Making Semantic Bidirectionalization More Applicable

Meng Wang (Chalmers Univ. of Tech.)
in collaboration with Kazutaka Matsuda and Shayan Najd
Banff-BX, 2-6 Dec 2013

Existing PL Approaches

- Combinator languages
 - Lenses [Foster et al. TOPLAS'07, ...]
 - **...**
- Bidirectionalization
 - Syntactic [Matsuda et. at. ICFP'07]
 - Semantic [Voigtländer POPL'09]

Semantic Bidirectionalization

Deriving put from get of type

$$\forall a. T_1 a \rightarrow T_2 a$$

without inspecting the definition

- Advantages
 - simplicity
 - expressiveness of get
- Correctness
 - free theorems [Wadler FPCA'89]

Constructing Put

Constructing Put

Extension

■ Deriving put from get of type $\forall a$ Eq $a \Rightarrow T_1 a \rightarrow T_2 a$ without inspecting the definition

Constructing Put

Example: get::Eq $a \Rightarrow [a] -> [a] = nub$

Summary

- Reviewed: [Voigtländer POPL'09]
 - Simplicity
 - Expressiveness of get
- Result:

Deriving put from get of type $\forall a. (Eq a, 0rd a) => T_1 a -> T_2 a$ without inspecting the definition

Limitations

- Not easy to extend to other polymorphic functions
- Not possible to deal with monomorphic functions

Advances

- Not easy to extend to other polymorphic functions
 - A more general implementation that handles all cases uniformly (PEPM'14)

```
filter :: (a -> Bool) -> [a] -> [a] takeWhile :: (a -> Bool) -> [a] -> [a]
```

Advances

- Not possible to deal with monomorphic functions
 - A system with run-time recording of observations (PPDP'13) https://bitbucket.org/kztk/cheap-b18n

XML Example

get is monomorphic

from XML Query Use Cases http://www.w3.org/TR/xquery-use-case/#xmp-queries-results-q1

Conclusion

- Semantic bidirectionalization scales to
 - most polymorphic functions
 - many monomorphic functions (through some code instrumentation)
- Structure change is still limited