
Large-Scale Sparse PCA !
through Low-rank Approximations

Alex Dimakis

UT Austin

Based on Joint work with:

Dimitris Papailiopoulos

Overview: PCA and Sparse PCA

•  Principal Component Analysis (PCA) is a classical algorithm
for dimensionality reduction, clustering etc.

•  Sparse PCA is a very useful variant because of interpretability

•  We present a new algorithm for Sparse PCA that is fast for
large data sets.

•  We present novel approximation guarantees.

•  We test on a large twitter data set (millions of tweets).

Tweets to vectors

Each tweet as a long (50K), super-sparse vector (5-10 non-zeros)

with 1s in word indices

3

God,
I

Love
the
IMF

word1
word2

word n

Data Sample Matrix

We collect all tweet vectors in a sample matrix of size

4

m tweets

S = n words

n⇥m

. . .

Correlation matrix

5

A = S ST

n words

=

A n x n
S n x m

vanilla PCA

Largest Eigenvector.

Maximizes `explained variance’ of the data set

Very useful for dimensionality reduction

Easy to compute

PCA finds An `EigenTweet’

Finds a vector that closely matches most tweets

i.e, a vector that maximizes the sum of projections with each tweet

7

⇥

max kxT
Sk2

. . .

The problem with PCA

•  Top Eigenvector will be dense!

8

Eurovision
Protests
Greece
Morning

Deals
Engage
Offers

Uprising
Protest

Elections
teachers
Summer
 support
Schools

.

.

.
Crisis

Earthquake
IMF

Dense =

A tweet with thousands of words

(makes no sense)

0.1
0.02

.

.

.

0.001

The problem with PCA

•  Top Eigenvector will be dense!

•  We want super sparse

 Sparse = Interpretable

9

Strong
Earthquake

Greece
Morning

Eurovision
Protests
Greece
Morning

Deals
Engage
Offers

Uprising
Protest

Elections
teachers
Summer
 support
Schools

.

.

.
Crisis

Earthquake
IMF

Dense =

A tweet with thousands of words

(makes no sense)

0.1
0.02

.

.

.

0.001

0.75
0.49
0.23
0.31

Sparse PCA

Sparse PCA

NP hard (Moghaddam et al., 2006)

Algorithms: Kaiser 1958, Jolliffe 1995, Jolliffe et al. 2003, Zhou et al.
2006, Moghaddam et al. 2006, Sriperumbudur et al. 2007, Shen and
Huang 2008, d'Aspermont et al. 2007, d'Aspermont et al. 2008,
Yuan and Zhang 2011, Zhang et al. 2012, Asteris et al. 2011

Sparse PCA

NP hard (Moghaddam et al., 2006)

Algorithms: Kaiser 1958, Jolliffe 1995, Jolliffe et al. 2003, Zhou et al.
2006, Moghaddam et al. 2006, Sriperumbudur et al. 2007, Shen and
Huang 2008, d'Aspermont et al. 2007, d'Aspermont et al. 2008,
Yuan and Zhang 2011, Zhang et al. 2012, Asteris et al. 2011

Very few approximation guarantees (Amini & Wainwright 2008, Yuan
& Zhang 2011, d’Aspermont et al. 2012).

Our result

We present a novel combinatorial algorithm for sparse PCA.

Obtain general provable approximation guarantees.

Theorem: For any desired accuracy parameter d, our Spannogram algorithm
runs in time O(nd) and constructs a k-sparse vector xd such that:

Corollaries

Theorem: For any desired accuracy parameter d, our Spannogram algorithm
runs in time O(nd) and constructs a k-sparse vector xd such that:

Cor1: If there is any decay in the eigenvalues, i.e. λ1 > λd then there
exists a constant δ s.t. for all linear size supports

 k>δn

we obtain

a constant factor approximation to sparse PCA.

Corollaries

Theorem: For any desired accuracy parameter d, our Spannogram algorithm
runs in time O(nd) and constructs a k-sparse vector xd such that:

Cor2: If there is a power law decay in the eigenvalues:

Then for any ε we can approximate Sparse PCA within a factor of ε !
in time polynomial in n,k

(but not in 1/ε) (PTAS approximation guarantees)

�i = Ci��

how it works

•  1. Approximate A by best rank d approximation Ad (SVD)

how it works

•  1. Approximate A by best rank d approximation Ad (SVD)

•  2. Use Ad to obtain nd candidate supports (Spannogram)

how it works

•  1. Approximate A by best rank d approximation Ad (SVD)

•  2. Use Ad to obtain nd candidate supports (Spannogram)

•  3. Try nd candidate supports on A and choose the best
one.

•  4. Prove approximation guarantees

how it works for Rank d

If we knew the support of the sparse PC, it’s easy.

(Zero out everything except k x k submatrix of A, find largest eigenvector of
that).

how it works for Rank d

If we knew the support of the sparse PC, it’s easy.

(Zero out everything except k x k submatrix of A, find largest eigenvector of
that).

We can naively solve sparse PCA by testing all (n choose k) supports.

how it works for Rank d

If we knew the support of the sparse PC, it’s easy.

(Zero out everything except k x k submatrix of A, find largest eigenvector of
that).

We can naively solve sparse PCA by testing all (n choose k) supports.

Key lemma: If the matrix is rank d, only O (n choose d) supports must be
tested.

Rank d=1

Say d=1, i.e. Ad is rank 1.

xT Ax = �1x
T v1v

T
1 x = �1(vT

1 x)2
A = �1v1v

T
1

Rank d=1

Say d=1, i.e. Ad is rank 1.

xT Ax = �1x
T v1v

T
1 x = �1(vT

1 x)2

Q:find a k-sparse vector that maximizes the inner product with a
given vector v1.

Sort the absolute entries of v1 and keep the k largest.

A = �1v1v
T
1

Rank d=1

Say d=1, i.e. Ad is rank 1.

xT Ax = �1x
T v1v

T
1 x = �1(vT

1 x)2

Q:find a k-sparse vector that maximizes the inner product with a
given vector v1.

Sort the absolute entries of v1 and keep the k largest.

Thresholding the largest eigenvector is a well-known heuristic for
sparse PCA which is optimal when A is rank 1.

There is one candidate top-k support, the support of the k largest
entries of v1

A = �1v1v
T
1

Rank d=2

A2 = �1v1v
T
1 + �2v2v

T
2

Rank d=2

Observation: There is a special vector vc in the span of v1,v2 such that

A2 = �1v1v
T
1 + �2v2v

T
2

xT Ax = (vT
c x)2

Rank d=2

Observation: There is a special vector vc in the span of v1,v2 such that

A2 = �1v1v
T
1 + �2v2v

T
2

xT Ax = (vT
c x)2

We only need to find the support of the top k elements of vc

How many top-k supports can there be in a two dimensional subspace?

(n choose k) ?

key combinatorial fact (2 dimensions)

vc = c1v1 + c2v2

key combinatorial fact (2 dimensions)

vc = c1v1 + c2v2

if c1=1, c2=0, we get one top-k set, the top-k elements of v1.

If c1=0, c1=1, we get one more, the top-k elements of v2.

key combinatorial fact (2 dimensions)

vc = c1v1 + c2v2

if c1=1, c2=0, we get one top-k set, the top-k elements of v1.

If c1=0, c1=1, we get one more, the top-k elements of v2.

As c=[c1 c2] is changing how many other top-k sets can appear?

�
n

k

�

key combinatorial fact (2 dimensions)

vc = c1v1 + c2v2

if c1=1, c2=0, we get one top-k set, the top-k elements of v1.

If c1=0, c1=1, we get one more, the top-k elements of v2.

As c=[c1 c2] is changing how many other top-k sets can appear?

�
n

k

�
4
�

n

2

�

key combinatorial fact (2 dimensions)

vc = c1v1 + c2v2

c = [sin � cos �]T

vc = [v1v2]c

 Use spherical variable transformation

key combinatorial fact (2 dimensions)

vc = c1v1 + c2v2

c = [sin � cos �]T

vc = [v1v2]c

 Use spherical variable transformation

v(�) = [v1 v2]
T c(�) =

2

64
v1(1) sin(�) + v2(1) cos(�)

.

.

.

v1(n) sin(�) + v2(n) cos(�)

3

75

The Spannogram

•  Each element is a continuous curve in

34

�

−1.5 −1 −0.5 0 0.5 1 1.5

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

φ

|v1(φ) |
|v2(φ) |
|v3(φ) |
|v4(φ) |
|v5(φ) |

v(�) = [v1 v2]
T c(�) =

2

64
v1(1) sin(�) + v2(1) cos(�)

.

.

.

v1(n) sin(�) + v2(n) cos(�)

3

75

The Spannogram

•  Each element is a continuous curve in

35

�

−1.5 −1 −0.5 0 0.5 1 1.5

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

φ

|v1(φ) |
|v2(φ) |
|v3(φ) |
|v4(φ) |
|v5(φ) |

v(�) = [v1 v2]
T c(�) =

2

64
v1(1) sin(�) + v2(1) cos(�)

.

.

.

v1(n) sin(�) + v2(n) cos(�)

3

75

n=5,k=3

Top k set: {2,5,1}

The Spannogram

•  Each element is a continuous curve in

36

�

−1.5 −1 −0.5 0 0.5 1 1.5

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

φ

|v1(φ) |
|v2(φ) |
|v3(φ) |
|v4(φ) |
|v5(φ) |

v(�) = [v1 v2]
T c(�) =

2

64
v1(1) sin(�) + v2(1) cos(�)

.

.

.

v1(n) sin(�) + v2(n) cos(�)

3

75

n=5,k=3

Top k set: {5,2,1}

The Spannogram

•  Lets count top-k sets.

37

−1.5 −1 −0.5 0 0.5 1 1.5

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

φ

|v1(φ) |
|v2(φ) |
|v3(φ) |
|v4(φ) |
|v5(φ) |

•  n lines

•  every pair of lines intersects in
exactly 2 points.

 Intersection points
2
�

n

2

�

general Rank d

How many top-k supports can there be in a d-dimensional subspace of Rn ?

vc = c1v1 + c2v2 + . . . cdvd

2d�1

�
d

�d/2�

��
n

d

�
Theorem: There are at most

top k-sets in a general position d-dimensional subspace.

general Rank d

How many top-k supports can there be in a d-dimensional subspace of Rn ?

O(nd) and the spannogram algorithm constructs them explicitly.

vc = c1v1 + c2v2 + . . . cdvd

Experiments

3 experiments on a large-twitter data set.

 (1.9M Tweets total over a few months).

Experiments (5 days in May 2011)

skype, microsoft, acquisition, billion, acquired, acquires, buy, dollars, acquire, google!

eurovision greece lucas finals final stereo semifinal contest greek watching!

love received greek know damon amazing hate twitter great sweet!

downtown athens murder years brutal stabbed incident camera year crime!

k=10, top 4 sparse PCs for the data set (65,000 tweets)

Experiments (5 days in May 2011)

skype, microsoft, acquisition, billion, acquired, acquires, buy, dollars, acquire, google!

eurovision greece lucas finals final stereo semifinal contest greek watching!

love received greek know damon amazing hate twitter great sweet!

downtown athens murder years brutal stabbed incident camera year crime!

FullPath:!

eurovision finals greek greece lucas semifinal final contest stereo watching!

love received damon greek hate know amazing sweet great songs!

skype microsoft billion acquisition acquires acquired buying dollars official google!

Twitter facebook welcome account good followers census population home starts!

k=10, top 4 sparse PCs for the data set (65,000 tweets)

Experiments (5 days in May 2011)

skype, microsoft, acquisition, billion, acquired, acquires, buy, dollars, acquire, google!

eurovision greece lucas finals final stereo semifinal contest greek watching!

love received greek know damon amazing hate twitter great sweet!

downtown athens murder years brutal stabbed incident camera year crime!

FullPath:!

eurovision finals greek greece lucas semifinal final contest stereo watching!

love received damon greek hate know amazing sweet great songs!

skype microsoft billion acquisition acquires acquired buying dollars official google!

Twitter facebook welcome account good followers census population home starts!

Tpower:!

greece greece love loukas finals athens final stereo country sailing!

Rank1:!

greece love lucas finals greek athens finals stereo country camera!

k=10, top 4 sparse PCs for the data set (65,000 tweets)

Feature elimination

•  Each element is a continuous curve in

44

�

−1.5 −1 −0.5 0 0.5 1 1.5

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

φ

|v1(φ) |
|v2(φ) |
|v3(φ) |
|v4(φ) |
|v5(φ) |

v(�) = [v1 v2]
T c(�) =

2

64
v1(1) sin(�) + v2(1) cos(�)

.

.

.

v1(n) sin(�) + v2(n) cos(�)

3

75

Red line has no hope
of being in a top-k set
for k= 2.

Conclusions

•  We presented a novel combinatorial algorithm for Sparse
PCA

Conclusions

•  We presented a novel combinatorial algorithm for Sparse
PCA

•  Constant factor approximation for any reasonable matrix

•  Arbitrary approximation for power-law decay

Conclusions

•  We presented a novel combinatorial algorithm for Sparse
PCA

•  Constant factor approximation for any reasonable matrix

•  Arbitrary approximation for power-law decay

•  General spectral bound

Conclusions

•  We presented a novel combinatorial algorithm for Sparse
PCA

•  Constant factor approximation for any reasonable matrix

•  Arbitrary approximation for power-law decay

•  General spectral bound

•  Empirically outperfoms previous state of the art

•  Parallel Mapreduce implementation?

fin

The Spanogram

•  Lets revisit the “variable vector”

•  Each element is a continuous curve in

50

�

−1.5 −1 −0.5 0 0.5 1 1.5

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

φ

|v1(φ) |
|v2(φ) |
|v3(φ) |
|v4(φ) |
|v5(φ) |

v(�) = [v1 v2]
T c(�) =

2

64
v1(1) sin(�) + v2(1) cos(�)

.

.

.

v1(n) sin(�) + v2(n) cos(�)

3

75

��
c

T (�)[v1 v2]x
��  kc(�)k k[v1 v2]xk

Rank-2 Approximation

•  Rank-2 Approximation:

•  The Sparse PC is

•  How to unlock the “low-rank-ness”? The key is a polar vector

•  From the Cauchy Swartz Inequality we obtain

•  Colinear polar vector achieves “=“

51

c(�) =


sin �
cos �

� c(�)

arg max

kxk2=1,kxk0=K
k[v1 v2]

T
xk

R2 = v1vT
1 + v2vT

2

•  The sparse of pair that maximizes the left, maximizes the
right:

 The sparse PC is associated with a polar vector that gives equality.

•  So,

Rank-2 Approximation

52

��
c

T (�)[v1 v2]T x

�� 
��[v1 v2]T x

��
(x, �)

x

max

x

�[v1 v2]
T
x� = max

�
max

x

|c(�)[v1 v2]
T
x|

Q: What happens if we fix the angle?

