
Conditions for successful data assimilation

Matthias Morzfeld*,**, Alexandre J. Chorin*,**, Peter Bickel#

*Department of Mathematics
University of California, Berkeley

**Lawrence Berkeley National Laboratory

# Department of Statistics
University of California, Berkeley

Probabilistic Approaches to Data Assimilation for Earth Systems, Banff, Canada
Tuesday , 18th of February 2013



−20 −15 −10 −5 0 5 10 15 20
0

5

10

15

20

25

30

35

40

45

50

Introduction
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Problem
• Small errors grow quickly 

and become large errors

Goal
• Use a mathematical model 

to make predictions about a 
physical process

Solution
• Use noisy data to update 

the model
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Solution of the data assimilation problem

Goal
• Compute the random 

variable

• Conditional mean

is the minimum mean square 
error estimate

Methods

• Kalman filter and its variants for 
linear Gaussian models

• Variational data assimilation 
computes the most likely state 
given the data

• Particle filters (Monte Carlo 
methods) construct empirical 
estimate of the conditional pdf

Question: What are the 
conditions under which DA can 

be successful?

x|z ⇠ p(x|z)

E(x|z) =
Z

xp(x|z)dx
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Assumptions

Question: What are the 
conditions under which DA can 

be successful?

Assumptions:

• Linear Gaussian synchronous model

• Initial state Gaussian

x

n+1 = Ax

n + w

n
, w

n ⇠ N (0, Q), iid

x

0 ⇠ N (µ0,⌃0) Kalman formalism gives us

the conditional pdf

To answer the question we 
analyze the conditional pdf 

(which depends on errors in 
model and data)

zn+1
= Hxn+1

+ vn+1, vn ⇠ N (0, R), iid, independent of wn
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Kalman filter

x

n+1 = Ax

n + w

n
, w

n ⇠ N (0, Q), iid
Model and data:

Kalman update:

In “steady state”:
Pn+1 = Pn = P = (I �KH)X

X = AXAT �AXHT (HXHT + R)�1HXAT + Q

(Discrete Algebraic Ricatti Equation)

Xn =APnA
T +Q

Kn =XnH
T (HXnH

T +R)�1

Pn+1 =(I �KnH)Xn

zn+1
= Hxn+1

+ vn+1, vn ⇠ N (0, R), iid, independent of wn
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Conditional pdf in steady state 

In “steady state”:
xn ⇠ N (µn, P )

x

n

µ n

xn � µn

Distance from mean (most likely state):

r =
q

(xn � µn)T (xn � µn)

E(r) ⇡

4

0

@
mX

j=1

�j
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A
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mX
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�2
j
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�j

1

A
1.5 var(r) ⇡

mX

j=1

�2
j

2
mX

j=1

�j

�j are eigenvalues of P
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Conditional pdf in steady state 

� = O(1)! E(r) = O(m1/2), var(r) = O(1)

O(1)

O(m1/2)

Samples of posterior pdf 
collect on a thin shell

This is problematic
• There is not enough 

information in model and data 
to make reliable conclusions 
about the state

This is unphysical
• Similar experiments are 

expected to have similar 
outcomes
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Conditional pdf in steady state 

O(1)

O(m1/2)

“Large” posterior covariance:
• Sample collect on a thin shell

• There is not enough information 
in model and data to make 
reliable conclusions about the 
state

“Small” posterior covariance:
• Samples collect on a low 

dimensional ball

• There is enough information in 
model and data to make reliable 
conclusions about the state
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The effective dimension

O(1)

O(m1/2)

vs

Effective dimension:
• Definition: Frobenius norm of steady 

state covariance matrix P
• Interpretation: effective dimension 

must be well bounded or else data 
assimilation is hopeless (regardless of 
the algorithm)

||P ||F =
qX

�2
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Boundedness of the effective dimension: example

A = H = I, Q = qI, R = rI

Put:

Steady state covariance:

m = 10
m = 100

m = 5
r

q
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0.6

P =
p

q2 + 4qr � q

2
I

Effective dimension:

||P ||F =
p

m

p
q2 + 4qr � q

2

In general: small Frobenius norm of Q and R 
lead to small effective dimension
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Why is this realistic?

Small effective dimension

• Khinshin’s theorem: bounded 
energy implies small Frobenius 
norms of Q and R

• Smoothness of errors implies 
small Frobenius norm of Q 
and R

• Errors with spherical 
symmetries (error in one 
component leads to errors in 
all other components) lead to 
small Frobenius norms of Q 
and R
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Why is this realistic?
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In general: correlations lead to small Frobenius norm of 
Q and R and therefore to a small effective dimension

Error models in literature typically show strong correlations

Probability mass is concentrated on a lower 
dimensional manifold due to correlations in 

the errors



13

Effective dimension: summary

E
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y
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• Effective dimension must be bounded or else 
data assimilation is hopeless (independent of 
the DA algorithm)

• Bounded effective dimension induces balance 
condition between errors in model and data 

• In practice, the effective dimension is often 
small (correlations in errors)

O(1)

O(m1/2)

vs



Agenda

1. Introduction

4. How good is 4D-Var or particle smoothing?

3. How good are particle filters?

2. What can be expected in general?



Review of importance sampling
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Direct Monte Carlo sampling

Suppose we are interested in x ~ p(x) 
and want to compute the expected value 
of x. The Monte Carlo approximation is:

E(x) =
Z

xp(x)dx ⇡ 1
N

NX

i=1

xi

Problem: it is not easy to 
obtain samples directly

, xi ⇠ p(x)

Importance sampling

Suppose we can evaluate p(x) and want 
to compute the expected value of x. 

Replace direct samples with 
weighted samples

wi /
p(xi)
⇡(xi)

,

X
wi = 1 xi ⇠ ⇡(x)

E(x) =

Z
xp(x)dx =

Z
x

p(x)

⇡(x)
⇡(x)dx ⇡

NX

i=1

xiwi



Review of particle filters
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Particle filters

Apply importance sampling recursively 
to the conditional pdf

This requires importance function that 
factorizes

Recursion for weights

Wn+1
j / Ŵn

j

p(Xn+1
j |Xn

j )p(Zn+1|Xn+1
j )

⇡n+1(Xn+1
j |X0:n

j , Z0:k)

⇡(x0:n+1|z0:n+1) = ⇡0(x0)
n+1Y

k=1

⇡k(xk|x0:k�1
, z

1:k)

If variance of unnormalized weights is large, 
then the particle filter collapses (see papers 

by Snyder, Bickel, Anderson, ...)

p(x0:n+1|z1:n+1) = p(x0:n|z1:n)p(x
n+1|xn)p(zn+1|xn+1)

p(zn+1|z1:n)



Review of the collapse of particle filters
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The SIR particle filter

Importance function:

Weights:

Condition for collapse 
in high dimensions is 
large norm of*:  

Collapse can also happen in 
low dimensions:

⇡n+1 = p(xn+1|xn)

*as shown by Snyder, Bickel, Anderson et al.

⌃ = H(Q+APAT )HTR�1

Wn+1
j / p(Zn+1|Xn+1

j ).



Review of the collapse of particle filters
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The optimal particle filter

Importance function:

Weights:

Condition for collapse 
in high dimensions is 
large norm of*: 

Collapse is avoided 
in low dimensions: 

*as shown by Snyder

⌃ = HAPATHT
�
HQHT +R

��1

Wn+1
j / p(Zn+1|Xn

j )

⇡n+1 = p(xn+1|xn
, z

n+1)
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How good can we get with particle filters?

Example revisited:

Optimal filter: A = H = I, Q = qI, R = rI

||⌃||F =
p
m

p
q2 + 4qr � q

2(q + r)
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How good can we get with particle filters?

Example revisited:

Optimal filter vs. SIR filter
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How good can we get with particle filters?

The general linear case:
• Using matrix bounds we find the balance conditions:

• Balance condition is easy in simple cases, but delicate in 
general

1

2
||H||2F

�
||Q||F + ||A||2F ||P ||

�
 ||R||F SIR filter

Optimal filter||A||2F ||H||2F ||P ||F  ||H||2F ||Q||F + ||R||F

The nonlinear/non-Gaussian case:
• Correlations can be expected for realistic noise models

• Balance conditions must be worked out in each particular case

• Optimal filter hard/impossible to implement, while SIR 
remains easy to use



Agenda

1. Introduction

4. How good is 4D-Var or particle smoothing?

3. How good are particle filters?

2. What can be expected in general?
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Strong constraint 4D-Var

Perfect model assumption:

Conditional pdf:

Covariance:

p(x

0|z1:n) / exp

✓
�1

2

�
x

0 � µ0

�T
⌃

�1
0

�
x

0 � µ0

�◆

⇥ exp

0

@�1

2

nX

j=1

�
zj �HAjx0

�T
R�1

�
zj �HAjx0

�
1

A

⌃ = ⌃�1
0 +

nX

j=1

(Aj)THTR�1HAj

x

n+1 = Ax

n

Strong constraint 4D-Var can only be 
successful if the Frobenius norm of the 

covariance is small

zn+1
= Hxn+1

+ vn+1, vn ⇠ N (0, R), iid, independent of wn
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How good can we get with 4D-Var?

Example revisited:

Norm of covariance matrix:

m = 100
m = 1000

m = 10

r

σ0
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||⌃||F =
p
m
�0 + r

�0r
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Weak constraint 4D-VAr

x

n+1 = Ax

n + w

n
, w

n ⇠ N (0, Q), iid
Model and data:

zn+1
= Hxn+1

+ vn+1, vn ⇠ N (0, R), iid, independent of wn

Conditional pdf:

p(x0:n|z1:n) / exp

✓
�1

2

�
x0 � µ0

�T
⌃

�1
0

�
x0 � µ0

�◆

⇥ exp

0

@�1

2

nX

j=1

�
zj �Hxj

�T
R�1

�
zj �Hxj

�
1

A

Covariance:

⌃ =

0

BBBB@

⌃�1
0 + AT⌃�1

1 A �ATQ�1 · · · 0
�Q�1A Q�1 + ATQ�1A + HTR�1H �ATQ�1

0
. . .

. . .
. . .

.

.

. �ATQ�1

0 · · · �Q�1A Q�1 + HTR�1H

1

CCCCA
.
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How good can we get with 4D-Var?

m = 100
m = 1000

m = 10

r
σ0
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Strong constraint 4D-Var
• Boundedness of covariance matrix 

induces balance condition between 
errors in prior and in the data

Particle smoothing
• Same balance condition as in 4D-

Var, but choice of importance 
function is critical

Weak constraint 4D-Var
• Boundedness of covariance matrix 

induces balance condition between 
errors in prior, in the model and in 
the data



Conclusions
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• Numerical data assimilation hopeless unless effective dimension 
is small (probability mass is concentrated on a low dimensional 
manifold)

• Boundedness of effective dimension induces balance condition 
between errors in model and data

• In practice, effective dimension often small because correlations 
in errors 

• Particle filters can work in high dimensions, provided their 
implementation is sound

• Variational data assimilation requires well boundedness of 
covariance matrix, i.e. balance condition between errors in prior, 
model and data

Analysis for linear Gaussian case only. 
Nonlinear/non-Gaussian problems must be 

analyzed in each particular case.



Fin

28

Thank you!
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How good can we get with particle filters?

Example revisited:

Optimal filter vs. SIR filter
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