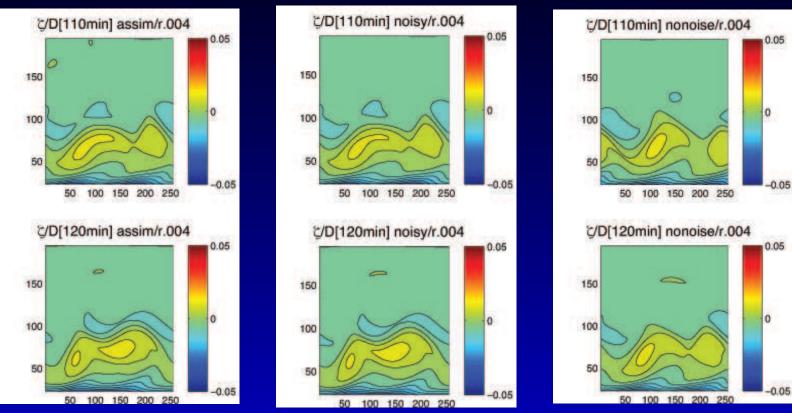
Recipe for The Implicit Particle Filter

For each particle:

- 1. Generate a random vector ξ_i , of state dimension, drawn from N(0, I)
- 2. Calculate m_i , the most probable state given the initial value of $\mathbf{x}^{(i)}$ and the minimizer of $F^{(i)}$
- 3. Choose the updated state $\mathbf{x}^{(i)}$ of the i^{th} particle so that

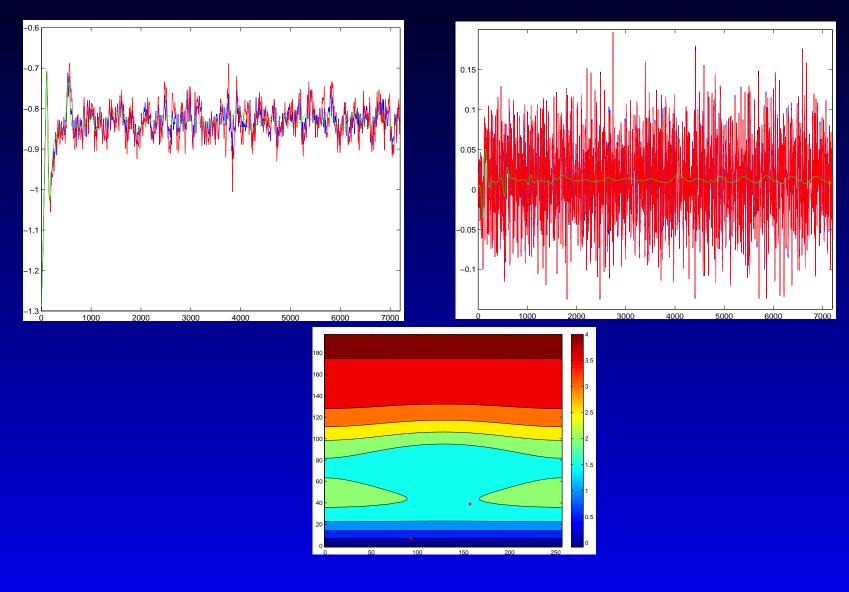
$$(\mathbf{x}^{(i)} - m_i)^T (P^a)^{-1} (\mathbf{x}^{(i)} - m_i) = \xi_i \cdot \xi_i$$

Assimilation Results, High Drag Case, 10 Particles

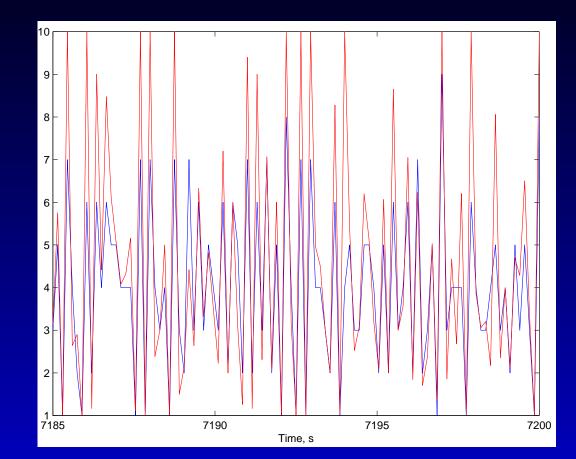


Potential vorticity. 1 to r: filtered, reference, noise free; Top to bottom: 1hr 50min, 2hr

Assimilation Results, High Drag Case

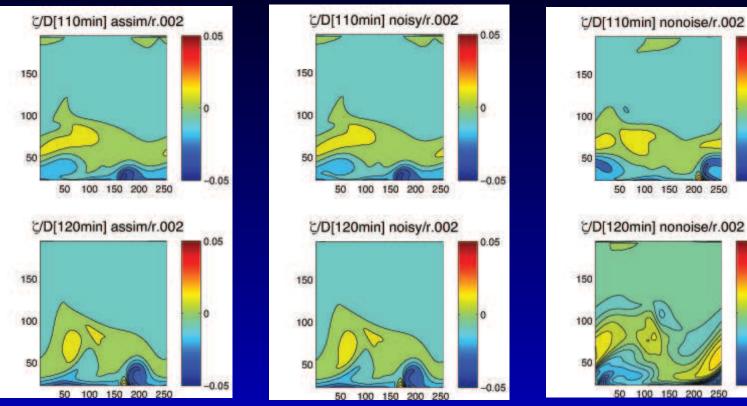


Particle Count, High Drag Case



10 particle run. Red curve: Effective number of particles = $1/\sum w_i^2$. Blue curve: number of particles after resampling.

Assimilation Results, Low Drag Case, 50 Particles



Potential vorticity. 1 to r: filtered, reference, noise free; Top to bottom: 1hr 50min, 2hr

0.05

0

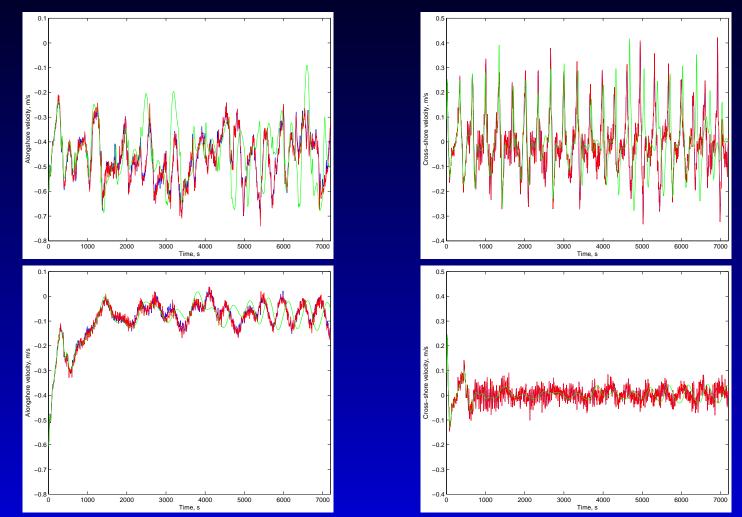
-0.05

0.05

0

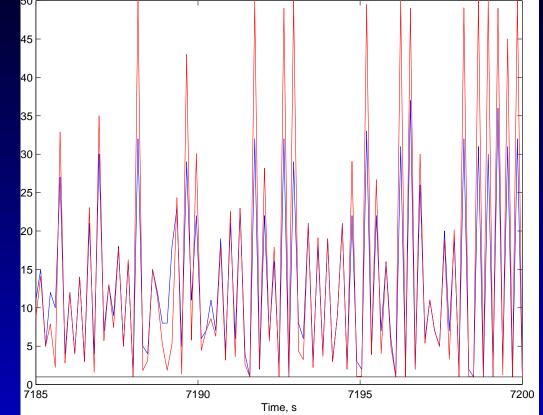
0.05

Low Drag Case, Point Comparisons



Blue curves: reference; Red curves: filter output; Green curves: noise free system

Particle Count, Low Drag Case



50 particle run. Red curve: Effective number of particles. Blue curve: number of particles after resampling. Black line: N=1

Conclusions

- The good news:
 - The implicit particle filter, (in this case, the optimal importance filter) can be implemented efficiently on models of geophysical interest
 - The resulting analysis looks good
- The bad news: We are still cursed by dimensionality!
- Next steps, no particular order
 - Sparse observations in time
 - Direct appeal to dynamical structure
 - Parameter estimation