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Moscow Summer

Local Warming: Moscow’s Summer 2010 Temperatures

Land surface temp anomalies (Satellite), for July20-27, 2010, compared to
July20-27 (2000-2008).

Color Range: -12oC to 12oC

Picture, courtesy of NASA/Goddard/Earth Observatory.
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Moscow Summer

Moscow’s Summer Temperatures, 1881-2011
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Data, courtesy of GISS, NASA.
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Moscow Summer

Moscow’s Summer Temperatures, 1881-2009
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Data, courtesy of GISS, NASA.
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Moscow Summer

Moscow’s Summer Temperatures, 1881-2011
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Moscow Summer

A Mathematical Fact, Applicable to Extreme Temperatures

RANDOM TEMPERATURES
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Moscow Summer

RANDOM TEMPERATURES MOSCOW TEMPERATURES
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Moscow Summer

Something Must Account for Changing Mean
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Increase of Extreme Events in a Warming World (PNAS 44, 2011), by Rahmstorf and Coumou.

JUAN M. RESTREPO ( Group Leader, Uncertainty Quantification Group Mathematics Department, Physics Department and the Atmospheric Sciences Department University of Arizona )How Warm is it Getting? February 19, 2013 9 / 39



Moscow Summer

2010 Moscow Hot Summer: Antropogenic Source?

Figure courtesy of Rahmstorf and Coumou. Can be found at realclimate.org.
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Moscow Summer

The Trend Problem:
Define a set of simple universal rules with which to compute an underlying
tendency, given a finite (non-stationary/multi-scale) data set.

Joint work with
Shankar Venkataramani (U. Arizona)
H. Flaschka (U. Arizona) and
D. Comeau (U. Arizona)
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Moscow Summer

Problems That Critically Depend on a Trend Calculation

Global warming (sun radiation, CO2 averages, global temperature
estimates).

Mean sea level (land ice melt and its effect on sea rise).

Variability of local weather.

Glacial ice packing.

Long-term ocean sea surface temps (SST) data: PCA has an ENSO-line
signal, not in ocean models.1

Other applications: trends in hydrogeology, econometrics, etc.

1Robert Miller (COAS/ORST), private communication.
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Moscow Summer

A Climate Signal...
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Moscow Summer

The Tendency, Defined

Given a finite-time time series Y(i), i = 1,2, ...,N,

The tendency T(i) is a time series

T(i) := BD +{Rj(i)}S, i = 1, ...,N. BD is a constant, {Rj(i)}S is a
function made up of a combination of S rotations.

The histogram of Y(i)−T(i) should be nearly symmetric, and
var[T(i)]≤var[Y(i)]. (If T(i) , Y(i)).

Low complexity of T(i), measured by the Hellinger distance:
Hell[Y(i)−T(i)] small.

if Y(i) is monotonic, T(i) is monotonic.

if Y(i) is a constant, T(i) = Y(i).

if Y(i) is stationary (N→ ∞), T(i) = m, the median.
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Moscow Summer

General Procedure:

Find a decomposition Y(i) = BD +∑
D
j=1 Rj(i)

Apply tendency criteria to pick a combination of Rj to form
T(i) := BD +{Rj(i)}S, i = 1, ...,N.

The choice of decomposition is motivated by the

Be non-parametric.

Ability to handle multi-scale nature of a signal.

Be lossless.

JUAN M. RESTREPO ( Group Leader, Uncertainty Quantification Group Mathematics Department, Physics Department and the Atmospheric Sciences Department University of Arizona )How Warm is it Getting? February 19, 2013 15 / 39



Decomposition

The Decomposition
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Decomposition

The Intrinsic Time Decomposition (ITD)

Given a sequence of real numbers {Y(i)}N
i=1,

Y(i) = BD +
D

∑
j=1

Rj(i)

where

Bj(i) = Bj+1(i)+Rj+1(i), j = 0, ...,D,

and

B0(i) : = Y(i).

Bj are called BASELINES, and Rj are called ROTATIONS.

Frei and Osorio, Proc. Roy. Soc. London, (2006).
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Decomposition

The Intrinsic Time Decomposition (ITD)

Baseline Construction:

Identify extremas Yk := Y(τk)
and nodes τk .

Construct knots Bk ,

Bk+1 =
1
2

[
Yk +

(τk+1− τk)

(τk+2− τk)
(Yk+2−Yk)

]
+

1
2

Yk+1.

In the interval i ∈ (τk ,τk+1 ], between suc-
cessive extrema,

B(i) = Bk +
(Bk+1−Bk)

(Yk+1−Yk)
(Y(i)−Yk),

R(i) = Y(i)−B(i). 0 5 10 15 20 25
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Figure: Signal Y , Rotation R, Baseline B
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Decomposition

The Intrinsic Time Decomposition (ITD)

General Case: Set B0(i) = Y(i), i = 1,2, ..., ,N.
For j = 0, ...,D−1:

Rj+1(i) = Bj(i)−Bj+1(i).

Identify extremas Bj
k := Bj(τ j

k) and nodes τ
j
k.

Construct knots Bj+1
k ,

Bj+1
k+1 := Bj+1(τ j+1

k+1) =
1
2

[
Bj

k +
(τ j

k+1− τ
j
k)

(τ j
k+2− τ

j
k)
(Bj

k+2−Bj
k)

]
+

1
2

Bj
k+1.

In the interval i ∈ (τ j+1
k ,τ j+1

k+1], between successive extrema,

Bj+1(i) = Bj
k +

(Bj
k+1−Bj

k)

(Bj
k+1−Bj

k)
(Bj(i)−Bj

k),
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Decomposition

Intuition

Define the All Extrema Random Signal
Y(i) = (−1)i|zi|, i = 1,2, ...,N, with zi a sample from N (0,σ)

In this case

B(i) = Bk =
1
4
(Yk−1 +2Yk +Yk+1).

and

R(i) = Rk = Yk−Bk =−
1
2
(Yk−1−2Yk +Yk+1).

Even if extremas are not equally-spaced:,
if B = L Y, then R = (1−L )Y,
Bj+1 = L jBj

Rj+1 = (1−L j)Bj.
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Decomposition

The Fourier transform Ŷ:
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ω = 2πν/N, and 0≤ ν ≤ N/2,
the integer frequency.

The baseline: B̂
Ŷ
= 1

2(1+ cosω)

50 100 150 200 250 300 350 400 450 500
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

The rotation: R̂
Ŷ
= 1

2(1− cosω)

50 100 150 200 250 300 350 400 450 500
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

JUAN M. RESTREPO ( Group Leader, Uncertainty Quantification Group Mathematics Department, Physics Department and the Atmospheric Sciences Department University of Arizona )How Warm is it Getting? February 19, 2013 21 / 39



Decomposition

Spectrum of the Rotations
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Decomposition

For All Extrema Random Signal Y = (−1)i|zi|, zi from U (σ = 4)
Logarithm, base 2, as a function of ITD level j:
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(a) Extremas/N; (b) Extrema spacing; (c) `2(Bj)/`2(Y)

Ensemble averages (50,000 realizations).
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Decomposition

Self Similar Spectrum and Extremas

Define E [Bj] := {Sj,bj}.

{Sj}nj
1 be locations of extrema of baselines,

with values bj.

In ITD: {Sj+1,bj+1}= E [(I+Mj)bj].

Mj is a diffusion matrix.

Sp(I+Mj) real, ∈ [0,1]:
λ

j
k = cos2(πk/n),

1 is an eigenvalue corresponding to the
right eigenvector consisting of all ones,
and 0 is an eigenvalue corresponding to
the right eigenvector given by
xk = (−1)k. (Proof is by a
Perron-Frobenius type argument).
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Decomposition

Estimate of probability of extremas disappearing can be
found:

Extrema disappear
independently from
neighbors.

Obtain Poisson process
for evolution of the sets
Sj.
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The Tendency

Example Calculation
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The Tendency

Y(i) = BD +
D

∑
k=1

Rk(i), Bj+1(t)+Rj+1(i) = Bj(i).
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The Tendency

The Tendency T(i), the EMD, and the Vostok signal Y(i)
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The Tendency

Finding the Tendency

Find ITD:

Y(i) = BD +
D

∑
J=1

Rj(i),

Bj(i) = Bj+1(i)+Rj+1(i)

Find Tendency (picking k∗ baseline)

T(i) := Bk∗(i)
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The Tendency

Find Tendency (choosing k∗ baseline)

T(i) := Bk∗(i)

The ”ABSISSA” information:
For j = 1, ..,D compute Hj := histogram(Y(i)−Bj(i))
Determine ”symmetry” of Hj: via percentiles.
Candidates have a symmetric unimodal distribution with variance, smaller
than varY .

The ”ORDINATE” information:
Compute matrix corr(Bj).
Determine Bk∗ . Of the set chosen in the Absissa selection, choose j = k∗

corresponding to first minima in corrj,j+1

can get simpler T(i) by maximizing Hell(T−Rj≥k∗).
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The Tendency

ABSISSA INFORMATION

JUAN M. RESTREPO ( Group Leader, Uncertainty Quantification Group Mathematics Department, Physics Department and the Atmospheric Sciences Department University of Arizona )How Warm is it Getting? February 19, 2013 31 / 39



The Tendency

ORDINATE INFORMATION
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The Tendency

0 500 1000 1500 2000 2500 3000 3500
−10

−8

−6

−4

−2

0

2

4

te
m

pe
ra

tu
re

TREND

 

 

Raw Signal
EMD trend
ITD trend

−15 −10 −5 0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

temperature
 

 

pdf of signal
pdf Y−ITD
pdf Y−EMD

Time Series The Histograms

JUAN M. RESTREPO ( Group Leader, Uncertainty Quantification Group Mathematics Department, Physics Department and the Atmospheric Sciences Department University of Arizona )How Warm is it Getting? February 19, 2013 33 / 39



The Tendency

The Composite Case
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The Tendency

When There’s No Single Trend:

daily temperature data, SW Arizona.
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Back to Moscow’s Summer, 2010

2010 Moscow Hot Summer: Antropogenic Source?

Figure courtesy of Rahmstorf and Coumou. Can be found at realclimate.org.
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Back to Moscow’s Summer, 2010

Analysis of the Moscow Data

Our analysis confirms that Coumou and Rahmstorf’s guess that the mean
temperature increased, but not its variance:
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Back to Moscow’s Summer, 2010

Other Applications

2D image processing?
Generates a compact surrogate model of the form

dXt = f (Xt, t)dt+σdWt.

T(i) is the cummulant of the drift term f (·).
Estimate σ from hist(Y−T), construct suitable noise process for the
diffusion term.
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Further Information

Further Information

Juan M. Restrepo
http://www.physics.arizona.edu/∼restrepo

Uncertainty Quantification Group
http://www.physics.arizona.edu/∼restrepo/UQ/UQ.html

UQGQG
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