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1 Historic background

Motivation: explanation of anomalies in X-ray absorption in metals
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INFRARED CATASTROPHE IN FERMI GASES WITH LOCAL SCATTERING POTENTIALS

P. W. Anderson
Bell Telephone Laboratories, Murray Hill, New Jersey

(Received 27 March 1967)

We prove that the ground state of a system of N fermions is orthogonal to the ground
state in the presence of a finite range scattering potential, as N . This implies that
the response to application of such a potential involves only emission of excitations into
the continuum, and that certain processes in Fermi gases may be blocked by orthogonali-
ty in a low-1', low-energy limit.

Kohn and Majumdar' have recently pointed
out that there is no singular point for finite
A. of some properties —notably the electron den-
sity and energy —of a many-body system consist-
ing of a free noninteracting Fermi gas plus
a single local scattering potential of strength
&V(r) and finite range a. This is true even
at the point where V becomes strong enough
to begin discontinuously to form a bound state.
We describe here another rather different

and somewhat unexpected aspect of this type
of continuity. When A, is big enough to form
a bound state, the overlap integral between
the ground state with the potential, and thus
with an electron in the bound state, and any
state described entirely in terms of free plane
waves, including the ground state of the unper-
turbed system, is at best of order N i'2 (since
it necessarily contains the free-bound overlap
which contains the volume to the —~ power).
We show that for any X this overlap is of orderN, e) 0, and thus in principle still 0: The
ground states are orthogonal.
While wave functions and overlap integrals

are often of little consequence in many-body
systems, this one is at least related to the re-
sponse to a sudden application of the potential
U, and indicates that that response involves
only the emission of low-energy excitations
into the continuum, as well as that the truly
adiabatic application of such a potential to such
a system is impossible. Of course, orthogo-
nality as the full interaction is turned on is
expected, and can be dealt with; here the prob-
lem is pinpointed by the fact that the perturba-
tion is infinitesimal in a real sense. Other
physical implications of the result will be dis-
cussed later.
The proof is rather straightforward. For

simplicity, but without changing the result,
we place our system in a spherical box of ra-
dius R and consider only the l = 0 scattering
states. The unperturbed state is a determinant

of spherical waves of which the l =0 represen-
tatives are

In the presence of a potential V causing a finite
phase shift 5(E) for /=0 waves, the new wave
functions are, asymptotically,

(r)-N '
0 n

sin(K r —5(E )[1—(r/R)])
K
n

The overlap integral between typical members
of the two sets near the Fermi surface is

n=4p I r dr p (r)g (r)nn' 0

2m@ N, sin6,
n n' n'

K K, K —K, +5/Rn n' n n'

neglecting central-cell corrections, which,
it will be obvious in what follows, are not im-
portant and only serve to increase the nonor-
thogonality in any case. Setting

N =K /(2~x)"2
n n

we obtain sin5,n'
nn' m(n —n')+ 5'

Summing the squares of Ann over n checks
the normalization of (2), using a well-known
sum for csc'6. The overlap integral between
determinants made up of states cp(1) and g(2)
is easily seen to be

S = det lA nn' (4)

n
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ground-state overlap ... N −const. in the macroscopic limit
controverse discussion in the Physics literature in the 1970ies
still of interest in Physics today
no mathematical explanation



2 Model and result

Schrödinger operators on L2(Rd )

H := −∆ + V0 and H ′ := H + V

V0 Kato decomposable perturbation 0 ≤ V 2 L1
c (Rd )

Finite-volume restrictions to box ΛL := [−L , L ]d with Dirichlet b.c.

HL =
X
j2N

λLj jφ
L
j ihφ

L
j j and H ′L =

X
j2N

µLj jψ
L
j ihψ

L
j j

Non-interacting system of N spinless fermions on
∧N

j=1 L2(ΛL )

H(′)
L :=

NX
j=1
1˝ · · ·˝ 1˝H (′)

L ˝ 1˝ · · ·˝ 1

Ground states

ΦL
N := 1
√
N !
ϕL

1 ∧ · · ·∧ϕL
N and ΨL

N := 1
√
N !

ψL
1 ∧ · · ·∧ ψL

N



Particle number to yield given Fermi energy E 2 R in the mac. limit

N ≡ NL (E ) := #
˚
j 2 N : λLj ≤ E

	
Ground-state overlap

SL (E ) :=
DDD
ΦL
NL (E ) ,,, Ψ

L
NL (E )

EEE
= det

0B@ hϕL
1 , ψ

L
1 i · · · hϕL

1 , ψ
L
NL (E )i

...
...

hϕL
NL (E ), ψ

L
1 i · · · hϕL

NL (E ), ψ
L
NL (E )i

1CA
Theorem A. [Gebert, Küttler, M. – to appear in CMP]
8 sequence of lengths (Ln )n2N, Ln "1, 9 subsequence (Lnk )k2N such that
for Leb.-a.e. E 2 R

lim sup
k!1

ln
ˇ̌
SLnk (E )

ˇ̌
ln Lnk

≤ −
γ(E )

2

with
γ(E ) := lim

ε!0

1
ε2

tr
�√

V 1]E−ε,E ](Hac )V 1[E ,E+ε[(H ′ac )
√
V
�
.
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ln
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SLnk (E )

ˇ̌
ln Lnk
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ε!0

1
ε2

tr
�√

V 1]E−ε,E ](Hac )V 1[E ,E+ε[(H ′ac )
√
V
�
.

γ(E ) well defined for Leb.-a.e. E 2 R

jSLnk (E )j ≤ exp
n
−
aγ(E )

2
ln Lnk + oa(ln Lnk )

o
8 0 < a < 1

if d = 1 or `2(Zd ) no subsequence necessary
γ(E ) = 0 8 E /2 specac (H ) [ = specac (H ′)]
connection with Frank, Lewin, Lieb, Seiringer (2011).



Relation to scattering theory

γ(E ) := lim
ε!0

1
ε2

tr
�√

V 1]E−ε,E ](Hac )V 1[E ,E+ε[(H ′ac )
√
V
�
.

Proposition.
For Leb.-a.e. E 2 specac (H )

γ(E ) = (2π)−2


S (E ) − 1



2
HS = (2π)−2



T (E )


2
HS

with fixed-energy scattering matrix S (E ) : L2(Sd−1)! L2(Sd−1).

Corollary.
Assume d = 3, V0 = 0, and V radially symmetric. Then for Leb.-a.e. E ≥ 0

γ(E ) = 1
π2

1X
`=0

(2` + 1)
�

sin δ`(E )
�2

with scattering phases δ`(E ), ` 2 N0.

Coincides with Anderson’s decay exponent (only point interaction there)!



3 Sketch of the proof

For simplicity: H = Hac and H ′ = H ′ac

A :=

0B@hφ
L
1 , ψ

L
1 i · · · hφL

1 , ψ
L
N i...

...
hφL

N , ψ
L
1 i · · · hφL

N , ψ
L
N i

1CA
Lemma 1. Let E 2 R and recall N ≡ NL (E ). Thenˇ̌
SL (E )

ˇ̌
= jdetA j = exp

n
− 1

2

1X
k=1

1
k

tr
�

(P Π P )k
� o

≤ exp
n
− 1

2
tr (P Π)

o
with P := 1]−1,λLN ](HL ) and Π := 1[µLN+1,1[(H ′L ).

Definition. Anderson integral

IL (E ) := tr (P Π)

Lower bound on IL (E ) needed!

[Küttler, Otte, Spitzer – AHP to appear]

IL (E ) = γ(E ) ln L + o(ln L )

(d = 1, V0 = 0, V more general)

Lemma 2. 8 sequence of lengths (Ln )n2N, Ln "1, 9 subsequence (Lnk )k2N

such that for Leb.-a.e. E 2 Rˇ̌̌
ILnk (E ) − tr

�
1]−1,E ](HLnk ) 1]E ,1[(H ′Lnk )

�ˇ̌̌
= o(ln Lnk )
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Lemma 3. Let E 2 R. Then

8 a > 0

tr
�

1]−1,E ](HL ) 1]E ,1[(H ′L )
�

=
∫∫∫

]−1,E ]×]E ,1[

dµL (x , y)
(y − x)2

with µL (B × B ′) := tr
�√

V1B (HL )V 1B ′(H ′L )
√
V
�

Lemma 4. 8 0 < a < 1 for Leb.-a.e. E 2 R
∫∫∫

]−1,E ]×]E ,1[

dµL (x , y)
(y − x + L −a)2

≥
∫∫∫

]−1,E ]×]E ,1[

dµ(x , y)
(y − x + L −a)2

+Oa(1)

with µ(B × B ′) := tr
�√

V1B (H )V 1B ′(H ′)
√
V
�

Idea of the proof: regularise, Helffer-Sjöstrand, remove regularisation!

Lemma 5. 8 a > 0 for Leb.-a.e. E 2 R
∫∫∫

]−1,E ]×]E ,1[

dµ(x , y)
(y − x + L −a)2

= a γ(E ) ln L + oa(ln L )



Lemma 3. Let E 2 R. Then 8 a > 0

tr
�

1]−1,E ](HL ) 1]E ,1[(H ′L )
�

≥
∫∫∫

]−1,E ]×]E ,1[

dµL (x , y)
(y − x +L −a)2

with µL (B × B ′) := tr
�√

V1B (HL )V 1B ′(H ′L )
√
V
�

Lemma 4. 8 0 < a < 1 for Leb.-a.e. E 2 R
∫∫∫

]−1,E ]×]E ,1[

dµL (x , y)
(y − x + L −a)2

≥
∫∫∫

]−1,E ]×]E ,1[

dµ(x , y)
(y − x + L −a)2

+Oa(1)

with µ(B × B ′) := tr
�√

V1B (H )V 1B ′(H ′)
√
V
�

Idea of the proof: regularise, Helffer-Sjöstrand, remove regularisation!

Lemma 5. 8 a > 0 for Leb.-a.e. E 2 R
∫∫∫

]−1,E ]×]E ,1[

dµ(x , y)
(y − x + L −a)2

= a γ(E ) ln L + oa(ln L )



Lemma 3. Let E 2 R. Then 8 a > 0

tr
�

1]−1,E ](HL ) 1]E ,1[(H ′L )
�

≥
∫∫∫

]−1,E ]×]E ,1[

dµL (x , y)
(y − x +L −a)2

with µL (B × B ′) := tr
�√

V1B (HL )V 1B ′(H ′L )
√
V
�

Lemma 4. 8 0 < a < 1 for Leb.-a.e. E 2 R
∫∫∫

]−1,E ]×]E ,1[

dµL (x , y)
(y − x + L −a)2

≥
∫∫∫

]−1,E ]×]E ,1[

dµ(x , y)
(y − x + L −a)2

+Oa(1)

with µ(B × B ′) := tr
�√

V1B (H )V 1B ′(H ′)
√
V
�

Idea of the proof: regularise, Helffer-Sjöstrand, remove regularisation!

Lemma 5. 8 a > 0 for Leb.-a.e. E 2 R
∫∫∫

]−1,E ]×]E ,1[

dµ(x , y)
(y − x + L −a)2

= a γ(E ) ln L + oa(ln L )



Lemma 3. Let E 2 R. Then 8 a > 0

tr
�

1]−1,E ](HL ) 1]E ,1[(H ′L )
�

≥
∫∫∫

]−1,E ]×]E ,1[

dµL (x , y)
(y − x +L −a)2

with µL (B × B ′) := tr
�√

V1B (HL )V 1B ′(H ′L )
√
V
�

Lemma 4. 8 0 < a < 1 for Leb.-a.e. E 2 R
∫∫∫

]−1,E ]×]E ,1[

dµL (x , y)
(y − x + L −a)2

≥
∫∫∫

]−1,E ]×]E ,1[

dµ(x , y)
(y − x + L −a)2

+Oa(1)

with µ(B × B ′) := tr
�√

V1B (H )V 1B ′(H ′)
√
V
�

Idea of the proof: regularise, Helffer-Sjöstrand, remove regularisation!

Lemma 5. 8 a > 0 for Leb.-a.e. E 2 R
∫∫∫

]−1,E ]×]E ,1[

dµ(x , y)
(y − x + L −a)2

= a γ(E ) ln L + oa(ln L )



4 Towards the exact asymptotics ...
PHYSICAL REVIEW VOLUME 164, NUMBER 2

Ground State of a Magnetic Impurity in a Metal
PHILIP W. ANDERSON

Bell Telephone Laboratories, 3furray Hill, See Jersey
(Received 21 July 1967)
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A new type of ground-state wave function for a magnetic impurity in a metal is postulated, and its
parameters are determined variationally. The basic idea is that formation of a singlet ground state requires
the phase shifts of all electrons near the Fermi surface to be adjusted simultaneously. The method resembles
a configuration-interaction treatment of in-out correlation. The result is a phase shift which varies as
(F—Ep)" near the Fermi surface and a binding energy larger than in previous variational treatments.

r 1HERE has been much recent interest in the be-..havior of magnetic impurities in metals below the
Kondo-Suhl temperature. ' The prevailing opinion at
present is that the ground state is in some sense a
singlet, '8 "which forms near T& with binding energy
kpT~. If the ground state is to be a singlet, it seems

reasonable that it should be treated by methods and
with a model which is not incompatible with the
"ordinary" nonmagnetic impurity. For instance, such
an impurity obeys the Friedel sum rule, " so that the
T=O phase shift at the Fermi surface is determined
by electrical neutrality, which is difficult within the
usual "Rondo model. " Such a method and its results
are the subject of this paper.
The strong Coulomb interaction, which, in the mag-

netic impurity, causes magnetism, can in a singlet
only induce the "in-out" correlation effect. In-out cor-
relation in nonmagnetic impurities should be dealt
with as in atomic systems, by some combination of
unrestricted Hartree-Fock (HF) and configuration in-
teraction. The corresponding methods in the magnetic
impurity system, however, run into a paradox which
is both the difficulty of and the key to the problem.
This is that, using the result of a recent paper, '5 the
lowest unrestricted HF solutions have no matrix ele-
ments to any singlet solution or to each other, because
they have phase shifts at the Fermi surface for opposite
spins which are greatly diferent. A singlet state in
any real sense—i.e., having no net spin within a finite
sphere around the impurity —must have equal phase
shifts for the two spins, by the Friedel theorem.
' J. Kondo, Progr. Theoret. Phys. (Kyoto) 32, 37 (1964).' I4. Suhl, Phys. Rev. 138, A515 (1965).' Y. Nagaoka, Phys. Rev. 138, A1112 (1965).
4 A. A. Abrikosov, Physics 2, 5 (1965).' S. D. Silverstein and C. B. Duke, Phys. Rev. Letters 18, 695

(1967).
e H. Suhl, Phys. Rev. Letters 18' 743 (1967) (an excellent

summary of the present situation).'D. R. Hamann and P. M. Bloom6eld, Phys. Rev. (to be
published),
J. R. Schriefter and D. C. Mattis, Phys. Rev. 140, A1412

(1965).
~ J. Kondo, Progr. Theoret. Phys. (Kyoto) 34, 204 (1965).
'0 K. Yosida, Phys. Rev. 147, 223 (1966); Progr. Theoret,

Phys. (Kyoto) 36, 875 (1966); A. Okiji, ibid. 36, 712 (1966)."A. A. Abrikosov, Physics (to be published)."A. J. Heeger and M. A. Jensen, Phys. Rev. Letters 18, 488
(1967)."J.Kondo, Progr. Theoret. Phys. (Kyoto) 36, 429 (1966).' J.S.Langer and V. Ambegaokar, Phys. Rev. 121, 1091 (1961)."P.W. Anderson, Phys. Rev. Letters 18, 1049 (1967) .

Our technique will be to construct a solution from
antisymmetrized products of single-particle scattered
wavefunctions, as in HF, but to modify each such
determinant so that it can interact with the other
configurations chosen: Essentially by fiat, we change
the phase shifts in a small region near the Fermi sur-
face so as to make them equal and allow finite matrix
elements. The form of the modification is chosen varia-
tionally, by minimizing the over-all energy.
As in the usual HF approach, " we work with the

following Hamiltonian as a model which contains most
of the relevant physics:

K Q esns Ed g Ns+Unglrldi

+ Q &ss(G'~s +4'~s.) (1)

For the time being let us assume

U»F,»p(0) (V')„—=A,
where p(0) is the density of states at the Fermi sur-
face, which is taken as the zero of energy. Vdj, becomes
small for

~
es

~ ) a cutoff D, which is taken of order Ed
for simplicity.
Our variational assumption about the wave function

is the following:

C =n(4t+C'l) +pC'.
Here C~, C ~, and C' are determinantal wave functions
made up from two sets of scattered wave functions,
s,+(r) and'ts, (r), and we define Fermion operators
CI„+ and CI„annihilating the two types of waves.
At a considerable distance from the Fermi surface,
O'J,+ is the same as the scattered wave function of en-
ergy es with U in (1) set equal to zero and the reso-
nance at E~—i.e., the up-spin HF solution —and %J,
is the corresponding down-spin so1ution, with the reso-
nance at Ed+U. These wave functions, of course, are
also relatively shifted by the well-known energy shift
~ 5/R. "
"P. W. Anderson, Phys. Rev. 124, 41 (1961)."We will use repeatedly the essentially complete equivalence

of the phase-shift scheme for doing the magnetic-impurity prob-
lcm LA. Blandin and J. Friedel, J. Phys. Radium 19, 573 (1958}j
and the local orbital scheme of Ref. 16, which equivalence is
proved in P. W. Anderson and W. L. McMillan, in Proceedings
of the International School of Physics "Enrico Fermi" Course
XXXVII (,Academic Press Inc., New York, 1967) p. 6'.
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cog—"=ln—.„=g e 8' (14)

I et us note several features of this result. First,
if ite as N~O (or ~X) the overla is zero as

This is the exact version of the or-
thogonality theorem proved as an inequality in Ref. 15.
It is interesting that the main difference from the
previous result is to replace sin'6 by P.
of m corresponds to S~E '", which is precisely the
overlap one expects, since then one state contains pre-
cisely one localized electron which in the other is free,
and a local-free overlap integral is ~E '~'. We should
note that when 6 is 6nite and large it is not valid to
retain only the quadratic terms in the expansion of
(12), but the change in the result is a numerical factor
in the 6rst few factors of the product which can be
computed in detail if need be.
For the actual overlap (12) to be finite, S„must

vanish as n~0 fast enough to converge the 6rst sum.
This gives us a Fermi-surface structure of a width 8'
which we may define by setting

s (cf,c„~&}
SPIN f

/ ~+l
/

II

Pro, 2. Phase shifts of the wave function obtained by multiplying
by one component Vl,q of the single-particle potential.

excellent approximation to consider C t as a projected
wave function in which the projection operator 1—ed t =
0, as Co is projected on eq=0. Then except at the
resonance near E& these may be changed into each
other by multiplication with Cd or' Cgt.
We then wish to compute (gqC„~) CqC t Now. CdC t

is a wave function with one less electron than Co, but
because their phases are now shifted by m at the Fermi
surface the energy levels match precisely at both e&&Edp
and at m=0. We now insert into C~C t a wave function
having constant amplitude Vl,~ for each QI, in Cc, which
is to say our overlap determinant now looks like

In later sections and the Appendix we handle this
structure in more detail, working out as best we can
the additive numerical constants in expressions Like
(14), which is correct to logarithmic accuracy. These
constants will be vital to the later evaluation of the
energy.
Let us estimate the contribution to the third sum

iil (13) coming fi'OII1 tlie iegloli of tlie resonance a' t
X~:d by assigning a width 6 to that resonance as follows:

1 (+;,+,+) (+,—,+,+) ~ ~ ~

1 (+,—,+&+)

(17)

~~ (&~.—4)'
m=1 m m=(Sg+6) p—n

(1/eP)

g2 N X n(g g)2 g&

n=l + + n~l m=1
(15)

Sp t ~(hlV) '12/E&(1.
(The contribution of n Wp to the second two sums
is not logarithmic, though it may, of course, be 6nite:
All calculations are of necessity limited to a kind of
logarithmic accuracy. )
The actual evaluation of the desired matrix element

(9) requires one more trick of manipulation with these
overlap determinants. Acting on C, with C„ ls not
an operation which is easy to evaluate numerically,
but physically it is dear enough what that does: It
removes the resonance at E~ and leaves the phase
shift at all energies above E~ shifted by ~. It is an

=C (Eg+6) p—e] '—(E—e) '

The sum over e of the last term cancels the second
sum in (13); the first gives us

To evaluate this we resort simply to the sum of the
minors of the 6rst column. The

fifth

minor is now an
(E—1)&((E 1) determinant w—ith the Mth wave
function %~ omitted. The em element of this Mth
minor is (we again assume that only one phase shift
varies, for the sake of simplicity only in this case)

sin%6M

+ .]
@=1~ ~ iV 1, v=1, 2. M——1, M+1 ~ ~ ~ 1V

sin (s 8„'~r)
sgn(M —e),

7r"Le—m+8.'~
m=1 - S—1 m=1 ~ ~ S—1

with
g IM m&M
8„'~=8 +1, m&M. (19)

The eRect of the sgn function in (17) is just such as
to remove the (—)~ in the minor expansion of (17),
so that the net result is that the kth matrix element
is just obtained by introducing a saltus of m in the

      . . .

. . .

Theorem B. [Gebert, Küttler, M., Otte – in prep.]
8 sequence of lengths (Ln )n2N, Ln "1, 9 subse-
quence (Lnk )k2N such that for Leb.-a.e. E 2 R

lim sup
k!1

ln
ˇ̌
SLnk (E )

ˇ̌
ln Lnk

≤ −
zγ(E )

2
with

zγ(E ) :=



 arcsin jT (E )/2j


2
HS

π2
.

Compare Theorem A:

γ(E ) :=



T (E )/2


2
HS

π2
.
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A new type of ground-state wave function for a magnetic impurity in a metal is postulated, and its
parameters are determined variationally. The basic idea is that formation of a singlet ground state requires
the phase shifts of all electrons near the Fermi surface to be adjusted simultaneously. The method resembles
a configuration-interaction treatment of in-out correlation. The result is a phase shift which varies as
(F—Ep)" near the Fermi surface and a binding energy larger than in previous variational treatments.

r 1HERE has been much recent interest in the be-..havior of magnetic impurities in metals below the
Kondo-Suhl temperature. ' The prevailing opinion at
present is that the ground state is in some sense a
singlet, '8 "which forms near T& with binding energy
kpT~. If the ground state is to be a singlet, it seems

reasonable that it should be treated by methods and
with a model which is not incompatible with the
"ordinary" nonmagnetic impurity. For instance, such
an impurity obeys the Friedel sum rule, " so that the
T=O phase shift at the Fermi surface is determined
by electrical neutrality, which is difficult within the
usual "Rondo model. " Such a method and its results
are the subject of this paper.
The strong Coulomb interaction, which, in the mag-

netic impurity, causes magnetism, can in a singlet
only induce the "in-out" correlation effect. In-out cor-
relation in nonmagnetic impurities should be dealt
with as in atomic systems, by some combination of
unrestricted Hartree-Fock (HF) and configuration in-
teraction. The corresponding methods in the magnetic
impurity system, however, run into a paradox which
is both the difficulty of and the key to the problem.
This is that, using the result of a recent paper, '5 the
lowest unrestricted HF solutions have no matrix ele-
ments to any singlet solution or to each other, because
they have phase shifts at the Fermi surface for opposite
spins which are greatly diferent. A singlet state in
any real sense—i.e., having no net spin within a finite
sphere around the impurity —must have equal phase
shifts for the two spins, by the Friedel theorem.
' J. Kondo, Progr. Theoret. Phys. (Kyoto) 32, 37 (1964).' I4. Suhl, Phys. Rev. 138, A515 (1965).' Y. Nagaoka, Phys. Rev. 138, A1112 (1965).
4 A. A. Abrikosov, Physics 2, 5 (1965).' S. D. Silverstein and C. B. Duke, Phys. Rev. Letters 18, 695

(1967).
e H. Suhl, Phys. Rev. Letters 18' 743 (1967) (an excellent

summary of the present situation).'D. R. Hamann and P. M. Bloom6eld, Phys. Rev. (to be
published),
J. R. Schriefter and D. C. Mattis, Phys. Rev. 140, A1412

(1965).
~ J. Kondo, Progr. Theoret. Phys. (Kyoto) 34, 204 (1965).
'0 K. Yosida, Phys. Rev. 147, 223 (1966); Progr. Theoret,

Phys. (Kyoto) 36, 875 (1966); A. Okiji, ibid. 36, 712 (1966)."A. A. Abrikosov, Physics (to be published)."A. J. Heeger and M. A. Jensen, Phys. Rev. Letters 18, 488
(1967)."J.Kondo, Progr. Theoret. Phys. (Kyoto) 36, 429 (1966).' J.S.Langer and V. Ambegaokar, Phys. Rev. 121, 1091 (1961)."P.W. Anderson, Phys. Rev. Letters 18, 1049 (1967) .

Our technique will be to construct a solution from
antisymmetrized products of single-particle scattered
wavefunctions, as in HF, but to modify each such
determinant so that it can interact with the other
configurations chosen: Essentially by fiat, we change
the phase shifts in a small region near the Fermi sur-
face so as to make them equal and allow finite matrix
elements. The form of the modification is chosen varia-
tionally, by minimizing the over-all energy.
As in the usual HF approach, " we work with the

following Hamiltonian as a model which contains most
of the relevant physics:

K Q esns Ed g Ns+Unglrldi

+ Q &ss(G'~s +4'~s.) (1)

For the time being let us assume

U»F,»p(0) (V')„—=A,
where p(0) is the density of states at the Fermi sur-
face, which is taken as the zero of energy. Vdj, becomes
small for

~
es

~ ) a cutoff D, which is taken of order Ed
for simplicity.
Our variational assumption about the wave function

is the following:

C =n(4t+C'l) +pC'.
Here C~, C ~, and C' are determinantal wave functions
made up from two sets of scattered wave functions,
s,+(r) and'ts, (r), and we define Fermion operators
CI„+ and CI„annihilating the two types of waves.
At a considerable distance from the Fermi surface,
O'J,+ is the same as the scattered wave function of en-
ergy es with U in (1) set equal to zero and the reso-
nance at E~—i.e., the up-spin HF solution —and %J,
is the corresponding down-spin so1ution, with the reso-
nance at Ed+U. These wave functions, of course, are
also relatively shifted by the well-known energy shift
~ 5/R. "
"P. W. Anderson, Phys. Rev. 124, 41 (1961)."We will use repeatedly the essentially complete equivalence

of the phase-shift scheme for doing the magnetic-impurity prob-
lcm LA. Blandin and J. Friedel, J. Phys. Radium 19, 573 (1958}j
and the local orbital scheme of Ref. 16, which equivalence is
proved in P. W. Anderson and W. L. McMillan, in Proceedings
of the International School of Physics "Enrico Fermi" Course
XXXVII (,Academic Press Inc., New York, 1967) p. 6'.
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cog—"=ln—.„=g e 8' (14)

I et us note several features of this result. First,
if ite as N~O (or ~X) the overla is zero as

This is the exact version of the or-
thogonality theorem proved as an inequality in Ref. 15.
It is interesting that the main difference from the
previous result is to replace sin'6 by P.
of m corresponds to S~E '", which is precisely the
overlap one expects, since then one state contains pre-
cisely one localized electron which in the other is free,
and a local-free overlap integral is ~E '~'. We should
note that when 6 is 6nite and large it is not valid to
retain only the quadratic terms in the expansion of
(12), but the change in the result is a numerical factor
in the 6rst few factors of the product which can be
computed in detail if need be.
For the actual overlap (12) to be finite, S„must

vanish as n~0 fast enough to converge the 6rst sum.
This gives us a Fermi-surface structure of a width 8'
which we may define by setting

s (cf,c„~&}
SPIN f

/ ~+l
/

II

Pro, 2. Phase shifts of the wave function obtained by multiplying
by one component Vl,q of the single-particle potential.

excellent approximation to consider C t as a projected
wave function in which the projection operator 1—ed t =
0, as Co is projected on eq=0. Then except at the
resonance near E& these may be changed into each
other by multiplication with Cd or' Cgt.
We then wish to compute (gqC„~) CqC t Now. CdC t

is a wave function with one less electron than Co, but
because their phases are now shifted by m at the Fermi
surface the energy levels match precisely at both e&&Edp
and at m=0. We now insert into C~C t a wave function
having constant amplitude Vl,~ for each QI, in Cc, which
is to say our overlap determinant now looks like

In later sections and the Appendix we handle this
structure in more detail, working out as best we can
the additive numerical constants in expressions Like
(14), which is correct to logarithmic accuracy. These
constants will be vital to the later evaluation of the
energy.
Let us estimate the contribution to the third sum

iil (13) coming fi'OII1 tlie iegloli of tlie resonance a' t
X~:d by assigning a width 6 to that resonance as follows:

1 (+;,+,+) (+,—,+,+) ~ ~ ~

1 (+,—,+&+)

(17)

~~ (&~.—4)'
m=1 m m=(Sg+6) p—n

(1/eP)

g2 N X n(g g)2 g&

n=l + + n~l m=1
(15)

Sp t ~(hlV) '12/E&(1.
(The contribution of n Wp to the second two sums
is not logarithmic, though it may, of course, be 6nite:
All calculations are of necessity limited to a kind of
logarithmic accuracy. )
The actual evaluation of the desired matrix element

(9) requires one more trick of manipulation with these
overlap determinants. Acting on C, with C„ ls not
an operation which is easy to evaluate numerically,
but physically it is dear enough what that does: It
removes the resonance at E~ and leaves the phase
shift at all energies above E~ shifted by ~. It is an

=C (Eg+6) p—e] '—(E—e) '

The sum over e of the last term cancels the second
sum in (13); the first gives us

To evaluate this we resort simply to the sum of the
minors of the 6rst column. The

fifth

minor is now an
(E—1)&((E 1) determinant w—ith the Mth wave
function %~ omitted. The em element of this Mth
minor is (we again assume that only one phase shift
varies, for the sake of simplicity only in this case)

sin%6M

+ .]
@=1~ ~ iV 1, v=1, 2. M——1, M+1 ~ ~ ~ 1V

sin (s 8„'~r)
sgn(M —e),

7r"Le—m+8.'~
m=1 - S—1 m=1 ~ ~ S—1

with
g IM m&M
8„'~=8 +1, m&M. (19)

The eRect of the sgn function in (17) is just such as
to remove the (—)~ in the minor expansion of (17),
so that the net result is that the kth matrix element
is just obtained by introducing a saltus of m in the

      . . .

. . .

Theorem B. [Gebert, Küttler, M., Otte – in prep.]
8 sequence of lengths (Ln )n2N, Ln "1, 9 subse-
quence (Lnk )k2N such that for Leb.-a.e. E 2 R

lim sup
k!1

ln
ˇ̌
SLnk (E )

ˇ̌
ln Lnk

≤ −
zγ(E )

2
with

zγ(E ) :=



 arcsin jT (E )/2j


2
HS

π2
.

Compare Theorem A:

γ(E ) :=



T (E )/2


2
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π2
.
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