How Warm is it Getting?
 The Determination of a Trend in a Multi-Scale Problem

JUAN M. RESTREPO

Group Leader, Uncertainty Quantification Group
Mathematics Department, Physics Department and the Atmospheric Sciences Department University of Arizona

February 19, 2013

Local Warming: Moscow’s Summer 2010 Temperatures

Land surface temp anomalies (Satellite), for July20-27, 2010, compared to July20-27 (2000-2008).

Color Range: $-12^{\circ} \mathrm{C}$ to $12^{\circ} \mathrm{C}$

Picture, courtesy of NASA/Goddard/Earth Observatory.

Moscow's Summer Temperatures, 1881-2011

Moscow's Summer Temperatures, 1881-2009

Moscow's Summer Temperatures, 1881-2009

Moscow's Summer Temperatures, 1881-2011

A Mathematical Fact, Applicable to Extreme Temperatures

RANDOM TEMPERATURES

RANDOM TEMPERATURES MOSCOW TEMPERATURES

Something Must Account for Changing Mean

Increase of Extreme Events in a Warming World (PNAS 44, 2011), by Rahmstorf and Coumou.

2010 Moscow Hot Summer: Antropogenic Source?

Figure courtesy of Rahmstorf and Coumou. Can be found at realclimate.org.

The Trend Problem:

Define a set of simple universal rules with which to compute an underlying tendency, given a finite (non-stationary/multi-scale) data set.

Joint work with Shankar Venkataramani (U. Arizona)
H. Flaschka (U. Arizona) and
D. Comeau (U. Arizona)

Problems That Critically Depend on a Trend Calculation

- Global warming (sun radiation, CO_{2} averages, global temperature estimates).
- Mean sea level (land ice melt and its effect on sea rise).
- Variability of local weather.
- Glacial ice packing.
- Long-term ocean sea surface temps (SST) data: PCA has an ENSO-line signal, not in ocean models. ${ }^{1}$

Other applications: trends in hydrogeology, econometrics, etc.
${ }^{1}$ Robert Miller (COAS/ORST), private communication.

A Climate Signal...

ORIGINAL SIGNAL

Vostok Ice Core data, Temperature

The Tendency, Defined

Given a finite-time time series $Y(i), \quad i=1,2, \ldots, N$,

The tendency $T(i)$ is a time series

- $T(i):=B^{D}+\left\{R^{j}(i)\right\}_{S}, i=1, \ldots, N . B^{D}$ is a constant, $\left\{R^{j}(i)\right\}_{S}$ is a function made up of a combination of S rotations.

The Tendency, Defined

Given a finite-time time series $Y(i), \quad i=1,2, \ldots, N$,

The tendency $T(i)$ is a time series

- $T(i):=B^{D}+\left\{R^{j}(i)\right\}_{S}, i=1, \ldots, N . B^{D}$ is a constant, $\left\{R^{j}(i)\right\}_{S}$ is a function made up of a combination of S rotations.
- The histogram of $Y(i)-T(i)$ should be nearly symmetric, and $\operatorname{var}[T(i)] \leq \operatorname{var}[Y(i)]$. (If $T(i) \neq Y(i)$).
- Low complexity of $T(i)$, measured by the Hellinger distance: Hell $[Y(i)-T(i)]$ small.
- if $Y(i)$ is monotonic, $T(i)$ is monotonic.
- if $Y(i)$ is a constant, $T(i)=Y(i)$.
- if $Y(i)$ is stationary $(N \rightarrow \infty), T(i)=m$, the median.

General Procedure:

- Find a decomposition $Y(i)=B^{D}+\sum_{j=1}^{D} R^{j}(i)$
- Apply tendency criteria to pick a combination of R^{j} to form $T(i):=B^{D}+\left\{R^{j}(i)\right\}_{S}, i=1, \ldots, N$.

The choice of decomposition is motivated by the

- Be non-parametric.
- Ability to handle multi-scale nature of a signal.
- Be lossless.

The Decomposition

The Intrinsic Time Decomposition (ITD)

Given a sequence of real numbers $\{Y(i)\}_{i=1}^{N}$,

$$
Y(i)=B^{D}+\sum_{j=1}^{D} R^{j}(i)
$$

where

$$
\begin{aligned}
& B^{j}(i)= B^{j+1}(i)+R^{j+1}(i), \quad j=0, \ldots, D, \\
& \quad \text { and } \\
& B^{0}(i):= Y(i) . \\
& B^{j} \text { are called BASELINES, and } R^{j} \text { are called ROTATIONS. }
\end{aligned}
$$

Frei and Osorio, Proc. Roy. Soc. London, (2006).

The Intrinsic Time Decomposition (ITD)

Baseline Construction:

- Identify extremas $Y_{k}:=Y\left(\tau_{k}\right)$ and nodes τ_{k}.
- Construct knots B_{k},

$$
\begin{aligned}
B_{k+1} & =\frac{1}{2}\left[Y_{k}+\frac{\left(\tau_{k+1}-\tau_{k}\right)}{\left(\tau_{k+2}-\tau_{k}\right)}\left(Y_{k+2}-Y_{k}\right)\right] \\
& +\frac{1}{2} Y_{k+1}
\end{aligned}
$$

In the interval $i \in\left(\tau_{k}, \tau_{k+1}\right]$, between successive extrema,

$$
\begin{aligned}
B(i) & =B_{k}+\frac{\left(B_{k+1}-B_{k}\right)}{\left(Y_{k+1}-Y_{k}\right)}\left(Y(i)-Y_{k}\right) \\
R(i) & =Y(i)-B(i)
\end{aligned}
$$

Figure: Signal Y, Rotation R, Baseline B

The Intrinsic Time Decomposition (ITD)

General Case: Set $B^{0}(i)=Y(i), i=1,2, \ldots, N$.
For $j=0, \ldots, D-1$:
$R^{j+1}(i)=B^{j}(i)-B^{j+1}(i)$.

- Identify extremas $B_{k}^{j}:=B^{j}\left(\tau_{k}^{j}\right)$ and nodes τ_{k}^{j}.
- Construct knots B_{k}^{j+1},

$$
B_{k+1}^{j+1}:=B^{j+1}\left(\tau_{k+1}^{j+1}\right)=\frac{1}{2}\left[B_{k}^{j}+\frac{\left(\tau_{k+1}^{j}-\tau_{k}^{j}\right)}{\left(\tau_{k+2}^{j}-\tau_{k}^{j}\right)}\left(B_{k+2}^{j}-B_{k}^{j}\right)\right]+\frac{1}{2} B_{k+1}^{j} .
$$

In the interval $i \in\left(\tau_{k}^{j+1}, \tau_{k+1}^{j+1}\right]$, between successive extrema,

$$
B^{j+1}(i)=B_{k}^{j}+\frac{\left(B_{k+1}^{j}-B_{k}^{j}\right)}{\left(B_{k+1}^{j}-B_{k}^{j}\right)}\left(B^{j}(i)-B_{k}^{j}\right),
$$

Intuition

Define the All Extrema Random Signal $Y(i)=(-1)^{i}\left|z_{i}\right|, \quad i=1,2, \ldots, N$, with z_{i} a sample from $\mathscr{N}(0, \sigma)$

- MWMONMWMOW

In this case

$$
\begin{aligned}
B(i)= & B_{k}=\frac{1}{4}\left(Y_{k-1}+2 Y_{k}+Y_{k+1}\right) . \\
& \text { and } \\
R(i)= & R_{k}=Y_{k}-B_{k}=-\frac{1}{2}\left(Y_{k-1}-2 Y_{k}+Y_{k+1}\right) .
\end{aligned}
$$

Even if extremas are not equally-spaced:,

- if $B=\mathscr{L} Y$, then $R=(1-\mathscr{L}) Y$,
- $B^{j+1}=\mathscr{L}^{j} B^{j}$
- $R^{j+1}=\left(1-\mathscr{L}^{j}\right) B^{j}$.

The baseline: $\frac{\hat{B}}{\hat{Y}}=\frac{1}{2}(1+\cos \omega)$

The Fourier transform \hat{Y} :

The rotation: $\frac{\hat{R}}{\hat{Y}}=\frac{1}{2}(1-\cos \omega)$
$\omega=2 \pi v / N$, and $0 \leq v \leq N / 2$, the integer frequency.

Spectrum of the Rotations

For All Extrema Random Signal $Y=(-1)^{i}\left|z_{i}\right|, \quad z_{i}$ from $\mathscr{U}(\sigma=4)$ Logarithm, base 2, as a function of ITD level j :

Ensemble averages (50,000 realizations).

Self Similar Spectrum and Extremas

Define $\mathscr{E}\left[B^{j}\right]:=\left\{S^{j}, b^{j}\right\}$.
$\left\{S^{j}\right\}_{1}^{n_{j}}$ be locations of extrema of baselines, with values b^{j}.

In ITD: $\left\{S^{j+1}, b^{j+1}\right\}=\mathscr{E}\left[\left(\mathbb{I}+M^{j}\right) b^{j}\right]$.
M^{j} is a diffusion matrix.

- $\operatorname{Sp}\left(\mathbb{I}+M^{j}\right)$ real, $\in[0,1]:$ $\lambda_{k}^{j}=\cos ^{2}(\pi k / n)$,
- 1 is an eigenvalue corresponding to the right eigenvector consisting of all ones, and 0 is an eigenvalue corresponding to
 the right eigenvector given by $x_{k}=(-1)^{k}$. (Proof is by a
Perron-Frobenius type argument).

Estimate of probability of extremas disappearing can be found:

- Extrema disappear independently from neighbors.
- Obtain Poisson process for evolution of the sets S^{j}.

Example Calculation

ORIGINAL SIGNAL

Vostok Ice Core data, Temperature

The Tendency $T(i)$, the EMD, and the Vostok signal $Y(i)$

Time Series

The Histograms

Finding the Tendency

- Find ITD:

$$
\begin{gathered}
Y(i)=B^{D}+\sum_{J=1}^{D} R^{j}(i) \\
B^{j}(i)=B^{j+1}(i)+R^{j+1}(i)
\end{gathered}
$$

- Find Tendency (picking k^{*} baseline)

$$
T(i):=B^{k^{*}}(i)
$$

- Find Tendency (choosing k^{*} baseline)

$$
T(i):=B^{k^{*}}(i)
$$

- The "ABSISSA" information:
- For $j=1, . ., D$ compute $H^{j}:=\operatorname{histogram}\left(Y(i)-B^{j}(i)\right)$
- Determine "symmetry" of H^{j} : via percentiles.
- Candidates have a symmetric unimodal distribution with variance, smaller than $\operatorname{var} Y$.
- The "ORDINATE" information:
- Compute matrix $\operatorname{corr}\left(B^{j}\right)$.
- Determine $B^{k^{*}}$. Of the set chosen in the Absissa selection, choose $j=k^{*}$ corresponding to first minima in $\operatorname{corr}_{j, j+1}$

$$
\text { can get simpler } T(i) \text { by maximizing } \operatorname{Hell}\left(T-R^{j \geq k^{*}}\right)
$$

ABSISSA INFORMATION

ORDINATE INFORMATION

How Warm is it Getting?
February 19, 2013

The Composite Case

When There's No Single Trend:

daily temperature data, SW Arizona.

2010 Moscow Hot Summer: Antropogenic Source?

Figure courtesy of Rahmstorf and Coumou. Can be found at realclimate.org.

Analysis of the Moscow Data

Our analysis confirms that Coumou and Rahmstorf's guess that the mean temperature increased, but not its variance:

Other Applications

- 2D image processing?
- Generates a compact surrogate model of the form

$$
d X_{t}=f\left(X_{t}, t\right) d t+\sigma d W_{t} .
$$

- $T(i)$ is the cummulant of the drift term $f(\cdot)$.
- Estimate σ from hist $(Y-T)$, construct suitable noise process for the diffusion term.

Further Information

```
Juan M. Restrepo
http://www.physics.arizona.edu/~restrepo
```


Uncertainty Quantification Group

 http://www.physics.arizona.edu/~restrepo/UQ/UQ.html

