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The restricted 3–body problem

3–body problem: Sun, Earth, asteroid

restricted problem: the asteroid does not influence the motion
of the two larger bodies.

equations of motion of the asteroid:

ÿ = −G

[

m⊙
(y − y⊙(t))
|y − y⊙(t)|3

+ m⊕
(y − y⊕(t))
|y − y⊕(t)|3

]

y is the unknown position of the asteroid;

y⊙(t), y⊕(t) are known functions of time, solutions of the
two-body problem Sun-Earth.
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The restricted 3–body problem

In heliocentric coordinates

ẍ = −k2
[

x
|x|3 + µ

(

(x − x′)
|x − x′|3 − x′

|x′|3
)]

x = y − y⊙, x′ = y⊕ − y⊙;

k2 = Gm⊙, µ = m⊕

m⊙
is a small parameter;

−k2µ
(x−x′)
|x−x′|3 is the direct perturbation of the planet on the

asteroid;

k2µ x′

|x′|3 is the indirect perturbation, due to the interaction
Sun-planet.
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Canonical formulation of the problem

Use Delaunay’s variables Y = (L,G,Z, ℓ, g, z) for the motion of
the asteroid:







L = k
√

a
G = L

√
1 − e2

Z = G cos I







ℓ = n(t − t0)
g = ω

z = Ω

These are canonical variables, representing the osculating
orbit, solution of the 2-body problem Sun-asteroid.

Denote by Y ′ = (L′,G′,Z′, ℓ′, g′, z′) Delaunay’s variables for the
planet.
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Canonical formulation of the problem

Hamilton’s equations are

Ẏ = J3 ∇YH ,

where

J3 =

[

O3 −I3

I3 O3

]

.

H = H0 − R is the Hamiltonian, H0 = − k2

2L2 (unperturbed part),

R = k2µ

(

1
|X − X ′| −

X · X ′

|X ′|3
)

(perturbing function).

Here X ,X ′ denote x, x′ as functions of Y, Y ′.
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The Keplerian distance function d

Let (Ej, vj), j = 1, 2 be the orbital elements of two celestial
bodies on confocal Keplerian orbits:
Ej represents the trajectory of a body,
vj is a parameter along it. Set V = (v1, v2).

For a given two-orbit
configuration E = (E1,E2),
we introduce the Keplerian
distance function

T2 ∋ V 7→ d(E ,V) = |X1 − X2|

We are interested in the local
minimum points of d.
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Geometry of two confocal Keplerian orbits

Is there still something that we do not know about distance of
points on conic sections?

ἐθεώρουν σε σπεύδοντα μετασχει̃ν
τω̃ν πεπραγμένων ἡμῖν κωνικω̃ν (1)

(Apollonius of Perga, Conics, Book I)

(1) I observed you were quite eager to be kept informed of the work I was doing in conics.
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Some remarks on the critical points of d2

The local minimum points of d can be found by computing
all the critical points of d2.

Apart from the case of two concentric coplanar circles, or
two overlapping ellipses, d2 has finitely many critical points.

There exist configurations with 12 critical points, and 4
local minima of d2.
This is thought to be the maximum possible, but a proof is
not known yet, see also Albouy, Cabral, Santos (2012).
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The orbit distance

Let Vh = Vh(E) be a local minimum point of V 7→ d2(E ,V).
Consider the maps

E 7→ dh(E) = d(E ,Vh) ,

E 7→ dmin(E) = min
h

dh(E) .

The map E 7→ dmin(E) gives the orbit distance.
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Singularities of dh and dmin
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(i) dh and dmin are not differentiable where they vanish;

(ii) two local minima can exchange their role as absolute
minimum thus dmin loses its regularity without vanishing;

(iii) when a bifurcation occurs the definition of the maps dh may
become ambiguous after the bifurcation point.
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Smoothing through change of sign

y−axis

x−axis

y−axis

x−axis

Model problem:

f (x, y) =
√

x2 + y2 f̃ (x, y) =

{

−f (x, y) for x > 0
f (x, y) for x < 0

Can we smooth the maps dh(E), dmin(E)
through a change of sign?
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Local smoothing of dh at a crossing singularity

��
��
��

��
��
��

X1

X2

Smoothing dh, the procedure for dmin is the same.

Consider the points on the two orbits

X (h)
1 = X1(E1, v(h)1 ) ; X (h)

2 = X2(E2, v(h)2 ) .

corresponding to the local minimum point
Vh = (v(h)1 , v(h)2 ) of d2;
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Local smoothing of dh at a crossing singularity

��
��
��

��
��
��

τ1

τ2

τ3

X1

X2

introduce the tangent vectors to the trajectories E1,E2 at
these points:

τ1 =
∂X1

∂v1
(E1, v(h)1 ) , τ2 =

∂X2

∂v2
(E2, v(h)2 ) ,

and their cross product τ3 = τ1 × τ2;
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Local smoothing of dh at a crossing singularity

��
��
��

��
��
��

τ1

τ2

τ3

∆h

define also

∆ = X1 −X2 , ∆h = X (h)
1 − X (h)

2 .

The vector ∆h joins the points attaining a local minimum of
d2 and |∆h| = dh.

Note that ∆h × τ3 = 0
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Smoothing the crossing singularity

smoothing rule:

d̃h = sign(τ3 ·∆h)dh

��
��
��

��
��
��

τ1

τ2

τ3

∆h

E 7→ d̃h(E) is an analytic map in a neighborhood of most
crossing configurations
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The averaging method

The averaging principle is used to study the qualitative behavior
of solutions of ODEs in perturbation theory, see Arnold, Kozlov,
Neishtadt (1997).

unperturbed
{

φ̇ = ω(I)
İ = 0

φ ∈ T
n, I ∈ R

m

perturbed
{

φ̇ = ω(I) + ǫf (φ, I, ǫ)
İ = ǫg(φ, I, ǫ)

averaged J̇ = ǫG(J) , G(J) =
1

(2π)n

∫

Tn
g(φ, J, 0) dφ1 . . . dφn
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İ = ǫg(φ, I, ǫ)

averaged J̇ = ǫG(J) , G(J) =
1

(2π)n

∫

Tn
g(φ, J, 0) dφ1 . . . dφn

Giovanni F. Gronchi Dynamics, Topology and Computations



Averaging over 2 angular variables

Using the averaged equations corresponds to substituting the
time average with the space average.

Case of 2 angles: a problem occurs if there are
resonant relations of low order between the motions φ1(t), φ2(t),
i.e. if k1φ̇1 + k2φ̇2 = 0, with k1, k2 small integers.

φ1

φ
2
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Averaged equations

Averaged Hamilton’s equations:

Ẏ = −J2 ∇YR , (1)

with Y = (G,Z, g, z). We averaged over the fast angles ℓ, ℓ′.
If no orbit crossing occurs, (1) are equal to

Ẏ = −J2 ∇YR (2)

with

R =
1

(2π)2

∫

T2
R dℓ dℓ′ =

µk2

(2π)2

∫

T2

1
|X − X ′| dℓ dℓ′

The average of the indirect term of R is zero.
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Crossing singularities

If there is an orbit crossing, then averaging on the fast angles
ℓ, ℓ′ produces a singularity in the averaged equations:

we take into account every possible position on the orbits, thus
also the collision configurations.

R =
µk2

(2π)2

∫

T2

1
|X − X ′| dℓ dℓ′

and
∣

∣X (E1, v(h)1 )− X ′(E2, v(h)2 )
∣

∣ = 0 .
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Near-Earth asteroids and crossing orbits

(433) Eros: the first near-Earth asteroid
(NEA, with q = a(1 − e) ≤ 1.3 AU),
discovered in 1898; it crosses the
trajectory of Mars.

from NEAR mission (NASA)

Today (January 15, 2013) we know about 9500 NEAs: several
of them cross the orbit of the Earth during their evolution.
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Main result

Let Ec be a non–degenerate crossing configuration for dh, with
only one crossing point.
Given a neighborhood W of Ec, we set

W+ = W ∩ {d̃h > 0} ,

W− = W ∩ {d̃h < 0} .

Ec

Σ

W+

W−

The averaged vector field ∇YR is not defined on Σ = {dH = 0}.
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Main result

Theorem: The averaged vector field
∇YR can be extended to two
Lipschitz–continuous vector fields
(∇YR)±h on a neighborhood W of Ec.
These extended vector fields,
restricted to W+, W− respectively,
correspond to ∇YR.

Ec

Σ

W+

W−

∇YR = (∇YR)+h

∇YR = (∇YR)−h
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Main result

Moreover the following relations hold:

Diffh

(

∂R
∂yk

)

def
=

( ∂R
∂yk

)−

h
−
( ∂R
∂yk

)+

h
=

=
µk2

π

[

∂

∂yk

(

1
√

det(Ah)

)

d̃h +
1

√

det(Ah)

∂d̃h

∂yk

]

,

where yk is a component of Delaunay’s elements Y, and

Ah(E) =
1
2
∂2d2

∂V2 (E ,Vh(E)) .
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Extraction of the singularity

We write

d2(E ,V) = d2
h(E) + (V − Vh) · Ah(E)(V − Vh) +R(h)

3 (E ,V) ,

where

i) 2Ah(E) is the Hessian matrix of V 7→ d2(E ,V) in Vh;

ii) R(h)
3 is Taylor’s remainder in the integral form.

Introduce the approximated distance

δh =
√

d2
h + (V − Vh) · Ah(V − Vh) .
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Extraction of the singularity

Consider the following decomposition:

W \Σ ∋ E 7→
∫

T2

∂

∂yk

1
d

dℓdℓ′

=

∫

T2

∂

∂yk

(1
d
− 1

δh

)

dℓdℓ′ +
∫

T2

∂

∂yk

1
δh

dℓdℓ′

We prove that:

i) the two maps W± ∋ E 7→
∫

T2

∂

∂yk

1
δh

dℓdℓ′ admits two

different analytic extensions to W;

ii) the map W \ Σ ∋ E 7→
∫

T2

∂

∂yk

(1
d
− 1

δh

)

dℓdℓ′ admits a

Lipschitz–continuous extension to W .
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idea of the proof of i)

W \ Σ ∋ E 7→
∫

T2

∂

∂yk

1
δh

dℓ dℓ′ =
∂

∂yk

∫

T2

1
δh

dℓ dℓ′

Set
D = {V ∈ T

2 : (V − Vh) · Ah(V − Vh) ≤ r2}.
We have

∫

D

1
δh

dℓ dℓ′ =
2π√

detAh
(
√

d2
h + r2 − dh) .
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We obtain
∫

T2

∂

∂yk

1
δh

dℓ dℓ′ =
∂

∂yk

( 2π√
detAh

)

(
√

d2
h + r2 − dh) +

+
2π√

detAh

dh
√

d2
h + r2

∂dh

∂yk
− 2π√

detAh

∂dh

∂yk
+

∂

∂yk

∫

T2\D

1
δh

dℓ dℓ′

so that the formula
(
∫

T2

∂

∂yk

1
δh

dℓ dℓ′
)±

h
=

∂

∂yk

( 2π√
detAh

)

(
√

d2
h + r2 ∓ d̃h) +

+
2π√

detAh

d̃h
√

d2
h + r2

∂d̃h

∂yk
∓ 2π√

detAh

∂d̃h

∂yk
+

∂

∂yk

∫

T2\D

1
δh

dℓ dℓ′

defines analytic extensions of W± ∋ E 7→
∫

T2
∂

∂yk

1
δh

dℓ dℓ′ to W.
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Generalized solutions

xx

x

x
x

xYk−1
Yk

Yk+1W+

W−
Σ

Figure: Runge-Kutta-Gauss method and continuation of the solutions
of equations (1) beyond the singularity.

The averaged solutions are piecewise–smooth
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Comparison of solutions for (1620) Geographos
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Secular evolution of the orbit distance

Define the secular evolution of the minimal distances

dh(t) = d̃h(E(t)) , dmin(t) = d̃min(E(t))

in an open interval containing a crossing time tc.

Proposition: Assume tc is a crossing time and Ec = E(tc) is a
non-degenerate crossing configuration with only one crossing
point, i.e. dh(Ec) = 0. Then there exists an interval (ta, tb),
ta < tc < tb such that dh ∈ C1((ta, tb);R).
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Secular evolution of the orbit distance

Proof:

lim
t→t+c

ḋh(t)− lim
t→t−c

ḋh(t) = Diffh
(

∇YR
)

· J2∇Y d̃h

∣

∣

∣

E=Ec

=
µk2

π
√

detAh
{d̃h, d̃h}Y

∣

∣

∣

E=Ec

= 0 ,

The secular evolution of d̃min is more regular than that of the
orbital elements in a neighborhood of a planet crossing time.
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Evolution of the orbit distance for 1979 XB
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Conclusions and future work

We can compute the secular evolution of planet crossing
asteroids, by averaging over the fast angles: the solutions
are piecewise–smooth;

the orbit distance along the averaged evolution is more
regular than the orbital elements.

Open questions

Can we prove that the averaged solutions are good
approximation of the solutions of the full equations?

What can we do in case of mean motion resonances?
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