Hybrid Data Assimilation without Ensemble Filtering

Ricardo Todling and Amal El Akkraoui

Global Modeling and Assimilation Office NASA

Probabilistic Approaches to Data Assimilation for Earth Systems BIRS, Banff, Canada 18-21 February 2013

Contributions from: D. Kleist, D. Parrish, R. Treadon, and J. Whitaker

Similar to presentations given recently at Meteo-France and NCEP

<ロト <同ト < 国ト < ヨト

Outline

Problem Statement & Experimental Setting

- Illustration from Single-Cycle
- 3 Ensemble Spread Examination

Cycled-Analysis Evaluation

Forecast Verification vs Analysis

Image: A image: A

-∢ ≣ →

Illustration from Single-Cycle Ensemble Spread Examination Cycled-Analysis Evaluation Forecast Verification vs Observations Forecast Verification vs Analysis Summary Variational Formulation

Filter-Free Ensemble GEOS Data Assimilation System GEOS IAU-based 3dVar GEOS IAU-based Hybrid 3dVar Experimental Setting

Variational Formulations

FGAT 3dVar-ensemble Hybrid:

$$J(\delta \mathbf{x}) = \frac{1}{2} \, \delta \mathbf{x}^{\mathsf{T}} \mathbf{B}_{h}^{-1} \delta \mathbf{x} + \frac{1}{2} \sum_{k=1}^{\mathsf{K}} [\mathbf{H}_{k} \delta \mathbf{x} - \mathbf{d}_{k}]^{\mathsf{T}} \mathbf{R}_{k}^{-1} [\mathbf{H}_{k} \delta \mathbf{x} - \mathbf{d}_{k}] + J_{x}$$

where

- $\mathbf{B}_h = \beta \mathbf{B} + (1 \beta) \mathbf{B}_e \circ \mathbf{C}$ is a *hybrid* of static and ensemble-based error covariances, **B** and \mathbf{B}_e respectively;
- C is a localization error covariance of compact support;
- the incremental solution becomes $\delta \mathbf{x} = \delta \mathbf{x}_0 + \sum_m^M \delta \mathbf{x}_m^e \circ \alpha_m$, for an ensemble with a total of *M* members, $\delta \mathbf{x}_m^e$;
- NCEP and GMAO get δx_m^e by using the EnKF analyses plus inflation.
- NCEP and GMAO recenter EnKF analyses about hybrid analysis.

<ロト <同ト < 国ト < ヨト

Illustration from Single-Cycle Ensemble Spread Examination Cycled-Analysis Evaluation Forecast Verification vs Observations Forecast Verification vs Analysis Summary Variational Formulation Filter-Free Ensemble GEOS Data Assimilation System GEOS IAU-based 3dVar GEOS IAU-based Hybrid 3dVar Experimental Setting

Problem Statement

- Hybrid DA includes: re-centering plus inflation
- Evaluations in GEOS DAS suggest:
 - Hybrid approach provides noticeable improvements only when using additive inflation, i.e., EnKF alone doesn't do it
 - Forecasts from EnKF analyses plus additive inflation result in mild spread within the background time window
 - It seems that much of the initial (analysis) spread can be simulated with additive inflation alone
 - Appreciable background spread is obtained in the latter case

Question: how does hybrid-DA perform when the ensemble filter is dropped and an ensemble of analyses is created from simply additively inflating the central analysis?

(日) (同) (目) (日)

Illustration from Single-Cycle Ensemble Spread Examination Cycled-Analysis Evaluation Forecast Verification vs Observations Forecast Verification vs Analysis Summary Variational Formulation Filter-Free Ensemble GEOS Data Assimilation System GEOS IAU-based 3dVar GEOS IAU-based Hybrid 3dVar Experimental Setting

Problem Statement

- Hybrid DA includes: re-centering plus inflation
- Evaluations in GEOS DAS suggest:
 - Hybrid approach provides noticeable improvements only when using additive inflation, i.e., EnKF alone doesn't do it
 - Forecasts from EnKF analyses plus additive inflation result in mild spread within the background time window
 - It seems that much of the initial (analysis) spread can be simulated with additive inflation alone
 - Appreciable background spread is obtained in the latter case

Question: how does hybrid-DA perform when the ensemble filter is dropped and an ensemble of analyses is created from simply additively inflating the central analysis?

< ロ > < 同 > < 回 > < 回 >

Illustration from Single-Cycle Ensemble Spread Examination Cycled-Analysis Evaluation Forecast Verification vs Observations Forecast Verification vs Analysis Summary Variational Formulation Filter-Free Ensemble GEOS Data Assimilation System GEOS IAU-based 3dVar GEOS IAU-based Hybrid 3dVar Experimental Setting

Reasoning behind the filter-free approach

Hybrid implementations of ensemble-based analysis have a member increment be:

 $\delta \mathbf{x}_i^a = \delta \mathbf{x}_i^o + \delta \mathbf{x}^r + \delta \mathbf{e}_i$

where:

- $\delta \mathbf{x}_{i}^{o}$ increment due to observations, e.g., EnKF increment
- $\delta \mathbf{x}^r$ increment due to re-centering

 δe_i - random additive perturbation to boost model error Remarks:

- **1** $\delta \mathbf{e}_i$ does not represent model error and is redundant wrt $\delta \mathbf{x}_i^o$
- 2 in a dual-resolution context $\delta \mathbf{x}^r$ might as large as $\delta \mathbf{x}_i^o$
- Solution when magnitude of δe_i is comparable to that of δx^o_i the role of ensemble analyses is downplayed
- (4) if (2) and (3) hold, re-centering and inflation might be all that's needed

The present work evaluates the case when δx_i^0 is ignored; that is, the ensemble is generated from randomly-inflated, δe_i , central analysis.

< ロ > < 同 > < 回 > < 回 >

Illustration from Single-Cycle Ensemble Spread Examination Cycled-Analysis Evaluation Forecast Verification vs Observations Forecast Verification vs Analysis Summary Variational Formulation Filter-Free Ensemble **GEOS Data Assimilation System** GEOS IAU-based 3dVar GEOS IAU-based Hybrid 3dVar Experimental Setting

Atmospheric GCM

- Fully ESMF-based
- Cubed-sphere hydrostatic dynamical core
- RAS-Bacmeister convective physics
- Chou-Suarez radiation scheme
- Koster et al. catchment land-surface model
- Lock et al. turbulence physics
- Interactive ozone
- Interactive GOCART aerosols
- OSTIA-prescribed SST

Analysis: GSI

- FGAT 3D-Var
- IAU-based assimilation
- TLNMC balance
- JCSDA CRTM
- Double-PCG minimization

Ensemble filter

- ESRL-NCEP EnKF
- Full obs but ozone and precip

(日) (同) (三) (三)

Illustration from Single-Cycle Ensemble Spread Examination Cycled-Analysis Evaluation Forecast Verification vs Observations Forecast Verification vs Analysis Summary Variational Formulation Filter-Free Ensemble GEOS Data Assimilation System GEOS IAU-based 3dVar GEOS IAU-based Hybrid 3dVar Experimental Setting

Schematic of GEOS IAU-based 3dVar

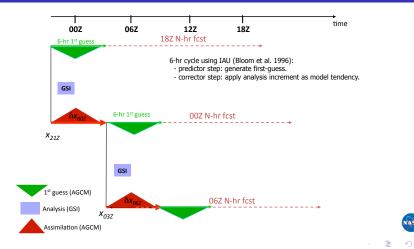
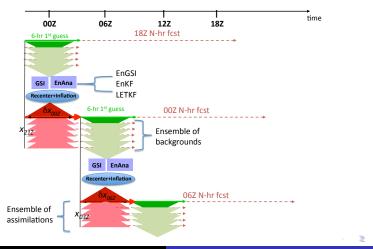



Illustration from Single-Cycle Ensemble Spread Examination Cycled-Analysis Evaluation Forecast Verification vs Observations Forecast Verification vs Analysis Summary Variational Formulation Filter-Free Ensemble GEOS Data Assimilation System GEOS IAU-based 3dVar GEOS IAU-based Hybrid 3dVar Experimental Setting

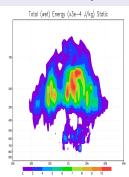
Schematic of IAU-based Hybrid 3dVar

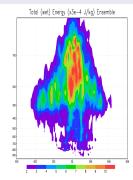
Ricardo Todling and Amal El Akkraoui Hybrid Data Assimilation without Ensemble Filtering

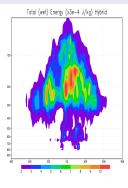
Illustration from Single-Cycle Ensemble Spread Examination Cycled-Analysis Evaluation Forecast Verification vs Observations Forecast Verification vs Analysis Summary Variational Formulation Filter-Free Ensemble GEOS Data Assimilation System GEOS IAU-based 3dVar GEOS IAU-based Hybrid 3dVar Experimental Setting

Hybrid Experimental Setting

- Central DAS: 0.5° outer and inner loops; 72-levels
- 32 Ensemble Forecasts: 1.0°; 72-levels
- GSI Hybrid/Static B: 50% / 50%
- TLNMC applied to both static & hybrid covariances
- Vertical & horizontal localizations applied to ensemble B
- Add/ve perturbations scaled from NMC-like 48-24hr forecasts
- Experiment period (after spin up): April 2012

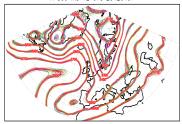

Instantaneous Increment Effect of inflation


Analysis Increment as Total Energy for 00 UTC on 1 Jun 2012

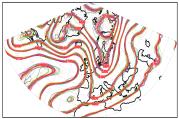

Static-Only

32-mem Ens-Only

Hybrid (50%/50%)



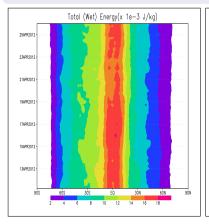
H 500 mb 12 UTC 20120407

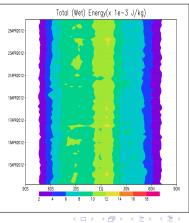

Instantaneous Increment Effect of inflation

H 500 mb 12 UTC 20120407

▲□ ▶ ▲ □ ▶ ▲ □ ▶

H 500 mb 18 UTC 20120407


æ


Time Series of Spread Global Spread

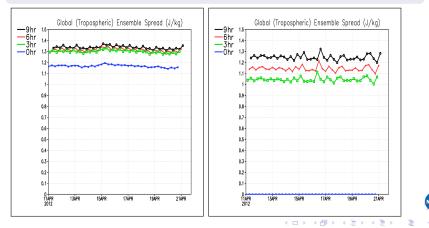
Evolution of 6-hr Background Spread

EnKF-based hybrid

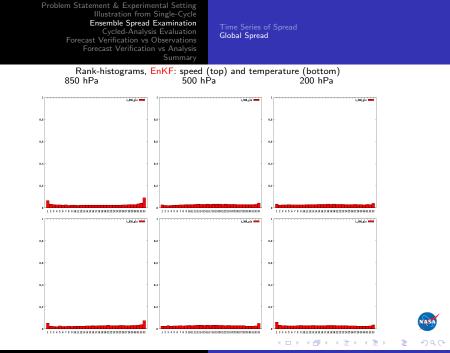
Filter-Free hybrid

NASA

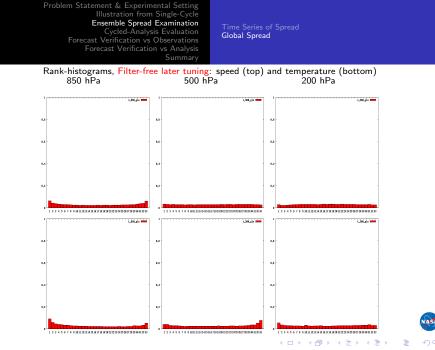
э


Ricardo Todling and Amal El Akkraoui

Time Series of Spread Global Spread

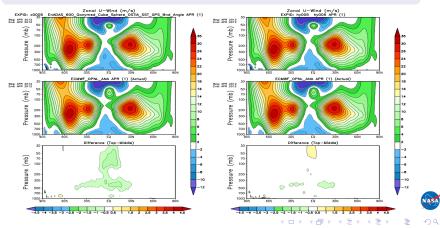

Spread within 9-hr Background Period

EnKF-based hybrid


Filter-Free hybrid

Ricardo Todling and Amal El Akkraoui

Ricardo Todling and Amal El Akkraoui

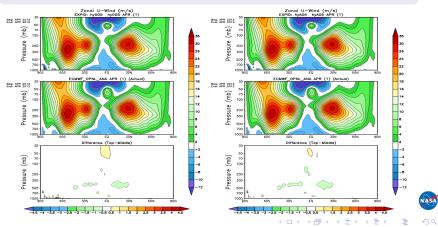

Ricardo Todling and Amal El Akkraoui

Comparison with Other Analyses Observations Contributions

Comparison w/ ECMWF: Zonally-Averaged Monthly Mean U-Wind

Control 3d-Var

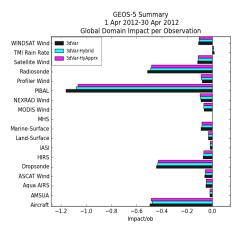
EnKF-based hybrid


Ricardo Todling and Amal El Akkraoui

Comparison with Other Analyses Observations Contributions

Comparison w/ ECMWF: Zonally-Averaged Monthly Mean U-Wind

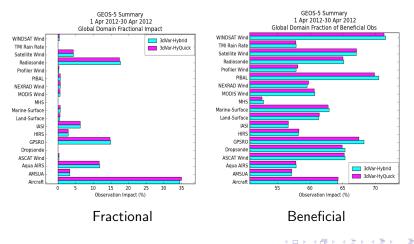
EnKF-based hybrid


Filter-Free hybrid

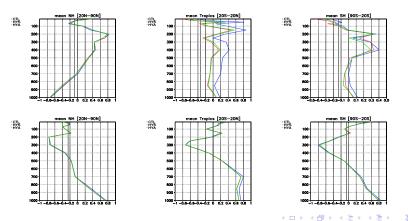
Ricardo Todling and Amal El Akkraoui

Comparison with Other Analyses Observations Contributions

Observation Impact on Analysis: April 2012 (Imp/ob)



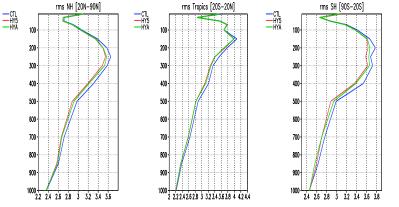
Note: GPS removed on purpose since data identifier (KX) is messed in diagnostic file for control


Comparison with Other Analyses Observations Contributions

Observation Impact on Analysis: April 2012

Observations fit to background Observations fit to forecast

RAOB fits to background: BiasZonal Winds (top); Temperature (bottom)NHTropicsSH

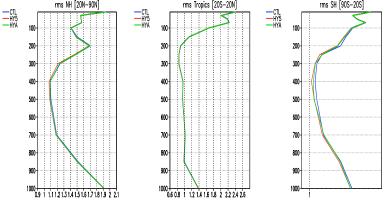


Ricardo Todling and Amal El Akkraoui

Observations fit to background Observations fit to forecast

Zonal wind RAOB fits to background: RMS NH Tropics SH

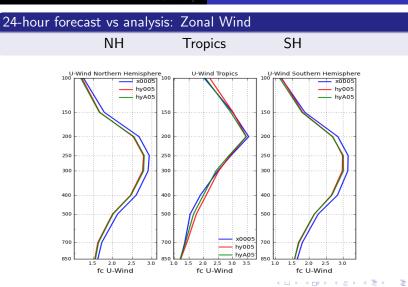
Ricardo Todling and Amal El Akkraoui Hybrid Data Assimilation without Ensemble Filtering


Observations fit to background Observations fit to forecast

Zonal wind RAOB fits to 24-hour forecast: RMS NH Tropics SH rms NH [20N-90N] rms Tropics [20S-20N] rms SH [90S-20S] -CTL HY5 HYA -CTL HY5 HYA -CTL HY5 HYA 100 100 100 200 200 200 300 300 300 400 400 400 500 500· 500· 600 600· 600 · 700 700· 700· 800 800· 800· 900 -900 900 · 1000 1000 1000 22242628 3 32343638 4 4244 21 24 27 3 33 36 39 42 45 ťι 36 39 24 27 12

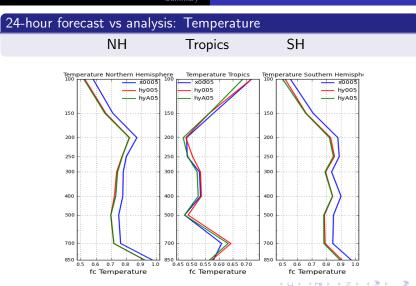
Observations fit to background Observations fit to forecast

Temperature RAOB fits to 24-hour forecast: RMS NH Tropics SH Image: Tropics [205-201] Image: Tropics [205-201]


NASA

Ricardo Todling and Amal El Akkraoui

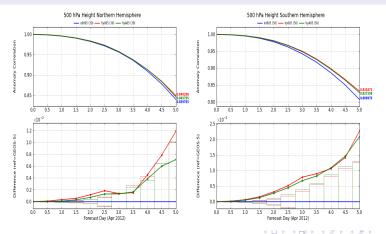
Hybrid Data Assimilation without Ensemble Filtering


< 3

Forecast RMS Error Forecast Anomaly Correlation

Ricardo Todling and Amal El Akkraoui

Forecast RMS Error Forecast Anomaly Correlation


Ricardo Todling and Amal El Akkraoui


Forecast RMS Error Forecast Anomaly Correlation

Anomaly Correlations: H500

Northern Hemisphere

Southern Hemisphere

Summary

Main Points

- Overall 3d-hybrid approach gives positive results in GEOS DAS with noticeable reduction of model biases and improved skill scores
- Filter-free scheme works just as well as EnKF in sustaining ensemble
- Would be nice to study skill of NMC-like perturbations in an EPS

Advantages of Filter-Free Hybrid

- Really inexpensive way of generating ensemble
- Avoids need to maintain two analysis systems
- Avoids contradictions when calculating adjoint-based obs impact

Still, could it be the EnKF is not properly tuned? See Amal's presentation

< ロ > < 同 > < 回 > < 回 >