Relating a data structure
and its text representation:

A case study of pretty-printing and parsing

Kazutaka Matsuda
(Univ. of Tokyo)




Background

» A data structure may have text-

representations
- for data exchange
. for human readability

ﬂ% — - (-3

In Data Structure In Text




Motivation

» Writing inter-conversion between
. data structure
. Its text- representatlon

How do we WI‘ItE‘

' the mter conv7
a% 1. — (2 — 3)

In Data Structure In Text




A Case Study

» Inter-conversion between abstract

syntax trees and codes
. pretty-printing and parsers

pretty-print

<_I 1 - (2 - 3)
parse

In Data Structure In Text




Bidirectional Property

» A pretty-printing result is correctly
parsed

parse (pretty print ast) = ast

f"Tnverse

pretty-print

<_I 1 - (2 - 3)
parse

In Data Structure In Text




Bidirectional Property

» A pretty-printing result is correctly
parsed

parse (pretty print ast) = ast

«Mainy "\n" . Int In GHC 7.4.1
Still in GHC 7.6.3
<interactive):93:1:

Couldn't match expected type “Int' with actual type " [Char]'’

In the expression: "o Int
In an equation for "it': it = "" :: Int




Our Approach

» To derive a parser from a pretty-
printer by program inversion

parse (pretty print ast) = ast

‘"Tnverse

- Why this direction?
- We have a data structure at first

- Pretty-printing is more creative
- more control on layouting is needed




Our Approach

» To derive a parser from a pretty-
printer by program inversion

parse (pretty_print ast) = ast

int £(x) { %”t f(x)
return x VS.

- Why this direc|, } return x
- We have a dat

- Pretty-printing1s more creative
- more control on layouting is needed




Technical Challenge

» “Information Mismatch”
. A pretty-printer knows a “pretty”
code but no other valid codes
- A parser knows all the valid codes

but no “prettiness’

(1) - (2 - 3)
4/

1 —
v\ (2 - 3)
\ 1 - (2 - 3)
In Data Structure In Text

7/



Technical Challenge

» “Information Mismatch”
. A pretty-printer knows a “pretty”
code but no other valid codes
- A parser knows all the valid codes
but no “prettiness” ___
A (1) = (2 - 3)

f 1 -
I (2 - 3)

"4 - (2 - 3)
In Data Structure In Text

7/



Technical Challenge

» “Information Mismatch”
. A pretty-printer knows a “pretty”
code but no other valid codes
- A parser knows all the valid codes
but no “prettiness” ___
A (1) = (2 - 3)

get |, _
'

\ L~ (2 - 3)

In Data Structure In Text

7/



Our Proposal: FliPpr

» Invertible pretty-printing system

[M.&Wang, 201 3]

.- Takes a pretty-printer
- based on an existing pretty-printing

DSL [Wadler 2003]
- with annotation of
parsing information
- Returns a parser corresponding to

the pretty-printer
- Based on (full) CFG




Example of Inputs

pretty_print x = ppr 9 X

ppr i x = manyParens (aux i x)

aux i (Num i) = text (itoa x as [0-9]+)

aux 1 (Minus x y) = ifParens (i»=6) (group (
ppr 5 x <> nest 2 (

line <> text "-" <> space <> ppr 6 vy)))

ﬂ%_bi(zw
9



Example of Inputs

pretty_print x = ppr 5 x| Exra parens

opr i x = manyParens Taux i x)

aux i (Num i) = text (itoa x as [0-9]+)

aux 1 (Minus x y) = ifParens (i»=6) (group (
ppr 5 X <> nest 2 (

line <> text "-" <> space <> ppr 6 vy)))

ﬂ%_bi(zw
9



Example of Inputs

pretty_print x = ppr 5 x| Exra parens

opr i x = manyParens Taux i x)

aux i (Num i) = text (itoa x as [0-9]+)

aux 1 (Minus x y) = ifParens (i»=6) (group (
ppr 5 X <> nest 2 (

line <> text "-" < space, © ppr 6 y)))




Example of Inputs

pretty_print x = ppr 5 x| Exra parens
opr i x = manyParens Taux i x)
aux 1 (Num i) = text (itoa x as [0-9]+)
aux 1 (Minus x y) = ifParens (i»=6) (group (
ppr 5 X <> nest 2 (
line <> text "-" < space <> ppr 6 y)))

, Extra spaces i"f

Miniig

manyParens x = x <+ parens (manyParens x)
space = (text " " <+ text "\n") <> nil
nil = text "" <+ space

& EJ



Advantages of FliPpr

» Fine-grained control on pretty-
printing

» Efficiency
- Reusability of existing efficient

algorithms and implementations
- for pretty-printers

. [Wadler03, Swisstra&Chitil09, Kiselyov1 3,...]
- for parsers

- GLR, Early, [Frost+08], [Might+11], ...




Summary

» FliPpr:

Invertible pretty-printing system
- Takes a pretty-printer with parsing-

annotations
- Wadler (2003)’s pretty-printing
combinators to write pretty-printers
. Generates a parser based on CFG

Prototype Implementation:
http://www-kb.is.s.u-tokyo.ac. jp/~kztk/F1iPpr/



http://www-kb.is.s.u-tokyo.ac.jp/~kztk/FliPpr/

Future Directions

» More expressive grammars

- Indent-sensitive languages
- Haskell, Python, YAML, ...

» More expressive pretty-printer

. User-defined prettiness
.- Type-system for safe programs

» More expressive input data-
structure beyond trees
» More stable implementation ;)




Future Directions

» Truly bidirectional version
- “prettiness” depends on
the initial source

put s v =
render c¢ (pretty_print v)
where
¢ = .. {— previous rendering
info -} ..




