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Introduction

Goal

e Use a mathematical model
to make predictions about a
physical process

Solution

e Use noisy data to update
the model

Problem

e Small errors grow quickly
and become large errors
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Solution of the data assimilation problem

Goal Methods
e Compute the random  Kalman filter and its variants for
variable linear Gaussian models
x|z ~ p(z|z) e Variational data assimilation
e Conditional mean computes the most likely state
given the data
E(x|z) = / rp(z|z)dr e Particle filters (Monte Carlo
. o methods) construct empirical
is the minimum mean square estimate of the conditional pdf

error estimate

Question: What are the
conditions under which DA can
be successful?




Assumptions

To answer the question we
analyze the conditional pdf
(which depends on errors in
model and data)

Question: What are the
conditions under which DA can
be successful?

Assumptions:

e Linear Gaussian synchronous model

"t = Az 4w, w" ~ N(0,Q), iid

2= He" M 4™t 0™ ~ N(0, R), iid, independent of w"
e Initial state Gaussian

0
z” ~ N (o, Xo) Kalman formalism gives us

the conditional pdf




Kalman filter

Model and data:
"= Az +w™, w" ~ N(0,Q), iid

= Ha" T "t o™ ~ A0, R), iid, independent of w"

Kalman update:
X, =AP, A" +Q
K, =X,H'(HX,H' + R)™!
Poy1 =(I — K, H) X,
In “steady state”:
Py =P,=P=(-KH)X
X =AXAT —AXHT(HXH' + R)'HXAT +Q
(Discrete Algebraic Ricatti Equation)




Conditional pdf in steady state

In “steady state”:
Ln ™~ N(,Lén, P)

A; are eigenvalues of P

Distance from mean (most likely state):

r= \/(xn — ) (0, — i)
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Conditional pdf in steady state

A=0(1) — E(r) = O(m'?), war(r)=0(1)
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Samples of posterior pdf
collect on a thin shell 8,

This is problematic N

e There is not enough !
information in model and data
to make reliable conclusions A
about the state o

This is unphysical K

» Similar experiments are D
expected to have similar TP

e %

~ .-----',‘

S mmrm -

outcomes

-




Conditional pdf in steady state

“Large” posterior covariance:
e Sample collect on a thin shell

e There is not enough information
in model and data to make
reliable conclusions about the
state
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“Small” posterior covariance:

e Samples collect on a low
dimensional ball

e There is enough information in
model and data to make reliable
conclusions about the state
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The effective dimension
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Effective dimension:

e Definition: Frobenius norm of steady

state covariance matrix P

e Interpretation: effective dimension
must be well bounded or else data

VS

assimilation is hopeless (regardless of

the algorithm)

1Plle = /3 22




Boundedness of the effective dimension: example

Put:
A=H=1 Q=ql, R=rl

Steady state covariance:

2 4 —
:\/q +2q7“ 95 k

Effective dimension:

P

S F4gqr—q
2

1P|l = i Y9

In general: small Frobenius norm of Q and R
lead to small effective dimension




Why is this realistic?

Small effective dimension

e Khinshin’s theorem: bounded
energy implies small Frobenius
norms of Q and R

e Smoothness of errors implies
small Frobenius norm of Q
and R

e Errors with spherical
symmetries (error in one
component leads to errors in
all other components) lead to
small Frobenius norms of Q
and R

Energy
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Why is this realistic?

Energy

Modes

In general: correlations lead to small Frobenius norm of
Q and R and therefore to a small effective dimension

Probability mass is concentrated on a lower
dimensional manifold due to correlations in
the errors

Error models in literature typically show strong correlations




Effective dimension: summary
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o Effective dimension must be bounded or else

data assimilation is hopeless (independent of
the DA algorithm)

e Bounded effective dimension induces balance
condition between errors in model and data

r

e In practice, the effective dimension is often
small (correlations in errors)
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Agenda

1. Introduction

2.  What can be expected in general?

_ _

3. How good are particle filters?

7~ NC O NC N 77

4. How good is 4D-Var or particle smoothing? J




Review of importance sampling

Direct Monte Carlo sampling

Suppose we are interested in x ~ p(x)
and want to compute the expected value
of x. The Monte Carlo approximation is:

Problem: it is not easy to
obtain samples directly

N
E(z) = /a:p(a:)d:l: = %sz , x; ~ p(x)

Importance sampling
Replace direct samples with

Suppose we can evaluate p(x) and want weighted samples

to compute the expected value of x.

B(z) = / op(z)dz = / x%w(x)dm ~ i\;azw

p

(z:) =1 xz; ~7(x
m(x;)’ sz_l ’ ()

w; X




Review of particle filters

Particle filters

Apply importance sampling recursively

to the conditional pdf p(a0mH | ity p(xozn\zl’”)p(xnﬂ ‘gjn)p(znji—l 27
p(zn—|—1|zl.n)

This requires importance function that

. n—+1
factorizes (207 20y = (g H 7 (2 |01 1R
Recursion for weights
DX X (2 X
+1 J J J
Wit o W

Tl (X;-H_l ‘X?:n7 Zo:k)

If variance of unnormalized weights is large,
then the particle filter collapses (see papers
by Snyder, Bickel, Anderson, ...)




Review of the collapse of particle filters

The SIR particle filter

: 1
Importance function: Tpt1 = p(a” ™ |2")

Weights: ijrz+1 o p(Z™ X}z+1).

Condition for collapse
in high dimensions is > =H(Q+ APATYHTR™1
large norm of :

Collapse can also happen in
low dimensions:

“as shown by Snyder, Bickel, Anderson et al.




Review of the collapse of particle filters

The optimal particle filter

: 1 1
Importance function: T+l = p($n+ ", 2" )

Weights: T/V;-@Jr]L x p(Z”H\X}")
Condition for collapse

in high dimensions is ¥ =HAPA"H'" (HQH" + R) -
large norm of :

Collapse is avoided
in low dimensions:

“as shown by Snyder




How good can we get with particle filters?

Example revisited:
Optimal filter: A=H =1, Q=ql, R=rl

V@ +4qr — q
> = /M
Il = v

- Data assimilation possible
- Data assimilation not possible

- Optimal particle filter works




How good can we get with particle filters?

Example revisited:
Optimal filter vs. SIR filter

- Data assimilation possible . .
- Optimal particle filter works - SIR filter works
»
’ 4

- Data assimilation not possible
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How good can we get with particle filters?

The general linear case:

e Using matrix bounds we find the balance conditions:

A BB PlF < [[H|[FQIlF + |IR[F  Optimal filter

1 o
SIHIE (1QIF + [[AlEIPI) < [IR]lF SIR filter

e Balance condition is easy in simple cases, but delicate in
general

The nonlinear/non-Gaussian case:
e Correlations can be expected for realistic noise models

e Balance conditions must be worked out in each particular case

e Optimal filter hard/impossible to implement, while SIR
remains easy to use
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Agenda

1. Introduction

2.  What can be expected in general?

—_ S

3.  How good are particle filters?
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4. How good is 4D-Var or particle smoothing? )




Strong constraint 4D-Var

Perfect model assumption:

= Az"
2= Hpm ™t ™ ~ N0, R)
Conditional pdf:
- 1 T
p(”]z"™) ocexp (—5 (2% — o))" Tt (2 — No))
1 T 1/
X exp 5 Jz::l — HAzZ")" R (z’ —

Covariance: n
=%+ ) (A)'H'RT'HA
j=1
Strong constraint 4D-Var can only be

successful if the Frobenius norm of the
covariance is small

")
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How good can we get with 4D-Var?

Example revisited:

. . oo+ T
Norm of covariance matrix: ||X||Fr = vVm (; .
0
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Weak constraint 4D-VAr

Model and data:
"= Az +w™, w" ~ N(0,Q), iid

= Ha" T "t o™ ~ A0, R), iid, independent of w"
Conditional pdf:

p(xO:n|Z1:n) X exp (_% (CIZO . MO)Tzal (ZIJO . UO))
X exp —%Z(zj—ij)TR_l (zj—Ha;j)
Covariance: =1
( I +AT —ATQ ! 0 \
Q_l —|—ATQ_1A—|— HTR—lH —ATQ_l

> = 0

\ (:) —Q7'A Q@ _fchg— 1H)
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How good can we get with 4D-Var?

Strong constraint 4D-Var

e Boundedness of covariance matrix s
induces balance condition between
errors in prior and in the data 1

N

Weak constraint 4D-Var L

e Boundedness of covariance matrix
induces balance condition between ¢4
errors in prior, in the model and in
the data

Particle smoothing 00

e Same balance condition as in 4D-
Var, but choice of importance
function is critical
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Conclusions

e Numerical data assimilation hopeless unless effective dimension
is small (probability mass is concentrated on a low dimensional
manifold)

e Boundedness of effective dimension induces balance condition
between errors in model and data

e In practice, effective dimension often small because correlations
In errors

e Particle filters can work in high dimensions, provided their
implementation is sound

e Variational data assimilation requires well boundedness of
covariance matrix, i.e. balance condition between errors in prior,
model and data

Analysis for linear Gaussian case only.
Nonlinear/non-Gaussian problems must be
analyzed in each particular case.
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Fin

Thank you!
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How good can we get with particle filters?

Example revisited:
Optimal filter vs. SIR filter




