
Incremental Updates and

Non-Free Datatypes

Jeremy Gibbons, University of Oxford

(joint work with the TLCBX team)

BX at BIRS, Banff, December 2013



Incremental Updates and Non-Free Datatypes 2

1. Least-change principle (Meertens)

2.5 

3.5 

! 

A 

B 

5.0 

5.0 

! 

A 

B 

edit 
2.5 

5.0 

! 

A 

B 

edit 



Incremental Updates and Non-Free Datatypes 3

2. Incremental updates (Wang et al, ICFP 2011)

• exploit any locality in edits

• translate into incrementality of updates

• hopefully, small edits entail small updates



Incremental Updates and Non-Free Datatypes 4

2.1. A small example

5

�
�
A
A

6 8

�
�

�
�
A
A

7 4 9

-
get

[7,6,5,4,8,9]

?

edit

5

�
�
A
A

6 8

�
�

A
A

7 9

�
put

[7,6,5,8,9]



Incremental Updates and Non-Free Datatypes 5

2.2. Context–focus treatment of trees

Zipper-style:

open

close

tree context

focus

• trees as algebraic datatypes

• structural recursion (fold) for get functions

• ‘regions’ are subterms



Incremental Updates and Non-Free Datatypes 6

2.3. Source–view alignment

For any view position v, the get function induces an alignment between
ancestors of v and corresponding source positions:

scn

sc1

s

vcm

vc1

v

get

get

get

The alignment captures locality preservation. There is always such an
alignment, but it may be more or less useful: in the worst case, all
ancestors of v align with the root of the source.



Incremental Updates and Non-Free Datatypes 7

2.4. Limitations

• works ok for balanced trees, but not for skewed ones

• works particularly badly for ‘cons’ lists

• ad hoc approach for ‘cat’ lists—see ICFP paper

• what about graphs? kind of important



Incremental Updates and Non-Free Datatypes 8

3. Non-free datatypes

The problem comes from viewing datatypes as algebraic:
unique decomposition of each data structure into components.

That’s too rigid. A data structure might have overlapping ‘parts’.
Consider cat lists, for example; and graphs.

If such datatypes are generated from constructors, then the constructors
generally obey non-trivial laws:

• associativity for lists

• abiding properties for matrices

• commutativity of juxtaposition for graphs

It’s hard to fit these laws into the algebraic view.

Still, algebra is very powerful, and we don’t want to ‘throw out the baby
with the bath water’.



Incremental Updates and Non-Free Datatypes 9

3.1. Container datatypes

An alternative treatment of datatypes (Abbott et al): a datatype is

• a set S of shapes

• for each s : S, a set P�s� of positions

A particular data structure of this type, with elements of type X , is a pair
�s; f � where s : S specifies the shape and f : P�s�! X the element at each
position in that shape.

For example, lists have S � N and P�n� � f1::ng.



Incremental Updates and Non-Free Datatypes 10

3.2. Properties of container datatypes

Container datatypes have nice algebraic structure too:

• closed under products, coproducts and composition

• initial algebras and final coalgebras

• natural transformations rearrange positions (independent of elements)

• a notion of subterm, for directed containers (every position
determines a substructure)

Crucially, they provide a nice handle for datatypes with laws.
In particular, the laws we are interested in are generally about shapes and
positions, but not about elements.



Incremental Updates and Non-Free Datatypes 11

3.3. Quotiented datatypes

Often, in fact, the laws can be expressed as quotients on the sets of
positions. For example, bags are like lists, but quotiented by permutations
on the positions.

Sets of shapes quotiented by an equivalence relation have been studied by
mathematicians for years, in enumerative combinatorics.

Typical questions are: how many ordered binary trees are there on
n elements? How many unordered binary trees? How many cyclic lists?

Ordered binary trees are expressible algebraically, but unordered trees
and cyclic lists require a quotient.



Incremental Updates and Non-Free Datatypes 12

3.4. Combinatorial species

Joyal (1981) established combinatorial species as a framework for
enumerative combinatorics. See also Yorgey (2010).

Technically, a species F � �F�; F$� is

• a mapping F� that takes a finite set U of labels to a finite set F��U� of
‘F-structures’

• a mapping F$ that lifts any bijection � : U $ V between label sets U
and V (a ‘relabelling’) to a bijection F$��� : F��U�$ F��V � between
F-structures

• this lifting should respect identity and composition of relabellings.

(Or: an endofunctor on the category B of finite sets and bijections.)

F��U� corresponds to ‘the set of structures with labels from U ’.
Lifting of bijections means that the actual labels don’t matter: we might
as well use f1::jU jg as U itself.



Incremental Updates and Non-Free Datatypes 13

3.5. Polynomial species

Empty, unit, singleton, sum, product, composition work in the obvious way.

• 0��U� � ;

• 1��;� � f�g, and 1��U� � ; otherwise

• X��U� � f�g for jU j � 1, and X��U� � ; otherwise

• �F� G���U� � F��U�] G��U�

• �F� G���U� � ÖU�V]W �F��V �� G��W ��

• �F � G���U� � ÖU�U1]���]Un �F��G��U1��� � � � � F��G��Un���
(provided that G��;� � ;, to remain finite)



Incremental Updates and Non-Free Datatypes 14

3.6. Regular species

Least fixpoints work, so all regular datatypes correspond to species.

For example,

L � �z � 1� X� z

yields the species of lists:

L��n� � f1::n!g

That is, there are n! lists on n elements.

A mathematician would write

L � 1� X� L

and exploit the implicit species theorem:

A recursive equation F � ��F� has a least fixed point,
provided that ��;� � ; and � is ‘guarded’.



Incremental Updates and Non-Free Datatypes 15

3.7. Non-regular species

But we are not limited to regular datatypes: more exotic datatypes too.

For bags, B��n� is (any) singleton set, as there is only one way of making a
bag out of n elements. Bags of size two are simply a restriction of bags:
B2
��U� is f�g if jU j � 2 and ; otherwise.

Subbags P can be expressed as B� B, a partition of the labels into a
subbag and its complement.

So simple graphs (undirected, no self loops) are P � �B2 � B�, sets of
two-sets (of edges).



Incremental Updates and Non-Free Datatypes 16

3.8. My conjecture

Quotiented directed containers will provide a fruitful framework
for the study of BX on non-free datatypes, especially graphs.


