
Modeling Language Transformations with USE

Martin Gogolla
University of Bremen, Germany

Database Systems Group

Overview slide from Arend Rensink

Tool USE (UML-based Specification Environment)

● Validation and verification tool for UML and OCL models
● Supports UML class, object, sequence, and statechart diagrams
● OCL support for (a) class invariants, (b) operation pre- and

postconditions, (c) definition of query operations, (d) derivations
for attributes and association ends, (e) state invariants, and
(f) transition guards and transition postconditions

● Imperative language for implementing non-query operations on
the model level: SOIL (Simple Ocl-like Imperative Language)

● Model validation by executing test scenarios
● Automatic generation of test scenarios in form of object

diagrams through a model validator based on a translation of
UML and OCL into relational logic (realized in Kodkod/Alloy)

● Checking of model properties like model consistency, model
minimality or model state reachability

Transformation model SPECIFYING Model transformations

● Language described by metamodel (class model plus OCL
constraints) divided into syntax and semantics (evaluation)

● Transformation needs two languages: North and South
● Direction-neutral transformation model Trafo
● Transformation properties (e.g., equivalence, embedding) stated

as class invariants in Trafo
● Model transformation realized as imperative operations
● (a) Languages to be transformed, (b) transformation and

(c) properties are formulated in a uniform way as metamodels

Example Transformation Model: Roman numbers

Example Transformation Model: Roman numbers

Employing SOIL for Implementing a Model Transformation

RomanNumber::RN2NN()
begin
-- IN: RomanNumber object self representing a correct Roman number
-- OUT: Natural, Trafo, NaturalNumber, Int objects with proper links
declare n:Natural, t:Trafo, nn:NaturalNumber, i:Int, j:Int, s:Integer;
n:=new Natural; n.value:=self.value();
insert (self,n) into RomanNumber_Natural;
t:=new Trafo;
insert (t,self) into Trafo_RomanNumber;
insert (t,n) into Trafo_Natural;
nn:=new NaturalNumber; nn.value:='00'.concat(n.value.toString());
insert (t,nn) into Trafo_NaturalNumber;
i:= new Pos;
insert (t,i) into Trafo_Int;
insert (nn,i) into NaturalNumber_Int;
for s in Sequence{1..n.value-1} do
 j:=new Pos; insert (j,i) into PredSucc; i:=j;
end;
j:=new Zero; insert (j,i) into PredSucc;
end

Employing SOIL for Implementing Transformation Operations

IV.RN2NN()

For a given scenario, the tool can check the
realized Model Transformation against the
Transformation Model which states
transformation properties
(e.g., equivalence w.r.t. semantical objects)

Employing the Model Validator for Checking Model Properties

● Model validator is able to automatically construct test scenarios
(object diagrams) from a finite search space which has to be
configured by the developer

● Existence of object diagram can prove consistency of the
transformation model (and other properties)

● Suspected logical consequence of a model may be added in
negated form to the model

● If no object diagram is found, the suspected consequence can
be considered to be a valid consequence of the model (this is
true at least in the considered finite search space)

Employing the Model Validator for Checking Model Properties

Representation of integers in predn(zero) or succn(zero) normalform

Employing the Model Validator for Checking Consistency

Neg_min = 0
Neg_max = 9
Pos_min = 0
Pos_max = 9
Zero_min = 1
Zero_max = 1
PredSucc_min = 9
PredSucc_max = 9

Employing the Model Validator for Checking Consistency

Neg_min = 0
Neg_max = 8
Pos_min = 0
Pos_max = 8
Zero_min = 1
Zero_max = 1
PredSucc_min = 9
PredSucc_max = 9

There are no object diagrams where
both Neg and Pos objects occur.

Formally: No object diagrams with
 n PredSucc links and
 at most n-1 Neg objects or
 at most n-1 Pos objects.

Terms North and South language are ok, but in a Banff context ...

Thanks for your attention!

Terms North and South language are ok, but in a Banff context ...

... Grizzly and Wolf language are more appropriate.

-- synob1.semantics<>synob2.semantics IMPLIES
-- synob1.trafo.syntax<>synob2.trafo.syntax
context rn1,rn2:RomanNumber inv embeddingOnSyntaxLevel:
 rn1.natural<>rn2.natural implies
 rn1.trafo.naturalNumber<>rn2.trafo.naturalNumber
Possible: transformation testing with scenarios

