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Overview: PCA and Sparse PCA


•  Principal Component Analysis (PCA) is a classical algorithm 
for dimensionality reduction, clustering etc. 


•  Sparse PCA is a very useful variant because of interpretability


•  We present a new algorithm for Sparse PCA that is fast for 
large data sets.


•  We present novel approximation guarantees. 


•  We test on a large twitter data set (millions of tweets).   




Tweets to vectors

Each tweet as a long (50K), super-sparse vector (5-10 non-zeros) 

with 1s in word indices
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Data Sample Matrix

We collect all tweet vectors in a sample matrix of size 
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m tweets


S = n words


n⇥m

. . .



Correlation matrix
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A = S ST

n words

= 

A n x n
S n x m




vanilla PCA


Largest Eigenvector.

Maximizes `explained variance’ of the data set

Very useful for dimensionality reduction

Easy to compute




PCA finds An `EigenTweet’

Finds a vector that closely matches most tweets


i.e, a vector that maximizes the sum of projections with each tweet
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The problem with PCA


•  Top Eigenvector will be dense!
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The problem with PCA


•  Top Eigenvector will be dense!


•  We want super sparse


 
 
 
 
 Sparse = Interpretable
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Sparse PCA




Sparse PCA


NP hard (Moghaddam et al., 2006)


Algorithms: Kaiser 1958,  Jolliffe 1995, Jolliffe et al. 2003, Zhou et al. 
2006, Moghaddam et al. 2006, Sriperumbudur et al. 2007, Shen and 
Huang 2008, d'Aspermont et al. 2007, d'Aspermont et al. 2008, 
Yuan and Zhang 2011, Zhang et al. 2012, Asteris et al. 2011




Sparse PCA


NP hard (Moghaddam et al., 2006)


Algorithms: Kaiser 1958,  Jolliffe 1995, Jolliffe et al. 2003, Zhou et al. 
2006, Moghaddam et al. 2006, Sriperumbudur et al. 2007, Shen and 
Huang 2008, d'Aspermont et al. 2007, d'Aspermont et al. 2008, 
Yuan and Zhang 2011, Zhang et al. 2012, Asteris et al. 2011


Very few approximation guarantees ( Amini & Wainwright 2008, Yuan 
& Zhang 2011, d’Aspermont et al. 2012).    




Our result

We present a novel combinatorial algorithm for sparse PCA.

Obtain general provable approximation guarantees. 


Theorem: For any desired accuracy parameter d, our Spannogram algorithm 
runs in time O(nd) and constructs a k-sparse vector xd such that:




Corollaries

Theorem: For any desired accuracy parameter d, our Spannogram algorithm 
runs in time O(nd) and constructs a k-sparse vector xd such that:


Cor1: If there is any decay in the eigenvalues, i.e. λ1 > λd then there 
exists a constant δ s.t. for all linear size supports

 k>δn 

we obtain

a constant factor approximation to sparse PCA. 




Corollaries

Theorem: For any desired accuracy parameter d, our Spannogram algorithm 
runs in time O(nd) and constructs a k-sparse vector xd such that:


Cor2: If there is a power law decay in the eigenvalues:


Then for any ε we can approximate Sparse PCA within a factor of ε  !
in time polynomial in n,k


(but not in 1/ε)  (PTAS approximation guarantees)


�i = Ci��



how it works


•  1. Approximate A by best rank d approximation Ad  (SVD)
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how it works


•  1. Approximate A by best rank d approximation Ad  (SVD)


•  2. Use Ad to obtain nd candidate supports  (Spannogram)


•  3. Try  nd candidate supports on A and choose the best 
one. 


•  4. Prove approximation guarantees
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If we knew the support of the sparse PC, it’s easy. 

(Zero out everything except k x k submatrix of A, find largest eigenvector of 
that). 
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how it works for Rank d

If we knew the support of the sparse PC, it’s easy. 

(Zero out everything except k x k submatrix of A, find largest eigenvector of 
that). 


We can naively solve sparse PCA by testing all  (n choose k ) supports. 


Key lemma: If the matrix is rank d, only O ( n choose d ) supports must be 
tested. 




Rank d=1

Say d=1, i.e. Ad  is rank 1. 


xT Ax = �1x
T v1v

T
1 x = �1(vT

1 x)2
A = �1v1v

T
1



Rank d=1
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Q:find a k-sparse vector that maximizes the inner product with a 
given vector v1. 


Sort the absolute entries of v1 and keep the k largest.
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Rank d=1

Say d=1, i.e. Ad  is rank 1. 


xT Ax = �1x
T v1v

T
1 x = �1(vT

1 x)2

Q:find a k-sparse vector that maximizes the inner product with a 
given vector v1. 


Sort the absolute entries of v1 and keep the k largest.


Thresholding the largest eigenvector is a well-known heuristic for 
sparse PCA which is optimal when A is rank 1.


There is one candidate top-k support, the support of the k largest 
entries of v1  


A = �1v1v
T
1



Rank d=2


A2 = �1v1v
T
1 + �2v2v

T
2



Rank d=2


Observation: There is a special vector vc in the span of v1,v2 such that


A2 = �1v1v
T
1 + �2v2v

T
2

xT Ax = (vT
c x)2



Rank d=2


Observation: There is a special vector vc in the span of v1,v2 such that


A2 = �1v1v
T
1 + �2v2v

T
2

xT Ax = (vT
c x)2

We only need to find the support of the top k elements of vc


How many top-k supports can there be in a two dimensional subspace?


(n choose k) ?




key combinatorial fact (2 dimensions)
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key combinatorial fact (2 dimensions)


vc = c1v1 + c2v2

if c1=1, c2=0, we get one top-k set, the top-k elements of v1. 

If c1=0, c1=1, we get one more, the top-k elements of v2. 
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key combinatorial fact (2 dimensions)


vc = c1v1 + c2v2

c = [sin � cos �]T

vc = [v1v2]c

 Use spherical variable transformation




key combinatorial fact (2 dimensions)


vc = c1v1 + c2v2

c = [sin � cos �]T

vc = [v1v2]c

 Use spherical variable transformation


v(�) = [v1 v2]
T c(�) =

2
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The Spannogram


•  Each element is a continuous curve in   
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The Spannogram


•  Each element is a continuous curve in   
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n=5,k=3 

Top k set: {2,5,1}




The Spannogram


•  Each element is a continuous curve in   
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The Spannogram

•  Lets count top-k sets. 
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•  n lines 


•  every pair of lines intersects in 
exactly 2 points.
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general Rank d


How many top-k supports can there be in a d-dimensional subspace of Rn   ?


vc = c1v1 + c2v2 + . . . cdvd

2d�1

�
d

�d/2�

��
n

d

�
Theorem: There are at most


top k-sets in a general position d-dimensional subspace.  




general Rank d


How many top-k supports can there be in a d-dimensional subspace of Rn   ?


O(nd) and the spannogram algorithm constructs them explicitly. 


vc = c1v1 + c2v2 + . . . cdvd



Experiments


3 experiments on a large-twitter data set. 

 (1.9M Tweets total over a few months). 
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downtown athens murder years brutal stabbed incident  camera year crime!

k=10, top 4 sparse PCs for the data set (65,000 tweets)
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Experiments (5 days in May 2011)


skype, microsoft, acquisition, billion, acquired, acquires, buy, dollars, acquire, google!

eurovision greece lucas finals final stereo semifinal contest greek watching!

love received greek know damon amazing hate twitter great sweet!

downtown athens murder years brutal stabbed incident  camera year crime!

FullPath:!

eurovision finals greek greece lucas semifinal final contest stereo watching!

love received damon greek hate know amazing sweet great songs!

skype microsoft billion acquisition acquires acquired buying dollars official google!

Twitter facebook welcome account good followers census population home starts!

Tpower:!

greece greece love loukas finals athens final stereo country sailing!

Rank1:!

greece love lucas finals greek athens finals stereo country camera!

k=10, top 4 sparse PCs for the data set (65,000 tweets)




Feature elimination


•  Each element is a continuous curve in   
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Red line has no hope 
of being in a top-k set 
for k= 2.
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Conclusions


•  We presented a novel combinatorial algorithm for Sparse 
PCA


•  Constant factor approximation for any reasonable matrix 

•  Arbitrary approximation for power-law decay

•  General spectral bound 

•  Empirically outperfoms previous state of the art

•  Parallel Mapreduce implementation?




fin




The Spanogram

•  Lets revisit the “variable vector”


•  Each element is a continuous curve in   
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Rank-2 Approximation

•  Rank-2 Approximation:

•  The Sparse PC is


•  How to unlock the “low-rank-ness”? The key is a polar vector 


•  From the Cauchy Swartz Inequality we obtain


•  Colinear polar vector achieves “=“
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
sin �
cos �

� c(�)
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kxk2=1,kxk0=K
k[v1 v2]

T
xk

R2 = v1vT
1 + v2vT

2



•  The sparse     of pair                that maximizes the left, maximizes the 
right:


    The sparse PC is associated with a polar vector that gives equality.


•  So, 


Rank-2 Approximation
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Q: What happens if we fix the angle? 


