
In the last bx seminar in Dagstuhl …

Zhenjiang �
In get-based bx, there is inherited ambiguity: �
 many puts may correspond one get �
Unless we have a way to choose among these puts, we
would come up with an unpredicable bx …�
�

Benjamin �
We should be able to remove ambiguity by writing put! �
�

Zhenjiang �
Trying to code some bx combinators for writing put in
Curry, and discussed it a bit with Soichiro, Jeremy, Janis …

Banff, December 2013 1

Validation of BX Programs
Well-behavedness of Treeless Putback Definitions for
Bidirectional Programming is Decidable

Zhenjiang Hu (NII)�
Joint work with �

Hugo Pacheco and Sebastian Fischer�
�

December 2013�

2 Banff, December 2013

Bidirectional Transformation

3

Bidirectional Computation
BiX: A Bidirectional Tree Transformation Language

Bidirectional Model Transformation: A Compositional Approach
Conclusion

Definition
Basic Properties
Direct Applications

Bidirectional Computation (Bidirectional Transformation)

src tgt

tgt’

mod

src’

get

put

It consists of a pair of computation forward and backward.

Zhenjiang Hu

Get-Put: �
put s (get s) = s �

�
Put-Get: �

get (put s t) = t �

Banff, December 2013

What is BX Programming?

Banff, December 2013 4

 data1	

 data2	

Define a pair of functions get/put to synchronize�
two kinds of data.

What is BX Programming?

Banff, December 2013 5

Define a pair of functions get/put to synchronize�
two kinds of data.

Define a well-behaved put to synchronize�
two kinds of data.

Well-behaved “put”

Definition: A “put” function is said to be well-behaved,
if there exists a (unique) “get” function such that
GetPut and PutGet hold.

Banff, December 2013 6

Question: Are the following put functions well behaved? �
•  put1 s v = s �
•  put2 s v = 1 : v �
•  put3 [] v = v �
 put3 (a : s) v = a : v �
 Difficult to check because we do not have “get” yet …

Well-behaved “put”

Lemma: �
Put is well-behaved, iff �
1.  View-deterministic�
 put s1 v1 = put s2 v2 è v1 = v2�
2.  View-stable�
 for any s, there exists a v, such that put s v = s �

Banff, December 2013 7

Reference: �
Sebastian Fischer, Zhenjiang Hu, Hugo Pacheco, �
A Clear Picture of Lenses, �
(to be submitted, available upon request)�

Languages for Putback Programming

8

A treeless language for define
primitive well-behaved puts.

A set of combinators to compose smaller
well-behaved puts to form bigger ones

+

Banff, December 2013

A Treeless Language PDL

Banff, December 2013 9

A Treeless Language for Put-based Bidirectional Programming

f ps pv = t �
Rule

Treeless Term

t ::= v { variable } �
 | C t1 … tn { constructor application } �
 | f xs xv { put application }

Pattern

p ::= x { variable } �
 | x @ p { look-ahead variable } �
 | C p1 … pn { constructor pattern } �

Syntactic Assumptions

•  Affine: each variable appears at most once in rhs�
put (s:ss) vs = s : vs " "GOOD �
put (s:ss) vs = s : (vs++vs) "" "BAD �
�

•  Structured: recursive calls are on smaller sub-
patterns�
put (s:ss) (v:vs) = v : put ss vs "GOOD �
put ss (v:vs) = v : put ss vs" "GOOD �
put ss vs = 1 : put ss vs " "BAD �
put (s:ss) (v:vs) = v : put vs ss "BAD �
�

•  Total: patterns are exhausted �

Banff, December 2013 10

Example

putAs [A 1, A 2, B 3, A 4] [10, 11,12] è [A 10, A 11, B 3, A 12] �
putAs [A 1, A 2, B 3, A 4] [10, 11] è [A 10, A 11, B 3] �
putAs [A 1, A 2, B 3, A 4] [10, 11,12,13] è [A 10, A 11, B 3, A 12, A 13] �

�

Banff, December 2013 11

putAs [] [] "= [] �
putAs (ss@[]) (v:vs) "= A v : putAs ss vs�
putAs (A a : ss) (vs@[]) "= putAs ss vs�
putAs (A a : ss) (v : vs) "= A v : putAs ss vs�
putAs (B b : ss) vs "= B b : putAs ss vs

Affine, structured, total

Example

putAs [A 1, A 2, B 3, A 4] [10, 11,12] è [A 10, A 11, B 3, A 12] �
putAs [A 1, A 2, B 3, A 4] [10, 11] è [A 10, A 11, B 3, B 4] �
putAs [A 1, A 2, B 3, A 4] [10, 11,12,13] è [A 10, A 11, B 3, A 12, B 0, A 13] �

�

Banff, December 2013 12

putAs [] [] "= [] �
putAs (ss@[]) (v:vs) "= A v : B 0 : putAs ss vs�
putAs (A a : ss) (vs@[]) "= B a : putAs ss vs�
putAs (A a : ss) (v : vs) "= A v : putAs ss vs�
putAs (B b : ss) vs "= B b : putAs ss vs�

Main Results

Banff, December 2013 13

Theorem: �
Well-behavedness of a put defined in PDL is decidable. �

Validation Algorithm: �
(Soundness): A valid put is well-behaved.�
(Completeness): Any well-behaved put is valid.�

View-Determination Validation

Banff, December 2013 14

Lemma: �
Put is well-behaved, iff �

1.  View-deterministic�
 put s1 v1 = put s2 v2 è v1 = v2�
2.  View-stable�
 for any s, there exists a v, such that put s v = s�

The relation from updated sources to views forms a �
total function.�

View-Determination Validation

Banff, December 2013 15

The relation from updated sources to views forms �
a total function.�

(1)  The relation R can be automatically derived from the
put defined in PDL, which is a finite tree transducer. �

�

(2)  FACT: Single-valuedness of finite tree transducers is
decidable (Seidl:TCS92)�

View-Stability Validation

Banff, December 2013 16

Lemma: �
Put is well-behaved, iff �
1.  View-deterministic�
 put s1 v1 = put s2 vs è v1 = v2�

2.  View-stable�
 for any s, there exists a v, such that put s v = s �

 [v can only be R(s) from view-determination] �
Let h x y = put x (R y). The validation of h s s = s is decidable. �

View-Stability Validation

Banff, December 2013 17

(1)  h is of treeless form in PDL. (h is a provable convergent
complete constructor rewriting system (CS))�

(2)  For a CS, the inductive validity of h t1 t2 = p is
decidable (so does h s s = s) [Giesl&Kapur: IJCAR01] �

 [v can only be R(s) from View-determination] �
Let h x y = put x (R y). The validation of h s s = s is decidable. �

Conclusion

Main Result for BX Program Validation: �
Well-behavedness of Treeless Putback Definitions for
Bidirectional Programming is Decidable �
�

Todo: �
provide a practical put-based programming language�

Easy to code�
Easy to debug �
Easy to Optimize�

Banff, December 2013 18

New post-docs are welcome! �

