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Overview

Before working on proving many-body localization in some system,
we need a systematic procedure for constructing eigenfunctions of
a random Hamiltonian.

Traditional approaches to Anderson localization using Green’s
functions are problematic for many-body problems because the
energy is extensive.

Instead, we will perform a sequence of similarity transformations on
the Hamiltonian to drive down off-diagonal terms. We will need to
prove exponential localization. In the many-body problem,
exponential decay of probabilities will be required to counter the
geometric growth of the number of configurations with the volume.

Joint work with Tom Spencer



Anderson model

H = H0 + J

Hij = viδij + Jij

Here

Jij =

{
J0 if |i − j | = 1

0 otherwise,

and vi are iid random variables representing unperturbed energies.



Results

Our goal is to prove exponential decay of the eigenfunctions of
H(Λ) uniformly in Λ for small J0.

Theorem
There is a p > 0 such that if J is sufficiently small (depending only
on D and ρ0), the eigenfunction correlator obeys the bound∫

dλ(v)
∑
α

|ψα(i)ψα(j)| ≤ J
p|i−j |
0

As a consequence, if J̃ > 0, ε̃ > 0, with J̃ ε̃ = Jp
0 , then∑

α

|ψα(i)ψα(j)| ≤ J̃ |i−j | with probability 1− ε̃|i−j |.

See http://pi.math.virginia.edu/ ji2k/banff/jacobi.pdf for a draft.



Resonances

Perturbation theory works if there are gaps between eigenvalues.
This is a problem because the eigenvalues become dense as
Λ→ Zd . Luckily, J couples nearest neighbors only, so we only need
to worry about nearest neighbor resonances (for the moment):

〈i , j〉 resonant if |vi − vj | < ε ≡ J
1/20
0 .

Resonant bonds form a dilute set of regions where perturbation
theory breaks down.



Perturbation Theory

Let
J = Jres + Jper

where Jres contains links internal to resonant blocks. Then put

Aij =
Jper
ij

Ei − Ej
.

First order perturbation theory:

ψ
(1)
i = ψi +

∑
j

Jper
ij

Ei − Ej
ψj

=
∑

j

(I + A)ijψj .

Here ψi (j) = δij are the unperturbed eigenvectors.



Effective Hamiltonian

Instead, use Ω = e−A for the basis change (preserves norm).

ψ
(1)
i =

∑
j

Ωtr
ij ψj .

Renormalized Hamiltonian:

H(1) = ΩtrHΩ



Observe that [A,H0] = −Jper:

[A,H0]ij =
Jper
ij Ej − EiJ

per
ij

Ei − Ej
= −Jper

ij .

Then, using H = H0 + J, we have [A,H] = −Jper + [A, J], and so

H(1) = eAHe−A = H + [A,H] +
[A, [A,H]]

2!
+ . . .

= H0 + Jres + Jper − Jper + [A, J] +
[A,−Jper + [A, J]]

2!
+ . . .

= H0 + Jres +
1

2
[A, Jper] + [A, Jres] + . . .

= H0 + Jres + J(1).



Properties of new Hamiltonian:

After the change of basis:

Jper is gone

Jres is still there

J(1) is quadratic and higher order in J0, containing terms of the
form AJ, JA,AJA,AAJ, etc.

J(1) is now long-range: it has a random walk expansion exhibiting
exponential decay away from the resonant blocks.

We also perform exact rotations O in “small” resonant blocks to
diagonalize the Hamiltonian there.



Average over the potential v
Note that Aij is bounded by J0/ε, which is small.

After averaging we get exponential decay either from the small
probability of resonant links or from the random walk expansion in
Ω = e−A: ∫

dλ(v)
∑
α

|(ΩO)xα(ΩO)tr
αy | ≤ (cDε)

|x−y |.

If we could prove this for the complete diagonalization of H, that
would be exponential localization.



Continue the process on a sequence of length scales
Lk = (15/8)k

J(k) is a sum of graphs J
(k)
xy (g)

g is resonant if A
(k)
xy (g) ≡ J

(k)
xy (g)

E
(k)
x −E

(k)
y

is larger than (J/ε)|g |.

Energies E (k) are the diagonal elements of H(k): the potential v is
renormalized by interactions up to the kth scale.



Multi-denominator estimates

Example: two step graph, two denominator lines. |i − j | = 2,
|k − j | = 1.

Naive bound:
J2

0
ε·ε2 not adequate

i k

j

Markov inequality: E (A(g)s) ∼ J2s
0 with s = 4/5.

P(|A(g)| > (J0/ε)
2) ≤ ε2s

Retains exponential decay in |g | for A(g) when non-resonant.

The probability that g is resonant also decays exponentially in |g |.



Diagrams on the k th scale



Loops
If g has loops, then the denominator graph has loops, too, so there
are duplicated or non-independent denominators. We have integrals
like

∫
|v |≥ε

1
v2 dλ(v) ≤ ε−1 which lead to negative powers of ε. This

weakens the bound on the probability that the graph is resonant.

If a graph is not too much longer than the distance traveled, it will
have at least 1/4 of its length free of looping problems, and then

P
(
|A(g)| ≥ (J0/ε)

|g |
)
≤ εs|g |/4.

Graphs that are quite a bit longer than the distance traveled need
to be resummed, but the extra links ensure exponential decay in
the distance (probabilistic bounds not needed). Resummation leads
to slower than quadratic convergence: Lk = (15/8)k .



Walks move through landscape of resonant blocks

Resonant blocks can be treated on scale k if they have volume

≤ exp(ML
2/3
k ).

Such blocks effectively have a connectivity constant exp(ML
2/3
k )

from the sum over states in the block and the sum over sites
adjacent to the block.

Not a problem, because couplings are O(J0/ε)
Lk and resonant

graphs have probability O(εsLk/4)



Walks move through landscape of resonant blocks

large B(1′)

B
(1′)

proximity links

y

x

small block b
(1)

level 2
resonances

level 2
resonances

Figure 2: Large blocks B(1′) and step 2 resonant links form step 2 blocks B(2). Small

blocks b
(1)

without level 2 links are treated perturbatively in this step. Perturbations
involving blocks B(2) are deferred to later steps.

components may be divided in to small blocks b
(2)

α (volume ≤ exp(M42/3)) and large

blocks B
(2′)
α′ (volume > exp(M42/3)). The union of the B

(2′)
α′ is denoted S2′ , and then

B
(2′)
α′ ≡ S2 ∩B(2′)

α′ and S2′ = S2′ ∩ S2.

We will bound E (2)
xy , the probability that x, y lie in the same block b

(2)
or B

(2)
. In the

first step analysis, there had to be an unbroken chain of resonant links from x to y. Here,

we need to consider chains formed by B
(1′)

and by resonant graphs g1′ , each thickened
by three steps. (Let g1′ denote the thickened version of g1′ .) But when two graphs
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Large blocks

 
 ̅     

      

Fig. 4 Left over interaction terms couple the core B(j’) to its 

collar. Large blocks need a collar (width logarithmic in the volume) so
that they interact only through diagrams of sufficiently high order.



Many-body Hamiltonian

What are the prospects for proving many-body localization with
this method?

Start with a simple 2 by 2 Hamiltonian on each site:

H0 =
∑
i∈Λ

(
hi J
J −hi

)
=
∑
i∈Λ

(hiσ
z
i + Jσx

i )

where hi is a random field. Then let

H = H0 +
∑
〈i ,j〉

J0σ
z
i σ

z
j

This is a quantum Ising model with a random magnetic field.



Many-body localization

We would like to diagonalize this Hamiltonian and understand the
nature of the eigenfunctions for small J and/or small J0. What
does localization mean in this context?

In the Anderson model, localization means that the eigenfunctions
closely resemble the J = 0 eigenfunctions, which are δ-functions at
the sites in Λ.

In the many-body context, it should mean that the spin variables
should (with rare exceptions) resemble those of the J = 0 states.
That is, a prescribed set of 1’s and -1’s in the lattice. Let’s call the
state-labeling spin configuration σlabel

i .

The many-body wave function should be “concentrated” on
configurations “close to” σlabel

i . This means in particular that each
wave function is approximately a product state, with very little
entanglement.



Background on many-body localization:
A special kind of quantum phase transition

Basko, Aleiner & Altschuler: Annals of Physics 321, 1126 (2006)
Pal & Huse: Phys. Rev. B 82, 174411 (2010), arxiv:1010:1992

Weak Randomness: Strong randomness:

ergodic localized
long-range entanglement short range entanglement

thermalized non-thermalized

Thermalized means an eigenstate at energy E would look locally
like a statistical ensemble of states in thermal equilibrium.
Localized means one bare state σlabel (plus rare localized variations
of it) predominates.



Desired Result
We would like to diagonalize H with a set of eigenfunctions given
by graphical expansions with explicit bounds, including bounds on
probabilities of rare events. Then, because of the smallness or
rarity of deviations from σlabel, one should be able to show that

Avh Avσlabel |〈σz
0〉ψσlabel

| is close to 1,

which shows that for most h’s and for most states the state follows
the label. In the thermalized case, this would be a mixture of many
(unperturbed) states and hence presumably 0.

This is analogous to the situation for the mixed-state classical Ising
model at low temperature:

〈·〉mixed =
1

2
〈·〉+ +

1

2
〈·〉−

with
〈σ0〉mixed = 0, |〈σ0〉±| close to 1.



A more general framework
It is useful to consider a broader class of Hamiltonians:

H = H0 +
∑
X∈Λ

J(X ),

where

X is a connected subset of the lattice Λ ⊂ Zd , and J(X ) is an
off-diagonal matrix operating on ⊗i∈X C 2, the Hilbert space for
spins in X .

H0 is diagonal, may also contain nonlocal terms, but basically
looks like

∑
i hiσ

z
i .

J(X ) and nonlocal terms in H0 are small, with exponential decay
in |X |.

Initially J(X ) will couple nearest neighbor spins only. But as we
proceed with our KAM/RG scheme, more general interactions
J(X ) will be generated.



Resonances

Perturbation theory works if there are gaps between eigenvalues.

More precisely, if off-diagonal terms of H connect states whose
energies are separated by gaps.

The many-body Hamiltonian has only local interactions, so we
need only be concerned about resonances from local transitions.
Initially, we would say that

〈i , j〉 resonant if |∆E | < ε

for some transition involving the spins at nearest-neighbor sites i , j .

I Resonant bonds form a dilute set of regions where
perturbation theory breaks down.



Perturbation Theory
As in the discussion for the Anderson model, let

J = Jres + Jper

where Jres contains terms internal to resonant blocks. Then put

A(X ) =
Jper(X )

∆E

which now generates local moves in spin space, instead of real
space. This means that Ω = e−A = exp (−∑X A(X )) generates
disconnected graphs when we define the effective Hamiltonian
H(1) = ΩtrHΩ (unlike the situation with the Anderson model).

However, rotations of local observables O → ΩtrOΩ do produce
connected graphs, so in the end the procedure is not dissimilar
from the Anderson model case.

The most important difference is the exponential growth of the
number of states—this is why we insisted on exponential bounds
on resonance probabilities.



Block-Block Resonances
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How to control the probability of resonance between blocks?

Can one show that energy differences within a block vary with the
randomness?

This is still an open problem. Only an issue for length scales
exponental in a power of 1/J0.


