
Bx Tutorial, Database Flavor:
Updatable or Invertible Mappings

James F. Terwilliger

Microsoft Research

Inside the Dark, Miserable Mind
of the Database Researcher

org.microsoft.research.james

Corporate Overlord

21 3

Words, words, words…

The Meta-Muddle

Relational

Entity-Relationship

Object-Oriented

XML (grr…)

M0

M1

M2

OMG!!!1!

This way be dragons.

Model

Schema

Instance

Table intent

ER diagram

Class

XML Schema

Table extent

Object

XML document

“Database”

“Query”

Flowery prose for
“function”

Q: S1 S2

Two schemas, almost
always from the

same model

Relational algebra

Relational calculus

SQL

Datalog

Source-Target Tuple-
Generating Dependencies

XQuery (grr…)

πcσa=2(T ⋈b=d U)

{<c>|∃a,b <a,b,c>∈T ∧ ∃d,e,f <d,e,f>∈U ∧
b=d ∧ a=2}

select c from T join U on T.b=U.d where a = 2

Answer(c) := T(2,b,c),U(b,e,f).

∀c((∃b,e,f T(2,b,c) ∧ U(b,e,f))  Answer(c))

for $d in doc(“data.xml”)/data
for $t in $d/t for $u in $d/u
where $t/a=2 and $t/b=$t/g return $t/cWhat do they all

have in common?

Declarative versus Operational

1. State intent 2. ???? 3. Profit!

• Can the query be answered?
• Does the query have a unique answer?
• What is the fastest way to run a query?
• Can the query be inverted in some fashion? (Usually unspecified or operational)

“Logical Data Independence”

Physical Model

Logical Model

Conceptual Model

Physical storage, layout on disk, madness

Tables, schema, query surface, regularity

Views, external schemas, client programs

This is where declarative programming is awesome

This is where we keep trying to apply it again
Logical Data

Independence

Physical Data
Independence

Δ

Δ Δ Δ

Δ?

“Logical Data Independence”

Physical Model

Logical Model

Conceptual Model

“I should be able to use the objects at
my layer without needing to worry about

the nonsense at the other layers.”

Query

Update

Schema Δ

Query

Update

Schema Δ

Q
u

er
y

M
agic?

“Mapping”

D1

D

D2

V

• Use a query as the
specification language

• Prefer declarative over
procedural

• Uni-directional

Down periscope!

How Does the DB Field Use Mappings?

DB

DB’

DB

DB DB

DB DB DB DBDB

DB

DB DB

DB

DB

App Model
Over Store

Data
Warehouse,

Schema
Versioning

Federated
System

Exchanged
Data Between
Applications

Metadata Management

S TM

Model?
Virtual?

Model?
Virtual?Language?

Capabilities?

The View Update Problem

S TM

Concrete
Database

Application Model,
External Schema

• Early work abstracted away the exact language of M, focusing
on what it means to be an updatable view

• As work progressed, focus shifted somewhat to a choice of M –
SQL – and deciding when an update policy can be computed

The View Update Problem

S TM

Relational
(Concrete)

Relational
(Tables only)

(Virtual)
SQL

Query
Query

Update

Let’s use the declarative query tool

we know and love – SQL – as a way to

express views!

(What could possibly go wrong!)

V

u(V)

D

u(D)

u

f

f

u

View Updates: The Basics
View definition

Update
statement

(Unique) Transformed
update against the
physical database

Update translations available for some
syntactic restrictions on f

Constant Complement
(Semantics of View Updates)

D

V V’

D

• Updates leave the view
complement unchanged

• Complement may not be
unique (must be chosen to
determine update semantics)

Update Uniqueness

V = T1 ∩ T2

When I delete a row from V…
- Delete from T1?
- Delete from T2?
- Delete from both?

NB: Not a problem for insertions…

Great! Where Can I Get It?
• Most database vendors do not implement past the

SQL92 standard
• View must have:

• No set operators

• No distinct, no grouping

• No expressions in the SELECT clause

• No joins or multiple FROM items

• No smoking, talking, or chewing gum

• Basically, only simple select/project queries

View Update Limitations (Among Many)

• Large queries are hard to debug (and read!)

• Given a large query, how to report to the user why a query is not
updatable?

• DB  Table, not DB  DB

• Syntactic restrictions are very strict

• It is assumed that a query language can make a good view expression
language

“Instead Of” Triggers

CREATE TRIGGER UPDATE_MY_LOGINS
INSTEAD OF UPDATE ON MY_LOGINS
REFERENCING OLD AS o NEW AS n
FOR EACH ROW
UPDATE USERS U
SET system = n.system, login = n.login, password =
encrypt(n.password)
WHERE system = o.system AND login = o.login AND U.user =
USER$

“Instead Of” Triggers

CREATE TRIGGER UPDATE_MY_LOGINS
INSTEAD OF UPDATE ON MY_LOGINS
REFERENCING OLD AS o NEW AS n
FOR EACH ROW
UPDATE USERS U
SET system = n.system, login = n.login, password =
encrypt(n.password)
WHERE system = o.system AND login = o.login AND U.user =
USER$

“Instead Of” Triggers

CREATE TRIGGER UPDATE_MY_LOGINS
INSTEAD OF UPDATE ON MY_LOGINS
REFERENCING OLD AS o NEW AS n
FOR EACH ROW
UPDATE USERS U
SET system = n.system, login = n.login, password =
encrypt(n.password)
WHERE system = o.system AND login = o.login AND U.user =
USER$

“Instead Of” Triggers

CREATE TRIGGER UPDATE_MY_LOGINS
INSTEAD OF UPDATE ON MY_LOGINS
REFERENCING OLD AS o NEW AS n
FOR EACH ROW
UPDATE USERS U
SET system = n.system, login = n.login, password =
encrypt(n.password)
WHERE system = o.system AND login = o.login AND U.user =
USER$

The Real World (and a large opportunity)

Logical Model

Conceptual Model

SPROCS

• Too expressive for mapping
language (e.g., pivot)

• Too hard to define inverse
of mapping fragment

• Too difficult to enforce
policies (e.g., immutability)

• Mapping consistency
against evolution is hard

Timeline

The Past The Future1969 1974

- Relational Model
- Relational Calculus
- Relational Algebra

- SQL

2005

R. Fagin, P. Kolaitis, R. Miller,
and L. Popa. "Data exchange:
semantics and query
answering." Theoretical
Computer Science,
336(1):89–124, 2005.

1980 1990

- View updates
- Constant complement
- Query containment

“Solved problem”

“This is relevant to
my interests.”

Data Exchange

S TM1Concrete
Instance

Concrete
Instance

S’
M2

M2
-1∘M1

Inversion!

28

()-1

Maximal Recovery

Given a mapping f:

Best case: find f-1 such that f-1∘f≡id (Fagin Inverse)

Alternative: find f-1 such that f-1∘f≅id relative to some equivalence

Maximal recovery: compute f-1 such that f-1∘f=g, where:

- If f is invertible, then g=id
- If f is not invertible, then g is the function that recovers at least as
much sound data as any other function

More Maximal Recovery

The good news:

The bad news:

• The maximal recovery of f is computable from f. (!)

• The inverse of f is not necessarily expressible as an st-tgd.
• Some fairly simple mappings do not have an inverse and

must rely on maximal recovery.

Object-Relational Mappings: Hi Richard!

• Applications written in an object-oriented language have object-
oriented data tiers

• Persistence is a relational database

• “Impedance mismatch”
• Map object constructs to relational constructs

• MUST BE BIDIRECTIONAL (Full logical data independence)

• Spanning models

Object-Relational Mappings

S TM

Relational
(Concrete)

Object-
Oriented
(Virtual)

• Specification
• Relational

equivalences
• Mapping strategies

Query
Update

(Schema Δ)

An O-R Mapping Is…

• … generally an operational specification rather than a declarative
query or set of queries

• … tailored more to the purpose of mapping inheritance and
relationships to relations rather than a general-purpose mapping

Mapping Patterns

(TPT)

(TPC)

(TPH)

Mapped to

Mapping Patterns:
TPH Sub-Categories

Name (string)
Salary (integer)

Name (string)
Office (integer)

Name1 (string)
Name2 (string)
Salary (integer)
Office (integer)

Name (string)
Salary (integer)
Office (integer)

String1 (string)
Integer1 (integer)

Fully disjoint Reuse by column Reuse by domain

Clear column
provenance

Clear name reuse Maximum data
density

Mapping Patterns: Etc.

Horizontal Partitioning Vertical Partitioning Association Join Tables

Origin = ‘A’

Origin = ‘B’

0..1 *

OR
?

ORM Product Space

• Ruby on Rails

• Hibernate/NHibernate

• SQLAlchemy

• Entity Framework

• TopLink

• Some major tradeoffs:
• Expressiveness

• Specification style

Hibernate Example
<hibernate-mapping>

<class name="eg.hibernate.mapping.dataobject.Person" table="TB_PERSON" polymorphism="implicit">

<id name="id" column="ID">

<generator class="assigned"/>

</id>

<set name="rights" lazy="false">

<key column="REF_PERSON_ID"/>

<one-to-many class="eg.hibernate.mapping.dataobject.Right" />

</set>

<joined-subclass name="eg.hibernate.mapping.dataobject.Individual"

table="TB_INDIVIDUAL">

<key column="id"/>

<property name="firstName" column="FIRST_NAME" type="java.lang.String" />

<property name="lastName" column="LAST_NAME" type="java.lang.String" />

</joined-subclass>

<joined-subclass name="eg.hibernate.mapping.dataobject.Corporation"

table="TB_CORPORATION">

<key column="id"/>

<property name="name" column="NAME" type="string" />

<property name="registrationNumber" column="REGISTRATION_NUMBER" type="string" />

</joined-subclass>

</class>

</hibernate-mapping>

Client Class Store Table

TPT-Style Mapping

XML fragments almost correspond to
individual O-to-R transformations

TPT-Style Mapping

In General, Two Approaches

S T
M

S T
M

“Interactivity”

Schema Evolution: common practice

• Evolution in the real world:

• The DBA defines an SQL DDL script modifying S2 into S3

• The DBA defines an SQL DML script migrating data from DB2 to DB3

• Queries in Q2 might fail, the DBA adapts them manually as in Q3 =

Q2’ + Q3_new (new queries added on S3)

Schema Evolution: common practice

• DB Administrator (DBA) nightmares:

• Data Migration: Data loss, redundancy, efficiency of the migration,

efficiency of the new design

• Impact on Queries and applications

Schema Evolution: Ideal World

• Evolution in an ideal world:

• Evolution design is assisted and predictable

• Data migration scripts are generated automatically

• Legacy Queries (and updates, views, integrity constraints,…)

are automatically adapted to fit the new schema

Not Our First Rodeo

S T
M

• S and T may not belong to the same data model
• Assume the existence of a union model
• S and T are just “special cases” in the union model, conforming to one or the other of

the union summands
• NO UNIFIED THEORY

Can’t we all just get along?

Erik Meijer, via Twitter:

“Not only was Ted Codd not a developer;
our friend the Reverend Thomas Bayes
wasn't one either. We are still suffering

from the side-effects.”

Entity Framework (EF):
A Brief Overview

Client-side (Objects): Store side (Relations):

Classes Tables

Q1 = Q1’
Q2 = Q2’
Q3 = Q3’

…

(select-
project
only)

Query view VQ

Update view VU
Merge view VM

Object Queries
(LINQ)

Object Updates

Mapping specified at
schema level

Mapping compiled to
views

Preserve fidelity of the
source data

Person:
id
name
title

EF Simple Example

Client-side (Classes): Store side (Relations):

Person1(

id integer PRIMARY KEY,

name varchar(50),

)

Person2(

id integer PRIMARY KEY,

title varchar(50),

details varchar(2000)

)

πid, name Person = πid, name Person1

Person = πid, name, title Person1 ⋈ Person2

πid, title Person = πid, title Person2

Entity Framework: Major Results

• Validation procedure ensures that a collection of mapping fragment
roundtrips
• Each client state maps to a valid state

• Client state travel to store and back is invariant

• Guarantees query and update safety

• Mapping compilation procedure expressive enough for common
mapping scenarios, and many uncommon ones
• All of the mapping schemes previously noted

Entity Framework Opportunities

PutGet
+

GetPut

Query View
+

Update View
+

Merge View

≡

Invalid mappings make me sad

Can TGGs do a better job of
construction and debugging?

S TMS’ T’

Choosing update policies Choosing population policies

σ π ⋈ ⋂ ⋃

Data updates based on:
• Functional dependencies (default)
• Environment variables
• Nulls or distinguished values
• Direction bias

Schema update policies/alternatives

Customer
CID (key)

Name
Address

Order
OID (key)
CID (FK)
Payment

Details
ID (key)

Payment
Address
Region

Customer(C,N,A),
Order(O,C,P) 
Details(O,P,A,_)

⋈

Customer Order

π

Name

+ Region

Right-hand update and evolution bias

Insert nulls

Address  RegionApply function R = f(A)

Some introductory work has been done in this space, but at a speculative level. Let’s solve this thing!

Extract
Transform
Load

Object
Relational
Mapping

See Database Researchers In Their Natural Habitat!

Bx
BX 2014: Deadline Dec. 7! Tutorial deadline Jan. 6!

Thank You!

