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Parameters of marine ecological models

• Parameters control the growth/death rates of species and their interactions

• Little to no a priori knowledge

• Many are impossible to determine from in situ measurements alone

• Models combine different species into functional groups:

• Parameters determine dominant species and their behavior

• Fewer groups = stronger parameter dependence on specific ecosystem

• Assimilate data to find appropriate estimates



State and parameter estimation

Uncertainty quantification paradigm
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Uncertainty quantification

• Make predictions with error estimates.

• Use random variables in modeling.

• Obtain information about random 
variables from incomplete and noisy data.

• Random variables are typically non-
Gaussian and often high-dimensional.

Data
True state

Prediction
Uncertainty

Key requirement*: draw samples from non-Gaussian random variables

*Recognized in applied math and geophysics: sessions about efficient sampling at  
  SIAM UQ Meeting 2012, and American Geophysical Union Fall Meeting 2012.
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Stochastic model with uncertain parameters
Xm = Xm�1+t f (Xm�1,q , tm�1)+
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Noisy observations of state
Yn = h(Xm(n),q , tn)+
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p(x0:m(k),q |y1:k)
Prediction + uncertainty (target pdf)



State and parameter estimation

Stochastic model with uncertain parameters
Xm = Xm�1+t f (Xm�1,q , tm�1)+

p
tG(Xm�1,q , tm�1)Em

Yn = h(Xm(n),q , tn)+
p

RDn

Noisy observations of state

Prediction + uncertainty (target pdf)
p(x0:m(k),q |y1:k)

Subscript notation

x0:m(k) = {x0,x1, . . . ,xm(k)}
y1:k = {y1,y2, . . . ,yk}

Can have multiple time steps between
observations, e.g.,

m(k) = 2k



The target pdf/density

• Posterior pdf (probability density 
function)

• Encodes all prior and posterior 
information about state and 
parameters

• Variational assimilation finds the 
target mode

• Monte Carlo methods sample 
the target

Implicit sampling
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Key ideas

• Identify regions of high probability 
through numerical optimization.

• Focus the sampling on these regions.

Black dot = mode
Red dot = sample
Yellow area = probable region
Blue area = improbable region

Schematic of target pdf



Implicit sampling
(Chorin, Atkins, Morzfeld, and Tu and BW, RNM, and YHS)

• Monte Carlo method for 
importance sampling

• No forecast distribution, work 
directly with target

• Apply particle by particle

• Use numerical optimization to 
find high probability regions

• Focus sampling within these 
regions

Implicit sampling

7

Key ideas

• Identify regions of high probability 
through numerical optimization.

• Focus the sampling on these regions.

Black dot = mode
Red dot = sample
Yellow area = probable region
Blue area = improbable region

Schematic of target pdf



Implicit sampling
(Chorin, Atkins, Morzfeld, and Tu and BW, RNM, and YHS)

• Monte Carlo method for 
importance sampling

• No forecast distribution, work 
directly with target

• Apply particle by particle

• Use numerical optimization to 
find high probability regions

• Focus sampling within these 
regions

Implicit sampling

7

Key ideas

• Identify regions of high probability 
through numerical optimization.

• Focus the sampling on these regions.

Black dot = mode
Red dot = sample
Yellow area = probable region
Blue area = improbable region

Schematic of target pdf



What makes this a good idea

• Nonparametric: strong theoretical basis for nonlinear/non-Gaussian problems

• Generally applicable:
• smoother and filter forms
• state and/or parameter estimator
• applicable to deterministic and stochastic models

• Optimized for observations: explores important regions in sample space; 
does not “blindly” explore space and eliminate improbable samples
(like many particle filters and MCMC methods)

• Many implementations: allows problem-specific tuning (hint ...)



Notation and definitions

• By construction, target pdf is exponential of a nonlinear sum of squares

• Work with this sum, the target cost J(ζ; η), defined such that

• New variables ζ and η divide state and parameter space:
ζ is the estimated variables and η is the given/sampled variables

• Exact definitions of ζ, η, and C depend on problem; C is usually constant

• In a particle filter, e.g., m(k) = k, ζ = xk, η = (x0:k-1, θ), and C = 1 after resampling

p(x
0:m(k),q |y

1:k) =C(h)exp[�J(z ;h)]



An implicit sampling algorithm

1. For a given η, find target mode ζ*; same as min of target cost, like in 4D-Var

2. Sample a Gaussian with mean ζ* and covariance H-1;
H is the Hessian of target cost at ζ*

3. Weigh the sample ζ to account for difference between proposal cost K of the 
Gaussian and true target cost J:

• Repeat steps 1-3 Np times for all choices of η

• Weighted ensemble represents true target pdf

w = |H|�1/2

exp[�J(z ⇤
;h)]exp[K(z )� J(z ;h)]



Twin experiments and comparisons

1. Predator-prey

2. Biogeochemistry



Predator-prey

* http://gardenofeaden.blogspot.com

* http://www.scotland.gov.uk/Publications/2007/11/09155020/17

http://gardenofeaden.blogspot.com/
http://gardenofeaden.blogspot.com/
http://www.scotland.gov.uk/Publications/2007/11/09155020/17
http://www.scotland.gov.uk/Publications/2007/11/09155020/17


The Lotka-Volterra equations

• Estimate 2 state variables P (prey) and Q (predator) and 7 unknown 
parameters 𝜃 = (𝜃1, ..., 𝜃7) in model equations

color legend: growth, death, and consumption

• State and parameters are positive numbers

• Apply (anamorphosis) transform to variables that are more nearly Gaussian,
e.g., ζ = (log P, log Q, log 𝜃)

dP
dt

= (q1 �q2P)P�q3
PQ

1+q7P
dQ
dt

= (�q4 �q5Q)Q+q6
PQ

1+q7P

+ noise



Twin experiments (Weir et al. 2013)

• Observations of P and Q every 50 time steps a total of 50 times; initial 
condition fixed at (1,1)

• Compare two different assimilation techniques:

1. Smoother
• All obs. assimilated at once
• Target pdf almost Gaussian

2. Filter
• Each obs. assimilated in sequence (filter)
• Target pdf non-Gaussian
• Kernel density/Gaussian mixture used to continue parameter estimate 

sequentially



Smoother state estimates

• Comparison of state 
estimate in two cases: 
(a,b) parameters fixed at 
incorrect values,
(c) estimated parameters

• Substantial noise in 
model and 
measurements

• Estimated with 240 
particles

• Shaded region = 2 
standard deviations
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Smoother weights

• Histogram computed 
with 240,000 particles 
for high resolution

• Delta function at 1 = 
perfect sampling

• Noticeable drop-off in 
distribution before zero
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Filter/sequential state estimates

• 2400 particles for
(a) implicit filter and
(b) SIR filter

• 240,000 particles for
(c) EnKF

• EnKF covariance blows 
up; works only if 
observations are 
denser in time
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(b) SIR, estimated parameters
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Twin experiments and comparisons

1. Predator-prey

2. Biogeochemistry



Simplified model concept

Nutrients Phytoplankton Zooplankton

(remineralization)

E. Huxleyi* Tunicate/salp*

* http://angelicquewhite.com

http://angelicquewhite.com
http://angelicquewhite.com


Nitrogen cycle model (Spitz et al. 2001)

• Depth-averaged, nitrogen-
based ODE for mixed layer 
concentrations

• 49 parameters

• Entering arrow = entrainment 
due to mixed layer 
deepening

• Exiting arrows = sinking

• (DOM, dissolved organic 
matter)

DOM Phyto/Chl-a Nitrate

Ammonium

Bacteria

Mesozoo

DetritusNano/micro
zoo



Can we use parameter 
estimates to divide the ocean 

into ecosystems?
Longhurst (1995) ecological 
provinces
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Satellite chlorophyll 
observations

• Far away from a few time-series 
studies, satellite chlorophyll is 
only available data

• Best case scenario: data is 
available every day

• Gaussian importance sampling 
fails 

• To see why, consider target cost 
(deterministic model):

MODIS
4KM, 8D
06 JUN 11

J(q) =� log [p(q |y
1:k)]
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Cost function transect

• Hessian over-predicts 
uncertainty of estimate

• Higher-order modes are 
important

• Inefficient: spends a lot of time 
sampling the tail

• Problem gets worse as 
background covariance of 
parameters increases
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Adaptive sampling

• Each sample gives us information about the target cost, use to build a better 
global quadratic approximation

• Find a Hessian such that

• In certain cases, equivalent to minimizing the variance of the weights

• Solution is underdetermined in more than 1 dimension, apply rank-1 update 
similar to BFGS

• No need to discard any samples or restart estimation?

EK [K(✓;H)� J(✓)] = 0



The Robbins-Monro (RM) iteration
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H0 is the Hessian of the cost func-
tion at its minimum. Suppose ✓⇤ =
0. Define the “eigenvalue”

⌫n = ✓tHn✓/✓
t✓,

= exp(µn)

since Hn is positive definite. The
RM iteration is

µn+1 = µn + ✏n[K(✓;Hn)� J(✓)],

Hn+1 = Hn + (⌫n+1 � ⌫n)✓✓
t/✓t✓,

where ✏n = Cn�↵.
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The Robbins-Monro (RM) iteration
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Conclusions

• Implicit sampling is theoretically applicable to state and parameter estimation 
in a very general setting

• In strongly non-Gaussian problems, can use a Robbins-Monro iteration to 
refine the Hessian and generate samples with acceptable weights

• Refinement and sampling significantly improves the confidence limits from 
those given by local Gaussian assumption

• If chlorophyll is the only information about parameters, can find more accurate 
estimates than quadratic/Gaussian interpretation suggests

• This lets us define ecological regions with greater precision



Thank you!
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