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Localization for multi-particle Anderson Hamiltonians

Localization for multi-particle Anderson Hamiltonians

Joint work with Son Nguyen:

e AK and Son T. Nguyen: The bootstrap multiscale analysis for the
multi-particle Anderson model. J. Stat. Phys. 151, 983-973 (2013).

@ AK and Son T. Nguyen: Bootstrap multiscale analysis and localization
for multi-particle continuous Anderson Hamiltonians. Preprint (to be
posted soon in the arXiv).
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Multi-particle Anderson Hamiltonians
The n-particle Anderson Hamiltonian is the random Schrédinger operator

H . — H(()Z())—l— U on L2%R"™), where H((]’"a)) =AM Ly,
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Multi-particle Anderson Hamiltonians
The n-particle Anderson Hamiltonian is the random Schrédinger operator
H((L,n) = H((:a))—k U on Lz(R"d), where H((]’"a)) =AM 4 V(E,").

@ A is the nd-dimensional Laplacian operator.
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Multi-particle Anderson Hamiltonians
The n-particle Anderson Hamiltonian is the random Schrédinger operator
H = H(") +U on L2%R™), where H((,,"a)) =AM 4 v,

@ A is the nd-dimensional Laplacian operator.
o V(") is the random potential given by (x = (xi,...,x,) € R")

V(f,n)(x Z vy (x;), with V(f,)x) Y oru(x—k),
kezd
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Multi-particle Anderson Hamiltonians
The n-particle Anderson Hamiltonian is the random Schrédinger operator
H = H(") +U on L2%R™), where H((,f'(l), =AM 4 v,
@ A is the nd-dimensional Laplacian operator.
o V(,(,") is the random potential given by (x = (x1, ,Xy) € R™)

(n) Z vy (x;), with 7S = ) opu(x—k),
kezd
o o= {(Ok}kezd is a family of independent identically distributed random
variables whose common probability distribution p has a bounded
density p and satisfies {0, M} C suppu C [0, M. ] for some M, > 0;
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Multi-particle Anderson Hamiltonians
The n-particle Anderson Hamiltonian is the random Schrédinger operator
H = H(") +U on L2%R™), where H((,f'(l), =AM 4 v,
@ A is the nd-dimensional Laplacian operator.
@ V" is the random potential given by (x = (xl,... xp) € R™)

(n) Z vy (x;), with 7S = ) opu(x—k),
kezd
o o= {(Ok}kezd is a family of independent identically distributed random
variables whose common probability distribution p has a bounded
density p and satisfies {0, M} C suppu C [0, M. ] for some M, > 0;
@ the single site potential v is a measurable function on R? with

u-Xns (0 <u< x/\5+(0) for some constants u_, 0y € (0,00).
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Localization for multi-particle Anderson Hamiltonians

Multi-particle Anderson Hamiltonians
The n-particle Anderson Hamiltonian is the random Schrédinger operator
H = H(") +U on L2%R™), where H((,f'(l)) =AM 4 v,

@ A is the nd-dimensional Laplacian operator.
@ V" is the random potential given by (x = (xl,... xp) € R™)

(n) Z vy (x;), with 7S = ) opu(x—k),
kezd
o o= {(Ok}kezd is a family of independent identically distributed random
variables whose common probability distribution p has a bounded
density p and satisfies {0, M} C suppu C [0, M. ] for some M, > 0;
@ the single site potential v is a measurable function on R? with
u-Xns (0 <u< X/\5+(0) for some constants u_, 0y € (0,00).
© U is a short range interaction potential between the n particles:

Ux)= Y Ulxi—x),

1<i<j<n
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Localization for multi-particle Anderson Hamiltonians

Multi-particle Anderson Hamiltonians
The n-particle Anderson Hamiltonian is the random Schrédinger operator
H = H(") +U on L2%R™), where H((,f'(l)) =AM 4 v,

@ A is the nd-dimensional Laplacian operator.
o VCE,") is the random potential given by (x = (xl, ,Xy) € R™)
(n) Z vy (x;), with 7S = ) opu(x—k),
kezd
o o= {(Ok}kezd is a family of independent identically distributed random
variables whose common probability distribution p has a bounded
density p and satisfies {0, M} C suppu C [0, M. ] for some M, > 0;
@ the single site potential v is a measurable function on R? with
u-Xns (0 <u< X/\5+(0) for some constants u_, 0y € (0,00).
© U is a short range interaction potential between the n particles:

Ux)= Y Ulxi—x),

N 1<i<j<n

0< U(y) < Un < oo, Uly) = U(~), Uly) =0 for [lylL.. > r0 € (0,20).
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Localization for multi-particle Anderson Hamiltonians

Basic properties of Hc(on)

=
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Localization for multi-particle Anderson Hamiltonians

Basic properties of HC(O"

o HY is a 79-ergodic random Schrddinger operator on L?(R"9). (Z9
acts on R by (x1,%2...,%0) = (x1+a,x2+a,...,xp+a) forac Zd.)
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Basic properties of H((D")
o HY is a 79-ergodic random Schrddinger operator on L?(R"9). (Z9
acts on R™ by (x1,%2...,x,) = (x1 +a,x0+a,...,x,+a) for ac Z9.)
@ There exist fixed subsets ¥ ("), Zgg), Zgg) and Zgg) of R so that the
spectrum G(H(E)”)) of H(E,"), as well as its pure point, absolutely
continuous, and singular continuous components, are equal to these
fixed sets with probability one.
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Localization for multi-particle Anderson Hamiltonians

Basic properties of H((D")

o HY is a 79-ergodic random Schrddinger operator on L?(R"9). (Z9
acts on R™ by (x1,%2...,x,) = (x1 +a,x0+a,...,x,+a) for ac Z9.)

@ There exist fixed subsets ¥ ("), Zgg), ZSQ) and Zgg) of R so that the
spectrum G(H( )) of H(E, ), as well as its pure point, absolutely
continuous, and singular continuous components, are equal to these
fixed sets with probability one.

° H(l) = (g ) sox( =[0,00). Letting Z( ") denote the almost sure

spectrum of H(g a)) we have

s =50+ 450 =[0,00).
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Localization for multi-particle Anderson Hamiltonians

Basic properties of H((D")

o HY is a 79-ergodic random Schrddinger operator on L?(R"9). (Z9
acts on R™ by (x1,%2...,x,) = (x1 +a,x0+a,...,x,+a) for ac Z9.)

@ There exist fixed subsets ¥ ("), Zgg), zﬁQ) and Zgg) of R so that the
spectrum G(H( )) of H(E, ), as well as its pure point, absolutely
continuous, and singular continuous components, are equal to these

fixed sets with probability one.
o HY = (g ) sox( =[0,0). Letting Z( ") denote the almost sure

spectrum of H(g a)) we have

s =50+ 450 =[0,00).

o We have
T =50 = [0,00).
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calization for multi-particle Anderson Hamiltonians
Notation
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Localization for multi-particle Anderson Hamiltonians

Notation
© Given x = (x1,...,x4) € R?, we set |x|| = ||x||.. := max{|xt|, ..., |xq]}.
If a=(a1,...,an) € R", we set ||a]| := max{||a1][,...,[|anl},

diama:=max; j—1, nlai—ajll, Sa=/{a1,...,an}.
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Localization for multi-particle Anderson Hamiltonians

Notation
© Given x = (x1,...,x4) € R?, we set |x|| = ||x||.. := max{|xt|, ..., |xq]}.
If a=(a1,...,an) € R", we set ||a]| := max{||a1][,...,[|anl},

diama:=max; j—1, nlai—ajll, Sa=/{a1,...,an}.

Q Ax = XAl(x) - %{yGR"d;||y—xH<%} for x € Rnd.

Abel Klein Multi-particle localization & unique continuation principle



Localization for multi-particle Anderson Hamiltonians

Notation
© Given x = (x1,...,x4) € R?, we set |x|| = ||x||.. := max{|xt|, ..., |xq]}.
If a=(a1,...,a,) € R", we set ||a]| := max{||a1]|,...,[|anll},
diama:=max; j—1, nlai—ajll, Sa=/{a1,...,an}.

Q Xx= XAi(x) = %{yeR"d;Hy—xH<%} for x e R,
© Fix v> " and let T be the operator on L2 (R") given by
multiplication of the function (x)", where (x) = (1+ Hx||2)%.
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Localization for multi-particle Anderson Hamiltonians

Notation
@ Given x = (x1,...,xq) € RY, we set ||x|| = ||x||., := max{|x1|,...,|xq]}.
If a=(a1,...,a,) € R", we set ||a]| := max{||a1]|,...,[|anll},

diama:=max; j—1, nlai—ajll, Sa=/{a1,...,an}.

Q Xx= XAi(x) = %{yeR"d;Hy—xH<%} for x e R,
© Fix v> " and let T be the operator on L2 (R") given by
multiplication of the function (x)", where (x) = (1+ Hx||2)%.

@ Given a,b € R", we set dy(a, b) := dy(-7a, -%4,), where dy(S1, S2) is
the the Hausdorff distance between finite subsets S;, S, C RY:

du(51, S2) = max{max min ||x — y/|| , max min Hx—y||}.
X651 y€$2 yESz X651
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Localization for multi-particle Anderson Hamiltonians

Notation
@ Given x = (x1,...,xq) € RY, we set ||x|| = ||x||., := max{|x1|,...,|xq]}.
If a=(a1,...,an) € R we set |lal| := max{||a1ll,---,|lanl},

diama:=max; j—1, nlai—ajll, Sa=/{a1,...,an}.

Q Xx=2Anx) = %{yeR"d;Hy—xH<%} for x e R,

© Fix v> " and let T be the operator on L2 (R") given by
multiplication of the function (x)", where (x) = (1+ Hx||2)%.

Q Given a,b € R™, we set dy(a, b) := dy(-%, %), where dy(S1, S2) is
the the Hausdorff distance between finite subsets S;, S, C RY:

du(51, S2) = max{max min ||x — y/|| , max min Hx—y||}.
X651 y€$2 yESz X651

Note that dy(a, b) <|la—b|| < dy(a,b) +diama for a,becR™.
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Localization for multi-particle Anderson Hamiltonians

Notation
@ Given x = (x1,...,xq) € RY, we set ||x|| = ||x||., := max{|x1|,...,|xq]}.
If a=(a1,...,an) € R we set |lal| :== max{||a1]|,---,]lanll},

diama:=max; j—1, nlai—ajll, Sa=/{a1,...,an}.

Q Xx= XAi(x) = %{yeR"d;Hy—x\K%} for x e R,
© Fix v> " and let T be the operator on L2 (R") given by

multiplication of the function (x)", where (x) = (1+ Hx||2)%.
Q Given a,b € R™, we set dy(a, b) := dy(-%, %), where dy(S1, S2) is
the the Hausdorff distance between finite subsets S;, S, C RY:

du(51, S2) = max{max min ||x — y/|| , max mln [Ix — y||}
€51 yeS, yeS2 x

Note that dy(a, b) <|la—b|| < dy(a,b) +diama for a,becR™.

(5] H(S)") will denote a fixed n-particle Anderson Hamiltonian.
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Localization for multi-particle Anderson Hamiltonians

Theorem (Localization for multi-particle Anderson Ham.)

CRI= = = E 9

Ha
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Localization for multi-particle Anderson Hamiltonians

Theorem (Localization for multi-particle Anderson Ham.)

Given N € N, there exists an energy £(M) > 0 such that:

[m]

=
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Theorem (Localization for multi-particle Anderson Ham.)

Given N € N, there exists an energy £(M) > 0 such that:

(1) The following holds with probability one:
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Theorem (Localization for multi-particle Anderson Ham.)

Given N € N, there exists an energy £(M) > 0 such that:

(1) The following holds with probability one:

o (Anderson localization) HY has pure point spectrum in the interval
[0, E(M]. Moreover, for all E < EM) and y € (g (H}) we have

1%w] < Co|| Tyl e ™l forall xeRM.
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Theorem (Localization for multi-particle Anderson Ham.)

Given N € N, there exists an energy £(M) > 0 such that:

(1) The following holds with probability one:

o (Anderson localization) H)Y has pure point spectrum in the interval
[0, E(M]. Moreover, for all E < EM) and y € (g (H}) we have

1%w] < Co|| Tyl e ™l forall xeRM.

In particular, each eigenfunction yw of HY with eigenvalue E < E(V) is
exponentially localized with the non-random rate of decay M > 0.
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Theorem (Localization for multi-particle Anderson Ham.)

Given N € N, there exists an energy £(M) > 0 such that:

(1) The following holds with probability one:

o (Anderson localization) H)Y has pure point spectrum in the interval
[0, E(M]. Moreover, for all E < EM) and y € (g (H}) we have

1%w] < Co|| Tyl e ™l forall xeRM.

In particular, each eigenfunction yw of HY with eigenvalue E < E(V) is
exponentially localized with the non-random rate of decay M > 0.

o (Finite multiplicity of eigenvalues) The eigenvalues of HY in [0, E(V)]
have finite multiplicity:

trX{E}(Ha’\,I) <oo forall E<EM,

Abel Klein Multi-particle localization & unique continuation principle



Localization for multi-particle Anderson Hamiltonians
Theorem-cont.

e (Summable Uniform Decay of Eigenfunction Correlations (SUDEC)) .
For every { € (0,1) there exists a constant C,  such that for every

E<EWN and ¢,y € Ranx (g} (H}) we have

1201 Xy Wl < Cone | T 20| | T 2] (x)2Y e (el
for all x,y € RN,
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Localization for multi-particle Anderson Hamiltonians
Theorem-cont.

e (Summable Uniform Decay of Eigenfunction Correlations (SUDEC)) .
For every ¢ € (0,1) there exists a constant C, ¢ such that for every

E<EM and ¢,y € Ran X (£} (Hg ) we have

10 | |2y ]| < Con || T 20| [| T 2] ()2 e (el

for all x,y € RN,

(11) (Dynamical Localization) For every ¢ € (0,1) and y € RN there exists
a constant Cy(y) such that, letting / = (—eo, EN)],

E< sup ‘
lell.<1

the supremum being taken over all Borel functions g on R with
&g ll.. = supscr |g(t)] < 1.

XX (HY) g (HY) xyH} < Cp(y)e @) for all x € RN,

Abel Klein Multi-particle localization & unique continuation principle



Localization for multi-particle Anderson Hamiltonians
Theorem-cont.

e (Summable Uniform Decay of Eigenfunction Correlations (SUDEC)) .
For every ¢ € (0,1) there exists a constant C, ¢ such that for every

E<EWN and ¢,y € Ranx (g} (H}) we have
10 | |2y ]| < Con || T 20| [| T 2] ()2 e (el

for all x,y € RN,

(11) (Dynamical Localization) For every ¢ € (0,1) and y € RN there exists
a constant Cy(y) such that, letting / = (—eo, EN)],

E< sup ‘
lell.<1

the supremum being taken over all Borel functions g on R with
llgll.. = supser |g(t)] < 1. In particular, we have

E{sup XX 1(HY e ’twa ‘ } < Ce(y)e™ (du(x)° for all x € RN
teR
Multi-particle localization & unique continuation principle

X (HY g (HY) xyH} < Cp(y)e @) for all x € RN,




Localization for multi-particle Anderson Hamiltonians
Comments
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Localization for multi-particle Anderson Hamiltonians

Comments

@ Localization was proved for the (discrete) multi-particle Anderson
model by Chulaevsky and Suhov, using a multiscale analysis, and by
Aizenman and Warzel, using the fractional moment method.
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Localization for multi-particle Anderson Hamiltonians

Comments

@ Localization was proved for the (discrete) multi-particle Anderson
model by Chulaevsky and Suhov, using a multiscale analysis, and by
Aizenman and Warzel, using the fractional moment method.

@ Chulaevsky, Boutet de Monvel and Suhov extended the results of
Chulaevsky and Suhov to the multi-particle Anderson Hamiltonian,
obtaining localization at the bottom of the spectrum.
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Localization for multi-particle Anderson Hamiltonians
Comments

@ Localization was proved for the (discrete) multi-particle Anderson
model by Chulaevsky and Suhov, using a multiscale analysis, and by
Aizenman and Warzel, using the fractional moment method.

@ Chulaevsky, Boutet de Monvel and Suhov extended the results of
Chulaevsky and Suhov to the multi-particle Anderson Hamiltonian,
obtaining localization at the bottom of the spectrum.

@ Our localization results are derived from a bootstrap multiscale
analysis, an enhanced multiscale analysis developed in the one-particle
case by Germinet and K.
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Localization for multi-particle Anderson Hamiltonians

Comments

@ Localization was proved for the (discrete) multi-particle Anderson
model by Chulaevsky and Suhov, using a multiscale analysis, and by
Aizenman and Warzel, using the fractional moment method.

@ Chulaevsky, Boutet de Monvel and Suhov extended the results of
Chulaevsky and Suhov to the multi-particle Anderson Hamiltonian,
obtaining localization at the bottom of the spectrum.

@ Our localization results are derived from a bootstrap multiscale
analysis, an enhanced multiscale analysis developed in the one-particle
case by Germinet and K.

@ Son Nguyen will describe this extension of bootstrap multiscale
analysis in his talk.
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Localization for multi-particle Anderson Hamiltonians

Comments

@ Localization was proved for the (discrete) multi-particle Anderson
model by Chulaevsky and Suhov, using a multiscale analysis, and by
Aizenman and Warzel, using the fractional moment method.

@ Chulaevsky, Boutet de Monvel and Suhov extended the results of
Chulaevsky and Suhov to the multi-particle Anderson Hamiltonian,
obtaining localization at the bottom of the spectrum.

@ Our localization results are derived from a bootstrap multiscale
analysis, an enhanced multiscale analysis developed in the one-particle
case by Germinet and K.

@ Son Nguyen will describe this extension of bootstrap multiscale
analysis in his talk.

@ We extend the bootstrap multiscale analysis (and its consequences) to
the multi-particle Anderson Hamiltonian without requiring a covering
condition. This requires Wegner estimates without a covering
condition, which will be described by Peter Hislop in his talk.
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Unique continuation principle for spectral projections

Unique continuation principle for spectral projections

Wegner estimates without a covering condition use a unique continuation
principle for spectral projections, which we will now describe.

o AK, Unique continuation principle for spectral projections of
Schrédinger operators and optimal Wegner estimates for non-ergodic
random Schrédinger operators. Comm. Math Phys. 323, 1229-1246
(2013)

@ Appendix to : AK and Son T. Nguyen, Bootstrap multiscale analysis
and localization for multi-particle continuous Anderson Hamiltonians.
Preprint (to be posted soon in the arXiv).
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Unique continuation principle for spectral projections

Schrédinger operators
We consider a Schrédinger operator
H=-A+V on LR,

where A is the Laplacian operator and V is a bounded potential.
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Unique continuation principle for spectral projections

Schrédinger operators
We consider a Schrédinger operator
H=-A+V on LR,

where A is the Laplacian operator and V is a bounded potential.
@ We define balls and rectangles:

1
2

d
B(x,d) := {y eRY |y —x| < 6}, with [x|:=|x|, = )] \XJ\2>
=1

d d
A=Ac(a):=a+]] (- =T](a— 9,a+4),
j=1

where a € RY and L = (Ly,...,Lg) € (0,00)7.
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Unique continuation principle for spectral projections

Schrédinger operators
We consider a Schrédinger operator
H=-A+V on LR,

where A is the Laplacian operator and V is a bounded potential.
@ We define balls and rectangles:

1
2

d
B(x,98) := {y eRY |y —x| < 5}, with [x|:=|x|, = )] \XJ\2> ;
=1

d d
L; L; L; L:
AN=Au(a)=a+]](-%.3)=T1(a—%.9+3),

J=1 J=1
where a € RY and L = (Ly,...,Lg) € (0,00)7.
@ Hy denotes the restriction of H to the the rectangle A ¢ RY:
Hyn=—Ap+ VA on L23(A).

e A, is the Laplacian on A with either Dirichlet or periodic bc.
o V) is the restriction of V to A..
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Unique continuation principle for spectral projections

Unique continuation principle for spectral projections

A UCPSP on a rectangle A is an estimate of the form
Xi(HA)WAX 1 (HA) > k21(Ha) on L2(A),

where X, is the characteristic function of an interval I CR, W >0is a
potential, and k¥ > 0 is a constant.
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Unique continuation principle for spectral projections

Unique continuation principle for spectral projections

A UCPSP on a rectangle A is an estimate of the form
Xi(HA)WAX 1 (HA) > k21(Ha) on L2(A),

where X, is the characteristic function of an interval I CR, W >0is a
potential, and k¥ > 0 is a constant.

o If W > x> 0 (covering condition) the UCPSP is trivial.
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Unique continuation principle for spectral projections

Unique continuation principle for spectral projections

A UCPSP on a rectangle A is an estimate of the form
Xi(HA)WA X (HA) > k21(HA) on L2(A),

where X, is the characteristic function of an interval I CR, W >0is a
potential, and k¥ > 0 is a constant.

o If W > x> 0 (covering condition) the UCPSP is trivial.

e If V and W are bounded Z9-periodic potentials, W >0 with W > 0
on an open set, Combes, Hislop and Klopp (2003) proved the UCPSP
for Hp with periodic boundary condition, for boxes A = A, (xo) € RY
with L € N and arbitrary bounded intervals /, with a constant k¥ >0
depending on sup/ (and d,V, W), but not on the box A. Their proof
uses the unique continuation principle and Floquet theory.
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Unique continuation principle for spectral projections

Unique continuation principle for spectral projections

A UCPSP on a rectangle A is an estimate of the form
Xi(HA)WA X (HA) > k21(HA) on L2(A),

where X, is the characteristic function of an interval I CR, W >0is a
potential, and k¥ > 0 is a constant.

o If W > x> 0 (covering condition) the UCPSP is trivial.

e If V and W are bounded Z9-periodic potentials, W >0 with W > 0
on an open set, Combes, Hislop and Klopp (2003) proved the UCPSP
for Hp with periodic boundary condition, for boxes A = A, (xo) € RY
with L € N and arbitrary bounded intervals /, with a constant k¥ >0
depending on sup/ (and d,V, W), but not on the box A. Their proof
uses the unique continuation principle and Floquet theory.

e Germinet and Klein (2013) proved a modified version of the CHK
UCPSP, using Bourgain and Kenig's quantitative unique continuation
principle and (some) Floquet theory, obtaining control of the constant
K in terms of the relevant parameters.
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Theorem (UCPSP)

There exists a constant My > 0, depending only on d, such that:

=
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Unique continuation principle for spectral projections

Theorem (UCPSP)

There exists a constant My > 0, depending only on d, such that:
o Let H=—A+V be a Schrédinger operator on L2(R9).
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Unique continuation principle for spectral projections

Theorem (UCPSP)

There exists a constant My > 0, depending only on d, such that:
o Let H=—A+V be a Schrédinger operator on L2(R9).
e Given an energy Ey >0 and § €]0, 3], define y=y(d,K,5) >0 by

2
P = %5“”"(”"3), where K =K(V,E)=2]|V|.+ Eo.
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Unique continuation principle for spectral projections

Theorem (UCPSP)

There exists a constant My > 0, depending only on d, such that:
o Let H=—A+V be a Schrédinger operator on L2(R9).
e Given an energy Ey >0 and § €]0, 3], define y=y(d,K,5) >0 by

2
P = %5“”"(”"3), where K =K(V,E)=2]|V|.+ Eo.

Then, given
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Unique continuation principle for spectral projections

Theorem (UCPSP)

There exists a constant My > 0, depending only on d, such that:
o Let H=—A+V be a Schrédinger operator on L2(R9).
e Given an energy Ey >0 and § €]0, 3], define y=y(d,K,5) >0 by

2
P = %5“”"(”"3), where K =K(V,E)=2]|V|.+ Eo.

Then, given
o {Vk}reze CRY with B(yk,8) C Ai(k) for all k € Z¢,
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Unique continuation principle for spectral projections

Theorem (UCPSP)

There exists a constant My > 0, depending only on d, such that:
o Let H=—A+V be a Schrédinger operator on L2(R9).
e Given an energy Ey >0 and § €]0, 3], define y=y(d,K,5) >0 by

2
P = %5“”"(”"3), where K =K(V,E)=2]|V|.+ Eo.

Then, given
o {Vk}reze CRY with B(yk,8) C Ai(k) for all k € Z¢,
@ a closed interval | C]—eo, Eg] with |/ <2y,
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Unique continuation principle for spectral projections

Theorem (UCPSP)

There exists a constant My > 0, depending only on d, such that:
o Let H=—A+V be a Schrédinger operator on L2(R9).
e Given an energy Ey >0 and § €]0, 3], define y=y(d,K,5) >0 by

2
P = %5“”"(”"3), where K =K(V,E)=2]|V|.+ Eo.

Then, given
o {Vk}reze CRY with B(yk,8) C Ai(k) for all k € Z¢,
@ a closed interval | C]—eo, Eg] with |/ <2y,
@ a rectangle A = Ap(x0) with xp € R? and L;> 114Vd, j=1,...,d,
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Theorem (UCPSP)

There exists a constant My > 0, depending only on d, such that:
o Let H=—A+V be a Schrédinger operator on L2(R9).
e Given an energy Ey >0 and § €]0, 3], define y=y(d,K,5) >0 by

2
P = %5“”"(”"3), where K =K(V,E)=2]|V|.+ Eo.

Then, given
o {Vk}reze CRY with B(yk,8) C Ai(k) for all k € Z¢,
@ a closed interval | C]—eo, Eg] with |/ <2y,
@ a rectangle A = Ap(x0) with xp € R? and L;> 114Vd, j=1,...,d,
we have
X (HA)WW x (Hp) > ¥2(Ha)  on L2(A),
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Theorem (UCPSP)

There exists a constant My > 0, depending only on d, such that:
o Let H=—A+V be a Schrédinger operator on L2(R9).
e Given an energy Ey >0 and § €]0, 3], define y=y(d,K,5) >0 by

2
P = %5“’(”"3), where K =K(V,E)=2]|V|.+ Eo.

Then, given
o {Vk}reze CRY with B(yk,8) C Ai(k) for all k € Z¢,
@ a closed interval | C]—eo, Eg] with |/ <2y,
@ a rectangle A = Ap(x0) with xp € R? and L;> 114v/d, j=1,...,d,
we have
X (HA)WW x (Hp) > ¥2(Ha)  on L2(A),
where

wh =" ¥ Xs.s)-
keZd N1 (k)CA
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Comments on the UCPSP

@ Rojas-Molina and Veseli¢ (2013) proved, under the hypotheses of the
Theorem, that for boxes A = Ay (xo) with xg € Z9 and L € Ny, if v is
an eigenfunction of Hp with eigenvalue E €] — oo, Ep], then

2
HW(’\)q/H2 > ke, w2 with kg, > 0.
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Comments on the UCPSP

@ Rojas-Molina and Veseli¢ (2013) proved, under the hypotheses of the
Theorem, that for boxes A = Ay (xo) with xg € Z9 and L € Ny, if v is
an eigenfunction of Hp with eigenvalue E €] — oo, Ep], then

2
HW(’\)q/H2 > ke, w2 with kg, > 0.

This is just the UCPSP when | = {E}.
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Comments on the UCPSP

@ Rojas-Molina and Veseli¢ (2013) proved, under the hypotheses of the
Theorem, that for boxes A = Ay (xo) with xg € Z9 and L € Ny, if v is
an eigenfunction of Hp with eigenvalue E €] — oo, Eg], then

2
HW(Msz > ke, w2 with kg, > 0.

This is just the UCPSP when | = { E}.Their proof uses the
quantitative unique continuation principle (Bourgain and Kenig).
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Comments on the UCPSP

@ Rojas-Molina and Veseli¢ (2013) proved, under the hypotheses of the
Theorem, that for boxes A = Ay (xo) with xg € Z9 and L € Ny, if v is
an eigenfunction of Hp with eigenvalue E €] — oo, Ep], then

2
HW(’\)wH2 > ke, w2 with kg, > 0.

This is just the UCPSP when | = { E}.Their proof uses the
quantitative unique continuation principle (Bourgain and Kenig).

@ Our Theorem is derived from the quantitative unique continuation
principle as in Bourgain and Klein using the “dominant boxes"
introduced by Rojas-Molina and Veseli¢.
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Comments on the UCPSP

@ Rojas-Molina and Veseli¢ (2013) proved, under the hypotheses of the
Theorem, that for boxes A = Ay (xo) with xg € Z9 and L € Ny, if v is
an eigenfunction of Hp with eigenvalue E €] — oo, Eg], then

HWWsz > ke, w2 with kg, > 0.

This is just the UCPSP when | = { E}.Their proof uses the
quantitative unique continuation principle (Bourgain and Kenig).

@ Our Theorem is derived from the quantitative unique continuation
principle as in Bourgain and Klein using the “dominant boxes"
introduced by Rojas-Molina and Veseli¢.

@ The UCPSP is a crucial ingredient for proving Wegner estimates for
one and multi-particle Anderson Hamiltonians. The UCPSP replaces
the covering condition.
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Quantitative unique continuation principle (Bourgain-Klein)

[m]
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Quantitative unique continuation principle (Bourgain-Klein)

Let Q C RY open. Let y € H?(Q) and let { € L?(Q) be defined by
—Ay+Vy=_( aeon Q

where V' is a bounded real measurable function on Q, || V]|, < K < eo.
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Quantitative unique continuation principle (Bourgain-Klein)
Let Q C RY open. Let y € H?(Q) and let { € L?(Q) be defined by
—Ay+Vy=_( aeon Q

where V' is a bounded real measurable function on Q, || V]|, < K < eo.
Let © C Q be a bounded measurable set where Hl//%eH2 > 0.
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Quantitative unique continuation principle (Bourgain-Klein)

Let Q C RY open. Let y € H?(Q) and let { € L?(Q) be defined by
—Ay+Vy=_( aeon Q

where V' is a bounded real measurable function on Q, || V]|, < K < eo.
Let © C Q be a bounded measurable set where Hl//%eH2 > 0.

Set Q(x,0):=suply—x| for xeQ.
yeo
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Quantitative unique continuation principle (Bourgain-Klein)

Let Q C RY open. Let y € H?(Q) and let { € L?(Q) be defined by
—Ay+Vy=_( aeon Q

where V' is a bounded real measurable function on Q, || V]|, < K < eo.
Let © C Q be a bounded measurable set where HWXeHz > 0.

Set Q(x,0):=suply—x| for xeQ.
yeo

Let x€Q\O satisfy Q= Q(x0,0)>1 and B(x,6Q+2)C Q.
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Quantitative unique continuation principle (Bourgain-Klein)

Let Q C RY open. Let y € H?(Q) and let { € L?(Q) be defined by
—Ay+Vy=_( aeon Q

where V' is a bounded real measurable function on Q, || V]|, < K < eo.
Let © C Q be a bounded measurable set where HWXeHz > 0.

Set Q(x,0):=suply—x| for xeQ.
yeo

Let x€Q\O satisfy Q= Q(x0,0)>1 and B(x,6Q+2)C Q.

Then, given
0 < & < min{dist(x,0),3},

Abel Klein Multi-particle localization & unique continuation principle



Unique continuation principle for spectral projections

Quantitative unique continuation principle (Bourgain-Klein)

Let Q C RY open. Let y € H?(Q) and let { € L?(Q) be defined by
—Ay+Vy=_( aeon Q
where V' is a bounded real measurable function on Q, || V]|, < K < eo.

Let © C Q be a bounded measurable set where HWXeHz > 0.
Set Q(x,0):=suply—x| for xeQ.
yeo
Let x€Q\O satisfy Q= Q(x0,0)>1 and B(x,6Q+2)C Q.
Then, given
0 < 0 < min {dist(xo,@),%}7

we have

HWQH2>

2\ (A4
6\ (1+K3) <Q3 o8 ol
(o)
where my > 0 is a constant depending only on d.
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A corollary to the quantitative unique continuation principle
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A corollary to the quantitative unique continuation principle

Corollary

There exists a constant My > 0, depending only on d, such that:
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A corollary to the quantitative unique continuation principle

Corollary
There exists a constant My > 0, depending only on d, such that:

o Let H=—A+V be a Schrédinger operator on L?(R?), where V is a
bounded potential with ||V|_ < K.
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A corollary to the quantitative unique continuation principle

Corollary
There exists a constant My > 0, depending only on d, such that:
o Let H=—A+V be a Schrédinger operator on L?(R?), where V is a
bounded potential with ||V|_ < K.
o Fix 55]0,%] and sites {yk } .0 C R with B(yk,8) C Ai(k) for all
ke Z°.
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A corollary to the quantitative unique continuation principle

Corollary
There exists a constant My > 0, depending only on d, such that:

o Let H=—A+V be a Schrédinger operator on L?(R?), where V is a
bounded potential with ||V < K.

o Fix § €]0,1] and sites {yk}cpa C R with B(yx,8) C Ai(k) for all

k ez
o Consider a rectangle N = A (xo) with xo € RY and L > 114/d,
j=1,....d,
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A corollary to the quantitative unique continuation principle

Corollary
There exists a constant My > 0, depending only on d, such that:

o Let H=—A+V be a Schrédinger operator on L?(R?), where V is a
bounded potential with ||V < K.

o Fix § €]0,1] and sites {yk}cpa C R with B(yx,8) C Ai(k) for all

k ez
o Consider a rectangle N = A (xo) with xo € RY and L > 114/d,
j=1,....d,

Then for all real-valued w € 2(Ap) = Z(Hp) we have (on L%(N\))
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A corollary to the quantitative unique continuation principle

Corollary
There exists a constant My > 0, depending only on d, such that:

o Let H=—A+V be a Schrédinger operator on L?(R?), where V is a
bounded potential with ||V < K.

o Fix § €]0,1] and sites {yk}cpa C R with B(yx,8) C Ai(k) for all

k ez
o Consider a rectangle N = A (xo) with xo € RY and L > 114/d,
j=1,....d,

Then for all real-valued w € 2(Ap) = Z(Hp) we have (on L%(N\))

2
N R S 172 PO FR S AT
keZd, A (k)CA

= HW(A)‘VH§+52 IHAw3-
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Proof of the UCPSP
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Proof of the UCPSP

Let Eg >0 and / C] — oo, Fo] a closed interval; set = 3 |/|. Since
Hpn > — || V]|, for any box A, without loss of generality we assume
| =[E—B,E+B] with E € [-||V].., Eo], so

IV = Elle < [|Vl..+max{Eo, ||V} < K =2]|V|. + Eo.
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Proof of the UCPSP

Let Eg >0 and / C] — oo, Fo] a closed interval; set = 3 |/|. Since
Hpn > — || V]|, for any box A, without loss of generality we assume
| =[E—B,E+B] with E € [-||V].., Eo], so

IV = Elle. < |Vl + max{Eo, | V]l} < K =2]|V]|,, + Eo.
Moreover, for any box A we have

I(HA=E)wlla < Bllwlly for y=2/(Hn)w.
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Proof of the UCPSP

Let Eg >0 and / C] — oo, Fo] a closed interval; set = 3 |/|. Since
Hpn > — || V]|, for any box A, without loss of generality we assume
| =[E—B,E+B] with E € [-||V].., Eo], so

IV = Elle < [|Vl..+max{Eo, ||V} < K =2]|V|. + Eo.

Moreover, for any box A we have

I(HA=E)wlla < Bllwlly for y=2/(Hn)w.

Let A be a box as in the Corollary and y = X,(Hp)y real-valued. It follows
from the Corollary applied to H — E that

5 0) 3 < WO +52 (- Epwi3 < WOy [+ 82w,
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Proof of the UCPSP

Let Eg >0 and / C] — oo, Fo] a closed interval; set = 3 |/|. Since
Hpn > — || V]|, for any box A, without loss of generality we assume
| =[E—B,E+B] with E € [-||V].., Eo], so

IV = Elle < [|Vl..+max{Eo, ||V} < K =2]|V|. + Eo.

Moreover, for any box A we have

I(HA=E)wlla < Bllwlly for y=2/(Hn)w.

Let A be a box as in the Corollary and y = X,(Hp)y real-valued. It follows
from the Corollary applied to H — E that

2 2 2
5"4(°) 1y < WO+ 62— EywE <[ w™ [+ 52 w3
If B2 < P = %5“”"(”"%), e, |/] <27, we get

Pl < [wOy[ . e, Pai(H) <) WO ().
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Proof of the Corollary

For simplicity we take a box A =A/(0) with L € Nygq. We extend functions
¢ on A to functions V and ¢ on R? and V to a potential V on R9 so

(—A+ V)y=(—A+ V).
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Proof of the Corollary

For simplicity we take a box A =A/(0) with L € Nygq. We extend functions
¢ on A to functions V and ¢ on R? and V to a potential V on R9 so
(—A+ Viy=(—-A+ V)l,T/.

Take Y € Nogq, 9< Y < % Since L is odd, we have A = Jcpnze M1 (k).
It follows that for all ¢ € L?(A) we have

Y @y iolla < 2Y)9 [loall3-
keAnzd
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Proof of the Corollary

For simplicity we take a box A =A/(0) with L € Nygq. We extend functions
¢ on A to functions V and ¢ on R? and V to a potential V on R9 so

(CATV)y=(—A+ V).
Take Y € Nogg, 9< Y < % Since L is odd, we have A = Jcpnze M1 (k).
It follows that for all ¢ € L?(A) we have
- 2
Y oavwlls < @Y) lleall3
keANZd

We now fix y € Z(An). Following Rojas-Molina and Veseli¢, we call a site
ke N=NANZ? dominating (for y) if

~ 2
H‘!’Al(k)Hz =z W 1WAy i)l
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Proof of the Corollary

For simplicity we take a box A =A/(0) with L € Nygq. We extend functions
¢ on A to functions V and ¢ on R? and V to a potential V on R9 so

(—A+ V)y = (—A+ V).
Take Y € Nogg, 9< Y < % Since L is odd, we have A = Jcpnze M1 (k).
It follows that for all ¢ € L?(A) we have

~ 2
Y oavwlls < @Y) lleall3
keANZd

We now fix y € Z(An). Following Rojas-Molina and Veseli¢, we call a site
ke N=NANZ? dominating (for y) if

~ 2
lvnollz 2 25557 1900l
and note that, letting D c ANZ9 denote the collection of dominating sites,

ZA Hw/\l(k)H; > 3l
keD
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Proof of the Corollary-continued
If k € D we apply the QUCP with Q = Ay (k) and © = A1(k), obtaining

3m&<1+K%) HII/Al(k)Hg < “WB(YJ(k)fé)“2+52 HE/\Y(k)Hi’
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Proof of the Corollary-continued

If k € D we apply the QUCP with Q = Ay (k) and © = A;(k), obtaining

5 (143) W3 < HWB(yJ(k>,6)Hz+52 HEM(“H;

where { = (—A+ V)y, Y is appropriately chosen, Y < 40V/d < % and
the map J: D — ANZ9 is defined appropriately so
J(k) € Ny (k) and #J71({j}) <2 for all j.
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Proof of the Corollary-continued
If k € D we apply the QUCP with Q = Ay (k) and © = A;(k), obtaining

ga(1+K3) [Way oI5 < HWB<yJ(k>,6)Hz+52 HEM“H;

where { = (—A+ V)y, Y is appropriately chosen, Y < 40V/d < é and

the map J: D — ANZ9 is defined appropriately so
J(k) € /\y( ) and #J71({j}) < 2 for aIIj
Summing over k € D and using Yich Hq/,\l k)Hz >3 Li|wall3, we get

15705) a2 <2 Y [Wapes 2+ V)96l
keNNzd

<2 Y |Vsweslls+(80vd)8 [all3
keNnzd
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Proof of the Corollary-continued
If k € D we apply the QUCP with Q = Ay (k) and © = A;(k), obtaining

gm(1+<3) l¥n o ll3 < HWB(YJMM‘”HE +&° HE"Y(’()H;

where { = (=A+ V), Y is appropriately chosen, Y < 40v/d < % and
the map J: D — ANZ9 is defined appropriately so

J(k) € /\y( ) and #J71({j}) < 2 for aIIj
Summing over k € D and using Yich Hq/,\l k)Hz >3 Li|wall3, we get

1570 B <2 8 [vagnl+ @613
keNNZd

<2 ¥ ||[Ws(s)|2+(80vVd)*8 a2,
keAnzd

which implies éwnh a different constant M, > 0)

H) < Y waoes P+ 821 Gl2.
keNNzd
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