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Abstract
• We apply the implicit particle filter to a model of

nearshore circulation
• This is a model with≈ 30,000 state variables.
• We assimilate gridded observations of the two

horizontal velocity components
• In the implicit particle filter the trajectory of each

particle is informed by observations.
• In its simplest form, the implicit particle filter

reduces to the method of optimal importance
sampling.

• The system runs efficiently on a single
workstation
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A Shallow Water Model of
Nearshore Circulation

Why did I choose this model?
• It’s a highly nonlinear model with large state

dimension
• Kurapov et al. described problems with

application of 4DVAR to this problem that bear
investigating
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A Shallow Water Model of
Nearshore Circulation

• Shallow water, forcing by parameterized wave
breaking
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Model Domain
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Steady Momentum Forcing
Derived from parameterized wave breaking, Thornton
& Guza, JGR 1983
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Why Did I Choose This Model?
• The linearized system is unstable, and the

calculations blow up in a time comparable to the
assimilation cycle

• Interesting behavior of 4DVAR
• Two distinct cases are considered:

• High drag case, regular wavelike flow
• Low drag case, aperiodic flow

• Assimilation fails for low drag case with
assumption of steady forcing

• Must useincorrect assumption of unsteady
forcing to get a solution to 4DVAR in the low
drag case
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Equilibrated Wave Regime

50 100 150 200 250

50

100

150

  ζ/D[105min] nonoise/r.004

 

 

−0.05

0

0.05

50 100 150 200 250

50

100

150

  ζ/D[110min] nonoise/r.004

 

 

−0.05

0

0.05

50 100 150 200 250

50

100

150

  ζ/D[115min] nonoise/r.004

 

 

−0.05

0

0.05

50 100 150 200 250

50

100

150

  ζ/D[120min] nonoise/r.004

 

 

−0.05

0

0.05

Application of the Implicit Particle Filter to a Model of Nearshore Circulation – p. 8/26



Aperiodic Wave Regime
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Equilibrated Wave Regime:
Projections
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Aperiodic Wave Regime: Pro-
jections
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The Implicit Particle Filter
• Dynamical model is an Ito SDE:

dx = f(x)dt + GdW

• W is a Brownian motion with independent
increments each increment having zero mean and
variancedt
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The Discrete Model
• The discretized SDE

xj+1 = xj + f(xj)∆t + (∆t)1/2Gbj+1

wherebj ∼ N(0, I); E(bjb
T
k ) = Iδjk

• The deterministic forecast model:

x
f
j+1 = xj + f(xj)∆t

• Observations:

zj+1 = Hxj+1 + bo
j+1

• E(bo
j+1b

oT
k+1) = Rδjk
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The Implicit Particle Filter

xj+1 − xj − ∆tf(xj) ≡ xj+1 − x
f
j+1

∼ N(0,∆tGGT )

For theith particle, the pdf of the statex(i)

conditioned on an observationz at timetj+1 is
∝ exp(−F

(i)), where

F
(i) = (x − x

(i)f
j+1)

T (∆tGGT )−1(x − x
(i)f
j+1)/2

+(z − Hx)TR−1(z − Hx)/2

Obs & model noise assumed independent
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The Implicit Particle Filter
after a bit of algebra· · ·

F = φ + (x − m)T (P a)−1(x − m)/2

φ = min(F)

= (z − Hx
f)T (HQHT + R)−1(z − Hx

f)/2

m = x
f
j+1 + K(z − Hx

f
j+1)

Q = ∆tGGT

K = QHT (HQHT + R)−1

P a = (I − KH)Q
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The Implicit Particle Filter
• Consider theith particle, at statexj at timetj
• Its location at timetj+1, conditioned on the

observationz, is a random variable with pdf
∝ exp(−F

(i))

F
(i) = (x − x

(i)f
j+1)

T (∆tGGT )−1(x − x
(i)f
j+1)/2

+(z − Hx)TR−1(z − Hx)/2

≡ φ + (x − m)T (P a)−1(x − m)/2
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The Implicit Particle Filter

F
(i) = (x − x

(i)f
j+1)

T (∆tGGT )−1(x − x
(i)f
j+1)/2

+(z − Hx)TR−1(z − Hx)/2

≡ φ + (x − m)T (P a)−1(x − m)/2

• φ andP a are derived from algebra that is
formally identical to the Kalman filter

• This is nothing more or less than minimization of
a positive definite quadratic form, known long
before Kalman’s famous article was published in
1960.
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This is not the Ensemble
Kalman Filter

• We never use sample statistics from the collection
of particles

• Theonly interaction among particles occurs at
resampling

• We make no assumptions about sample moments
In fact the sample moments need not exist

• We have examples in which the implicit particle
filter significantly outperforms the EnKF
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Recipe for The Implicit Particle
Filter
For each particle:

1. Generate a random vectorξi, of state dimension,
drawn fromN(0, I)

2. Calculatemi, the most probable state given the
initial value ofx(i) and the minimizer ofF (i)

3. Choose the updated statex
(i) of theith particle so

that

(x(i)
− mi)

T (P a)−1(x(i)
− mi) = ξi · ξi
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Assimilation Results, High Drag
Case, 10 Particles

Potential vorticity. l to r: filtered, reference, noise
free; Top to bottom:1hr 50min, 2hr
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Assimilation Results, High Drag
Case
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Particle Count, High Drag Case
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Assimilation Results, Low Drag
Case, 50 Particles

Potential vorticity. l to r: filtered, reference, noise
free; Top to bottom:1hr 50min, 2hr
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Low Drag Case, Point Compar-
isons

0 1000 2000 3000 4000 5000 6000 7000
−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

Time, s

A
lo

ng
sh

or
e 

ve
lo

ci
ty

, m
/s

0 1000 2000 3000 4000 5000 6000 7000
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time, s

C
ro

ss
−

sh
or

e 
ve

lo
ci

ty
, m

/s

0 1000 2000 3000 4000 5000 6000 7000
−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

Time, s

A
lo

ng
sh

or
e 

ve
lo

ci
ty

, m
/s

0 1000 2000 3000 4000 5000 6000 7000
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time, s

C
ro

ss
−

sh
or

e 
ve

lo
ci

ty
, m

/s

Blue curves: reference; Red curves: filter output;
Green curves: noise free system

Application of the Implicit Particle Filter to a Model of Nearshore Circulation – p. 24/26



Particle Count, Low Drag Case
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Conclusions
• The good news:

• The implicit particle filter, (in this case, the
optimal importance filter) can be implemented
efficiently on models of geophysical interest

• The resulting analysis looks good
• The bad news: We are still cursed by

dimensionality!
• Next steps, no particular order

• Sparse observations in time
• Direct appeal to dynamical structure
• Parameter estimation
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