

Parameters of marine ecological models

- Parameters control the growth/death rates of species and their interactions
- Little to no a priori knowledge
- Many are impossible to determine from in situ measurements alone
- Models combine different species into functional groups:
 - Parameters determine dominant species and their behavior
 - Fewer groups = stronger parameter dependence on specific ecosystem
- Assimilate data to find appropriate estimates

State and parameter estimation

Stochastic model with uncertain parameters

$$\mathbf{X}_{m} = \mathbf{X}_{m-1} + \tau f(\mathbf{X}_{m-1}, \boldsymbol{\theta}, t_{m-1}) + \sqrt{\tau} G(\mathbf{X}_{m-1}, \boldsymbol{\theta}, t_{m-1}) \mathbf{E}_{m}$$

Noisy observations of state

$$\mathbf{Y}_n = h(\mathbf{X}_{\mathfrak{m}(n)}, \boldsymbol{\theta}, t_n) + \sqrt{R} \mathbf{D}_n$$

Prediction + uncertainty (target pdf) $p(\mathbf{x}_{0:\mathfrak{m}(k)}, \theta \,|\, \mathbf{y}_{1:k})$

State and parameter estimation

Stochastic model with uncertain parameters

$$\mathbf{X}_m = \mathbf{X}_{m-1} + \tau f(\mathbf{X}_{m-1}, \boldsymbol{\theta}, t_{m-1}) + \sqrt{\tau} G(\mathbf{X}_{m-1}, \boldsymbol{\theta}, t_{m-1}) \mathbf{E}_m$$

Noisy observations of state

$$\mathbf{Y}_n = h(\mathbf{X}_{\mathfrak{m}(n)}, \boldsymbol{\theta}, t_n) + \sqrt{R} \mathbf{D}_n$$

Prediction + uncertainty (target pdf) $p(\mathbf{x}_{0:\mathfrak{m}(k)}, \boldsymbol{\theta} \,|\, \mathbf{y}_{1:k})$

Subscript notation

$$\mathbf{x}_{0:\mathfrak{m}(k)} = \{\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_{\mathfrak{m}(k)}\}$$
$$\mathbf{y}_{1:k} = \{\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_k\}$$

Can have multiple time steps between observations, e.g.,

$$\mathfrak{m}(k) = 2k$$

The target pdf/density

- Posterior pdf (probability density function)
- Encodes all prior and posterior information about state and parameters
- Variational assimilation finds the target mode
- Monte Carlo methods sample the target

Schematic of target pdf

Black dot = mode

Red dot = sample

Yellow area = probable region

Blue area = improbable region

Implicit sampling

(Chorin, Atkins, Morzfeld, and Tu and BW, RNM, and YHS)

- Monte Carlo method for importance sampling
- No forecast distribution, work directly with target
- Apply particle by particle
- Use numerical optimization to find high probability regions
- Focus sampling within these regions

Schematic of target pdf

Black dot = mode

Red dot = sample

Yellow area = probable region

Blue area = improbable region

Implicit sampling

(Chorin, Atkins, Morzfeld, and Tu and BW, RNM, and YHS)

- Monte Carlo method for importance sampling
- No forecast distribution, work directly with target
- Apply particle by particle
- Use numerical optimization to find high probability regions
- Focus sampling within these regions

Schematic of target pdf

Black dot = mode

Red dot = sample

Yellow area = probable region

Blue area = improbable region

What makes this a good idea

- Nonparametric: strong theoretical basis for nonlinear/non-Gaussian problems
- Generally applicable:
 - smoother and filter forms
 - state and/or parameter estimator
 - applicable to deterministic and stochastic models
- Optimized for observations: explores important regions in sample space; does not "blindly" explore space and eliminate improbable samples (like many particle filters and MCMC methods)
- Many implementations: allows problem-specific tuning (hint ...)

Notation and definitions

- By construction, target pdf is exponential of a nonlinear sum of squares
- Work with this sum, the **target cost** $J(\xi; \eta)$, defined such that

$$p(\mathbf{x}_{0:\mathfrak{m}(k)}, \boldsymbol{\theta} \,|\, \mathbf{y}_{1:k}) = C(\boldsymbol{\eta}) \exp[-J(\zeta; \boldsymbol{\eta})]$$

- New variables ζ and η divide state and parameter space: ζ is the **estimated variables** and η is the **given/sampled variables**
- Exact definitions of ζ , η , and C depend on problem; C is usually constant
- In a particle filter, e.g., m(k) = k, $\zeta = \mathbf{x}_k$, $\eta = (\mathbf{x}_{0:k-1}, \theta)$, and C = 1 after resampling

An implicit sampling algorithm

- 1. For a given η , find target mode ζ^* ; same as min of target cost, like in 4D-Var
- 2. Sample a Gaussian with mean ξ^* and covariance H^{-1} ; H is the Hessian of target cost at ξ^*
- 3. Weigh the sample ξ to account for difference between **proposal cost** K of the Gaussian and true **target cost** J:

$$w = |H|^{-1/2} \exp[-J(\zeta^*; \eta)] \exp[K(\zeta) - J(\zeta; \eta)]$$

- Repeat steps 1-3 N_p times for all choices of η
- Weighted ensemble represents true target pdf

Predator-prey

The Lotka-Volterra equations

• Estimate **2** state variables P (prey) and Q (predator) and **7** unknown parameters $\theta = (\theta_1, ..., \theta_7)$ in model equations

$$\frac{dP}{dt} = (\theta_1 - \theta_2 P)P - \theta_3 \frac{PQ}{1 + \theta_7 P} + \text{noise}$$

$$\frac{dQ}{dt} = (-\theta_4 - \theta_5 Q)Q + \theta_6 \frac{PQ}{1 + \theta_7 P}$$

color legend: growth, death, and consumption

- State and parameters are positive numbers
- Apply (anamorphosis) transform to variables that are more nearly Gaussian, e.g., $\zeta = (\log P, \log Q, \log \theta)$

Twin experiments (Weir et al. 2013)

- Observations of *P* and *Q* every 50 time steps a total of 50 times; initial condition fixed at (1,1)
- Compare two different assimilation techniques:

1. Smoother

- All obs. assimilated at once
- Target pdf almost Gaussian

2. Filter

- Each obs. assimilated in sequence (filter)
- Target pdf non-Gaussian
- Kernel density/Gaussian mixture used to continue parameter estimate sequentially

Smoother state estimates

- Comparison of state estimate in two cases: (a,b) parameters fixed at incorrect values, (c) estimated parameters
- Substantial noise in model and measurements
- Estimated with 240 particles
- Shaded region = 2 standard deviations

Smoother weights

- Histogram computed with 240,000 particles for high resolution
- Delta function at 1 = perfect sampling
- Noticeable drop-off in distribution before zero

Filter/sequential state estimates

- 2400 particles for
 (a) implicit filter and
 (b) SIR filter
- 240,000 particles for (c) EnKF
- EnKF covariance blows up; works only if observations are denser in time

Simplified model concept

^{*} http://angelicquewhite.com

Nitrogen cycle model (Spitz et al. 2001)

- Depth-averaged, nitrogenbased **ODE** for mixed layer concentrations
- 49 parameters
- Entering arrow = entrainment due to mixed layer deepening
- Exiting arrows = sinking
- (DOM, dissolved organic matter)

Can we use parameter estimates to divide the ocean into ecosystems?

Longhurst (1995) ecological provinces

Satellite chlorophyll observations

- Far away from a few time-series studies, satellite chlorophyll is only available data
- Best case scenario: data is available every day
- Gaussian importance sampling fails
- To see why, consider target cost (deterministic model):

$$J(\boldsymbol{\theta}) = -\log[p(\boldsymbol{\theta} | \mathbf{y}_{1:k})]$$

Cost function transect

- Hessian over-predicts uncertainty of estimate
- Higher-order modes are important
- Inefficient: spends a lot of time sampling the tail
- Problem gets worse as background covariance of parameters increases

Cost function transect

- Hessian over-predicts uncertainty of estimate
- Higher-order modes are important
- Inefficient: spends a lot of time sampling the tail
- Problem gets worse as background covariance of parameters increases

Adaptive sampling

- Each sample gives us information about the target cost, use to build a better global quadratic approximation
- Find a Hessian such that $\mathbb{E}_K[K(\theta;H)-J(\theta)]=0$
- In certain cases, equivalent to minimizing the variance of the weights
- Solution is underdetermined in more than 1 dimension, apply rank-1 update similar to BFGS
- No need to discard any samples or restart estimation?

 H_0 is the Hessian of the cost function at its minimum. Suppose $\theta^* = 0$. Define the "eigenvalue"

$$\nu_n = \theta^t H_n \theta / \theta^t \theta,$$
$$= \exp(\mu_n)$$

since H_n is positive definite. The RM iteration is

$$\mu_{n+1} = \mu_n + \epsilon_n [K(\theta; H_n) - J(\theta)],$$

$$H_{n+1} = H_n + (\nu_{n+1} - \nu_n)\theta \theta^t / \theta^t \theta,$$

 H_0 is the Hessian of the cost function at its minimum. Suppose $\theta^* = 0$. Define the "eigenvalue"

$$\nu_n = \theta^t H_n \theta / \theta^t \theta,$$
$$= \exp(\mu_n)$$

since H_n is positive definite. The RM iteration is

$$\mu_{n+1} = \mu_n + \epsilon_n [K(\theta; H_n) - J(\theta)],$$

$$H_{n+1} = H_n + (\nu_{n+1} - \nu_n)\theta \theta^t / \theta^t \theta,$$

 H_0 is the Hessian of the cost function at its minimum. Suppose $\theta^* = 0$. Define the "eigenvalue"

$$\nu_n = \theta^t H_n \theta / \theta^t \theta,$$
$$= \exp(\mu_n)$$

since H_n is positive definite. The RM iteration is

$$\mu_{n+1} = \mu_n + \epsilon_n [K(\theta; H_n) - J(\theta)],$$

$$H_{n+1} = H_n + (\nu_{n+1} - \nu_n) \theta \theta^t / \theta^t \theta,$$

 H_0 is the Hessian of the cost function at its minimum. Suppose $\theta^* = 0$. Define the "eigenvalue"

$$\nu_n = \theta^t H_n \theta / \theta^t \theta,$$
$$= \exp(\mu_n)$$

since H_n is positive definite. The RM iteration is

$$\mu_{n+1} = \mu_n + \epsilon_n [K(\theta; H_n) - J(\theta)],$$

$$H_{n+1} = H_n + (\nu_{n+1} - \nu_n)\theta \theta^t / \theta^t \theta,$$

 H_0 is the Hessian of the cost function at its minimum. Suppose $\theta^* = 0$. Define the "eigenvalue"

$$\nu_n = \theta^t H_n \theta / \theta^t \theta,$$
$$= \exp(\mu_n)$$

since H_n is positive definite. The RM iteration is

$$\mu_{n+1} = \mu_n + \epsilon_n [K(\theta; H_n) - J(\theta)],$$

$$H_{n+1} = H_n + (\nu_{n+1} - \nu_n)\theta \theta^t / \theta^t \theta,$$

Conclusions

- Implicit sampling is theoretically applicable to state and parameter estimation in a very general setting
- In strongly non-Gaussian problems, can use a Robbins-Monro iteration to refine the Hessian and generate samples with acceptable weights
- Refinement and sampling significantly improves the confidence limits from those given by local Gaussian assumption
- If chlorophyll is the only information about parameters, can find more accurate estimates than quadratic/Gaussian interpretation suggests
- This lets us define ecological regions with greater precision

References

- [1] Atkins, E., Morzfeld, M., & Chorin, A. J. (2012). Implicit particle methods and their connection with variational data assimilation. *Mon. Weather Rev.*, accepted.
- [2] Chorin, A. J., & Tu, X. (2009). Implicit sampling for particle filters. *Proc. Natl. Acad. Sci.*, 106, 17,249–17,254.
- [3] Chorin, A. J., Morzfeld, M., & Tu, X. (2010). Implicit particle filters for data assimilation. *Comm. App. Math. and Comput. Sci.*, 5, 221–240.
- [4] Morzfeld, M., & Chorin, A. J. (2012). Implicit particle filtering for models with partial noise, and an application to geomagnetic data assimilation. *Nonlin. Processes Geophys.*, 19, 365–382.
- [5] Morzfeld, M., Tu, X., Atkins, E., & Chorin, A. J. (2012). A random map implementation of implicit filters. *J. Comput. Phys.*, 231, 2049–2066.
- [6] Spitz, Y. H., Moisan, J. R., & Abbott, M. R. (2001). Configuring an ecosystem model using data from the Bermuda Atlantic Time Series (BATS). *Deep-Sea Res. II*, 48, 1733–1768.
- [7] Weir, B., Miller, R. N., & Spitz, Y. H. (2013). Implicit estimation of ecological model parameters. *Bull. Math. Biol.*, doi: 10.1007/s11538-012-9801-6

