Semantics Preserving Transformations

Holger Giesse, Ekkart Kindler, Mark Lawford, Tom Maibaum, Fernando Orejas & Jens Weber

Holger's Framework

Tom's version of Holger's Framework

How do you do it in practice?

Semantics Preserving BX in Engineering Practice

- Typically do not have formal semantics so can't prove BX.
 - You can validate BX rules via simulation
 - Back to back testing of simulation and code reference may be helpful here
 - You are effectively producing an assurance case that the transformation is valid in case when formal semantics is not used/available

How do you define "sematics preserving"?

How do you define semantic equivalence?

- Bisimulation? Maybe too strong, might want simulation
 - For preservation of LTL vs. CTL would want a different definition of semantic equivalence
 - Can have different notions of equivalence at different levels of abstraction
 - More appropriate measure of "nearness"
 - How much does it change the risk?