In the last bx seminar in Dagstuhl ... N | | Ezhinzass

Zhenjiang
In get-based bx, there is inherited ambiguity:
many puts may correspond one get

Unless we have a way to choose among these puts, we
would come up with an unpredicable bx ..

Benjamin
We should be able to remove ambiguity by writing put!

Zhenjiang

Trying to code some bx combinators for writing put in
Curry, and discussed it a bit with Soichiro, Jeremy, Janis ...

1 Banff, December 2013 i

N | | (12 1885 B9 50

Notionol lativgte of Mdormatic

Validation of BX Programs
Well-behavedness of Treeless Putback Definitions for
Bidirectional Programming 1s Decidable

Zhenjiang Hu (NII)
Joint work with

Hugo Pacheco and Sebastian Fischer

December 2013

2 Banff, December 2013 i

7 1 865 57 22

Notional lagtidate of Mdormatics

get
src I tgt Get-Put:
put s (get s) = s

L mod Put-Get:
get (put s 1) = t

Bidirectional Transformation NIl

\]

put

src’ tgt’

3 Banff, December 2013 i

What 1s BX Programming? N | | Ehazass

Define a pair of functions get/put to synchronize
two kinds of dafa.

data1 ﬁ dataZ2

4 Banff, December 2013 i

What 1s BX Programming? N | | ez

Notional lactidate of Mormot:

Define a pair of functions get/put to synchronize
two kinds of dafa.

Define a well-behaved put to synchronize
two kinds of data.

5 Banff, December 2013 i

Well-behaved “put” N | | ez

Definition: A “put” function is said to be well-behaved,
if there exists a (unique) “get” function such that
GetPut and PutGet hold.

Question: Are the following put functions well behaved?
® putlsv=s
® put2sv=1:v
e put3[Jv=yv
put3(@a:s)v=a:v

Difficult to check because we do not have “get” yet ...

6 Banff, December 2013 i

Well-behaved “put” N | | s

[Mossional lativate of Idormatics |

Lemma:
Put is well-behaved, iff
1. View-deterministic
put sl vl = put s2 v2 = vl = v2
2. View-stable

for any s, there exists a v, such that put s v = s

Reference:

Sebastian Fischer, Zhenjiang Hu, Hugo Pacheco,
A Clear Picture of Lenses,

(to be submitted, available upon request)

7 Banff, December 2013 i

Languages for Putback Programming N | | s

A treeless language for define
primitive well-behaved puts.

.|.

A set of combinators to compose smaller
well-behaved puts to form bigger ones

8 Banff, December 2013 i

A Treeless Language PDL N | | Eziszsss

[Mossional lativate of Idormatics |

A Treeless Language for Put-based Bidirectional Programming

Rule
fpspv=t
Treeless Term
ti=v { variable }
| C t1.. tn { constructor application }
| £ xs xv { put application }
Pattern
p = X { variable }
| x @ P { look-ahead variable }
| C Pl .. pn { constructor pattern }

9 Banff, December 2013 i

Syntactic Assumptions N || Eiinzss

e Affine: each variable appears at most once in rhs
put (s:ss) vs = s : vs GOOD
put (s:ss) vs = s : (vs++vs) BAD

e Structured: recursive calls are on smaller sub-

patterns

put (s:ss) (vivs) = v : put ss vs GOOD
put ss (v:vs) = v : put ss vs GOOD
put ss vs =1: put ss vs BAD

put (s:ss) (vivs) = v : put vs ss BAD

e Total: patterns are exhausted

10 Banff, December 2013 %

Example NI sz

11

putAs [A1l, A2, B3, A4][10,11,12] & [A 10, All, B 3, A 12]
putAs [A1, A2, B3, A4][10,11] = [A10, A1ll, B 3]
putAs [A1l, A2, B3, A4][10,11,12,13] > [A10,A1l,B 3, Al2 A 13]

putAs [] [] = (]
putAs (ss@[]) (v:vs) = A v : putAs ss vs

putAs (A a : ss) (vs@[]) = putAs ss vs
putAs (A a:ss) (v:vs) =Av:putAs ssvs
putAs (B b : ss) vs = B b : putAs ss vs

Affine, structured, total

Banff, December 2013 %

Example NI sz

12

putAs [A1l, A2, B3, A4][10,11,12] = [A 10, All, B 3, A12]
putAs [A1l, A2, B3, A4][10,11] = [A10, A1l B3, B 4]
putAs [A1, A2, B3, A4][10,11,12,13] = [A10,All,B 3,A 12 B0, Al3]

putAs [] [] = (]

putAs (ss@[]) (v:vs) =A Vv :BO: putAs ss vs
putAs (A a :ss) (vs@[]) =B a: putAs ss vs
putAs (A a:ss) (v:vs) =Av:putAs ssvs
putAs (B b : ss) vs =B b : putAs ss vs

Banff, December 2013 %

Main Results N | | iz

Notionol lativgte of Mdormatic

Theorem:
Well-behavedness of a put defined in PDL is decidable.

*

Validation Algorithm:
(Soundness): A valid put is well-behaved.
(Completeness): Any well-behaved put is valid.

13 Banff, December 2013 i

View-Determination Validation NI

AVARNSARLA AN LATLERAN

Lemma:
Put is well-behaved, iff

1. View-deterministic
put sl vl = put s2 v2 = vl = v2

2. View-stable
for any s, there exists a v, such that put sv =s

t

The relation from updated sources to views forms a
total function.

14 Banff, December 2013

y \

View-Determination Validation N | | s

The relation from updated sources to views forms

a total function.

(1) The relation R can be automatically derived from the
put defined in PDL, which is a finite free transducer.

(2) FACT: Single-valuedness of finite tree transducers is
decidable (Seidl:TCS92)

15 Banff, December 2013 i

View-Stability Validation N || s

Notionol lativgte of Idormatics

Lemma:
Put is well-behaved, iff
1. View-deterministic
put sl vl = put s2 vs = vl = v2

2. View-stable
for any s, there exists a v, such that put s v = s

t

[v can only be R(s) from view-determination]

Let h x v = put x (R y). The validation of h s s = s is decidable.

16

Banff, December 2013

y \

View-Stability Validation N || s

MNotional U Mdhﬂuw

[v can only be R(s) from View-determination]

Let h x v = put x (R y). The validation of h s s = s is decidable.

s

(1) his of treeless form in PDL. (h is a provable convergent
complete constructor rewriting system (CS))

(2) For a CS, the inductive validity of h 1 T2 = p is
decidable (so does h s s = s) [Gies|l&Kapur: ITCARO1]

17

Banff, December 2013

y \

Conclusion N | | &z

Main Result for BX Program Validation:

Well-behavedness of Treeless Putback Definitions for
Bidirectional Programming is Decidable

Todo:

provide a practical put-based programming language
Easy to code
Easy to debug
Easy to Optimize

New post-docs are welcome!

18 Banff, December 2013 %

