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Motivation

» Goal: describe a crystal with random defects

@ infinitely many random classical nuclei (e.g.
perturbation of a lattice)

@ infinitely many interacting quantum electrons

» Disordered materials are

@ present in nature (amorphous materials, impurities,
aging solids)
@ industrially made (doped semiconductors, solar cells)

» What we have done:
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@ appropriate math setting for mean-field (DFT) models 5{0"\} #Wm &L

@ construction of electronic state for short range
interactions & Coulomb

Many open problems left!
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Vitreous Silica

E. Cances, S. Lahbabi & M. L. Mean-field models for disordered crystals

J. Math. Pure Appl. 100(2) (2013), 241-274
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Nuclei: what you should have in mind
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p(w, x) = sz(w) v(x — k= dk(w)), v>0, v=1

with &, and z i.i.d. random variables

Example: §; ~ gaussian and zx ~ Bernouilli
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Nuclei: general situation

@ measure-preserving action of Z* ~ probability space (Q, 7, P)

@ ergodicity: 7vA=A, Vk € Z*> = P(A)=0or 1

@ a fn/measure is called stationary when f(w, x + k) = f(mw, x)

o LP:={f € LP(Q,LL_(R®) : fisstationary} ~ LP(Q x Q) (Q unit cell)

loc

» Ergodic theorem: for all f € L},

lim L*3/ f:]E/f
n—o00 LQ Q

in L1(Q) and almost-surely

@ 0 < pin LP for some p>1

Q E/ 1 = average nuclear charge per unit cell
Q
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Hartree for finitely many electrons

» N electrons = N orthonormal functions uy, ..., uy in L?(R3) = Slater det

Hartree (Kohn-Sham) equation (1 € LY(R?))

(—A + V+ UFX“) up = A\ uj

ap
N An

—AV = 47r(z |uj|? —/1,)

J=1

Ground state: \p,...,A\y = N first eigenvals of —A + V. Min of energy

" g N w2 - x N 2 =
St (Shalsr -0 (Sl -0 o), (Z)

Ix =yl =

Hartree equation, density matrix v = ;" [u;){u;]

{”/ —TEATVSI) it g () = 706,%)

—AV =47 (py — p)
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Hartree equation for infinite random crystals

!
v = 1(-A+V <))
~AV+m*V = 4r(py(w,x) — p(w,x)) A\
]EfQ Py = EJQM

» History:
@ u periodic: Catto-Le Bris-Lions (2001), Cances-Deleurence-M.L (2008)
@ u periodictlocal perturbation: Canceés-Deleurence-M.L (2008)
@ u random: Canceés-Lahbabi-M.L. (2013)
@ u periodic with gap + global perturb. small in L>° (m > 0): Lahbabi (2013)

» Plan:
9 stationary operators 7,, with finite local kinetic energy
@ properties of p,
@ Poisson’s equation & the stationary Laplacian
@ existence thms for Coulomb (m = 0) and Yukawa (m > 0)

Mathieu LEWIN (CNRS / Cergy) Stochastic crystals Banff, Oct 29, 2013 6 /18



Stationary density matrices

@ stationary density matrix = operators (v, )weq with 0 <+, <1 a.s. and
TeYo Tk = Yrpws Tuf = f(- 4+ v). Spectrum: o(y) =X as.

o If Etr(1gylg) < oo then p, € L! and

tr(1.0711Q)

E = average # electrons per unit vol.
L—oco

@ Similarly, tr(—A)~y = average kinetic energy per unit vol.

Theorem (Density)

1+2/d
CE / pit2/d > C(H(v)> (Lieb-Thirring)

tr(=A)y = g
IE/ IV /Py 2 (Hoffmann-Ostenhof)
Q

Proof: truncate, use the known inequalities, pass to the limit using ergodic thm
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Spectral projections

Theorem (Spectral projections)

Let V € L2 with V_ € Li+d/ 2 Then the spectral projections
y=1(-A+V <))

are stationary density matrices satisfying

1+2/d :
c(utn) " <u-ap<c (& [ -y,
Q
Furthermore, the unique stationary solutions to

oIy (H(—A -+ IE/Q V/Jv)

arey=1(~A+V < A\)+6, with0<§ < T(—A+ V = \).
If Ve L, then 6 =0 a.s. (Bourgain-Klein '13).

minoSMgl tl’(AM) = —trA_

Think of matrices: -
argming< <1 tr(AM) = {1(A < 0) + D}o<D<1,a
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Small digression: representability

Fundamental question in Density Functional Theory: what is the set of all
the p's arising from stationary 7's with tr(—A)y < co?

Theorem (3D Representability)

Let p € L3 with Vp € L2. Then there exists a stationary 0 < v < 1 such that
tr(1—A)y < oo and p = p,.

Proof follows the method of Lieb (1983)

Open problem

Is V/p € L2 and p € L2/* sufficient?
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Electrostatics

Open problem
For which stationary p € L? can one solve Poisson's equation
—AV =47mp

with V € L9? and with finite electrostatic energy, E/ IVV|? < 00?
Q

@ Necessary condition: IE/ p = 0 (neutral)
Q

@ It is easier to find electric field E = —VV € L2 than V itself
But we need to define —A + V...

Lemma (Yukawa)

For all p € L? and m > 0, there exists a unique V' € L? such that
(—A + m?)V = 4rmp.

—m|x—y|

Reason: V/(x) :/ eip(w,y) dy
r XY
———

e(Lt)
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Stationary Laplacian

Let (—A)s be the Friedrichs extension in L2 of the operator
D(A) = L2N L%(Q, C3(R3?)) C L2
Af = —Af, Yf € D(A).

Laplacian in x on Q x @ with “stationary boundary conditions” , e.g.
f(nw,0) = f(w,1) Yw, in 1D
> Simple properties/examples:
@ 0 is a simple eigenvalue with eigenfn f = 1 (ergodicity);
o(—A)s contains o(—A)per;
If Q is finite, then o(—A);s is discrete;
If Q = S% and 7y is the shift, then o(—A). = [0, 00)
If @ =1[0,1] and 74(w) = w + ak (mod 1), a € R\ Q, then o,(—A;) is dense
in [0,1]
~~ difficulty to solve —A;V = 4mp. V € L2 requires p € D(—A)s

¢ ¢ ¢ ¢

Open problem
Understand better the spectral properties of (—A)s
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Energy: existence theorem

For p € L, we define the Yukawa/Coulomb interaction energy per unit vol. as

/\VV | with (—=A + m?)V,, = 4mp

Do(p) = I|mD()

and the total energy per unit vol. as

Em(Y) == tr(—=A)y + Dim(py — 1) J

Theorem (Existence of minimizers)

For € L and m > 0, the energy has at least one minimizer ~ on the set

{O < <1 stationary : tr(—A)y < 00, Dn(py — p) < 00, tr(y) = IE/ u}
Q

(when not empty!). All the minimizers share the same density p.,.

Proof: convexity + weak topology
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Equation: existence theorem

» Main questions:
@ have we solved the original Hartree equation?

@ are we able to define the (one-particle) mean-field Hamiltonian —A + V?

Theorem (Hartree equation, Yukawa case)

Let e 12N LY*(LY) and m > 0. Then Vi, € L2, (Vin)— € LY? and —A + V is
a.s. essentially self-adjoint.

There exists A € R such that the minimizers are all of the form
y=1(-A+ V < )\)+ 4, with 0<d<T(—A+V =)N\).

If furthermore p € L3, then p.,,V € L°, § =0 and the minimizer is unique.

Open questions:

@ Is there enough screening in the Coulomb case? ~ V
@ What are the properties of —A + V (even in short range case)?

Mathieu LEWIN (CNRS / Cergy) Stochastic crystals Banff, Oct 29, 2013 13 /18



Anderson Localization? Numerics

1D with Bernouilli (p = 0.5):

1 _ (x—k—1/2)?
p=> W) mme 1+ (1= k(@)1 — cos(2n(x — k)
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One realization for p

S. Lahbabi, PhD thesis, Univ. Cergy-Pontoise, 2013.
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Anderson Localization? Linear case

Box of size L = 240 with periodic b.c., 30 x 240 Fourier modes, Yukawa (m = 1)
Drop interaction: V = —e Xl s
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Anderson Localization? Nonlinear case

Box of size L = 160 with periodic b.c., 30 x 160 Fourier modes, Yukawa (m = 1)

Self-consistent potential: V = e~ Xl % (py
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Stochastic crystals
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Thermodynamic limit in the short range case

Theorem (Thermodynamic limit, Yukawa)

The Yukawa model (m > 0) is the thermodynamic limit, in L1(Q2), of the
corresponding supercell Hartree problem.
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Summary

@ A nonlinear model for an infinite system of interacting quantum particles
@ Simple enough to investigate the effect of interactions
@ For Coulomb, screening is crucial, but not well understood yet

@ Localization need further investigation, even in short range case

» | have not talked about

@ the true N-body Schrodinger problem: existence of thermodynamic limit
known for random nuclei (Blanc & M.L. '12), but no info on limit

@ the small p expansion of the Bernouilli nonlinear Hartree model, in gapped
case (Klopp '95, Lahbabi '13)
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