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The restricted 3—body problem

3-body problem: Sun, Earth, asteroid

restricted problem: the asteroid does not influence the motion
of the two larger bodies.

equations of motion of the asteroid:

Y —Yo() Y —Ya(1)
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The restricted 3—body problem

3-body problem: Sun, Earth, asteroid

restricted problem: the asteroid does not influence the motion
of the two larger bodies.

equations of motion of the asteroid:

. (Y —¥o(t) (Y — Ya ()
y=-G 2 =~/ N JPNTT

Ty Y F Ty ye (O
@ y is the unknown position of the asteroid,;

® y,(t),ys(t) are known functions of time, solutions of the
two-body problem Sun-Earth.
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The restricted 3—body problem
In heliocentric coordinates

"—_ZL (X—X’)_i
X=k [\x|3+“<|x—x'\3 ME

® Xx=Y—Yo,X =Ya — Yoi
o k=Gm,, u= m—g is a small parameter;
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The restricted 3—body problem

In heliocentric coordinates
—X) X
— _K? L A
[\x|3+“<|x—x'\3 |x'|3>]

® X=Y—Yo,X =Ys — Yo
o K=0m, u= m@ is a small parameter;

o —Kp ‘( X,‘)S is the dlrect perturbation of the planet on the
asteroid,;
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The restricted 3—body problem
In heliocentric coordinates

"—_ZL (X—X’)_i
X=k [\x|3+“<|x—x'\3 ME

® Xx=Y—Yo,X =Ya — Yoi
o k=Gm,, u= m—g is a small parameter;

o —Kp ‘(;‘__5)3 is the direct perturbation of the planet on the

asteroid;

o kzu% is the indirect perturbation, due to the interaction
Sun-planet.

Giovanni F. Gronchi Dynamics, Topology and Computations



Canonical formulation of the problem

Use Delaunay’s variables Y = (L, G, Z, ¢, g, z) for the motion of
the asteroid:

L =ky/a ¢=n(t—to)
G=Lvl-¢ g=w
Z = Gcosl z=0
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Canonical formulation of the problem

Use Delaunay’s variables Y = (L, G, Z, ¢, g, z) for the motion of
the asteroid:

L =ky/a ¢=n(t—to)
G=Lvl-¢ g=w
Z = Gcosl z=0

These are canonical variables, representing the osculating
orbit, solution of the 2-body problem Sun-asteroid.
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Canonical formulation of the problem

Use Delaunay’s variables Y = (L, G, Z, ¢, g, z) for the motion of
the asteroid:

L =ky/a ¢=n(t—to)
G=Lvl-¢ g=w
Z = Gcosl z=0

These are canonical variables, representing the osculating
orbit, solution of the 2-body problem Sun-asteroid.

Denote by V' = (L',G',Z/,¢',d,Z) Delaunay’s variables for the
planet.
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Canonical formulation of the problem

Hamilton’s equations are

Y= JaVyH,
where
Ja = O3 13
37l 05|

H = Hp — R is the Hamiltonian, Hg = —zk—Lzz (unperturbed part),

.y
R=ku <\X _1)(/‘ _ )‘(leg > (perturbing function).

Here X, X’ denote x, X' as functions of ), )'.
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The Keplerian distance function d

Let (§,v;), ] = 1,2 be the orbital elements of two celestial
bodies on confocal Keplerian orbits:

Ej represents the trajectory of a body,

v is a parameter along it. SetV = (vq,V2).

For a given two-orbit
configuration £ = (Ey, Ep),
we introduce the Keplerian
distance function

T?2>V = dE,V) = |&; — A2 |

Dynamics, Topology and Computations
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The Keplerian distance function d

Let (§,v;), ] = 1,2 be the orbital elements of two celestial
bodies on confocal Keplerian orbits:

Ej represents the trajectory of a body,

v is a parameter along it. SetV = (vq,V2).
For a given two-orbit
configuration £ = (Ey, Ep),
we introduce the Keplerian
distance function

T?2>V = dE,V) = |&; — A2 |

We are interested in the local
minimum points of d.
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Geometry of two confocal Keplerian orbits

Is there still something that we do not know about distance of
points on conic sections?

gdedpouy oe onedldovTo UETUCYETY
6V TEnpayUévey NV xovixey (Y
(Apollonius of Perga, Conics, Book 1)

(1) I observed you were quite eager to be kept informed of the work | was doing in conics.
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Some remarks on the critical points of d?

@ The local minimum points of d can be found by computing
all the critical points of d°.
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Some remarks on the critical points of d?

@ The local minimum points of d can be found by computing
all the critical points of d.

@ Apart from the case of two concentric coplanar circles, or
two overlapping ellipses, d? has finitely many critical points.
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Some remarks on the critical points of d?

@ The local minimum points of d can be found by computing
all the critical points of d.

@ Apart from the case of two concentric coplanar circles, or
two overlapping ellipses, d? has finitely many critical points.

@ There exist configurations with 12 critical points, and 4
local minima of d?.
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Some remarks on the critical points of d?

@ The local minimum points of d can be found by computing
all the critical points of d°.

@ Apart from the case of two concentric coplanar circles, or
two overlapping ellipses, d? has finitely many critical points.

@ There exist configurations with 12 critical points, and 4
local minima of d?.
This is thought to be the maximum possible, but a proof is
not known yet, see also Albouy, Cabral, Santos (2012).
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The orbit distance

Let Vi = Vh(&) be a local minimum point of V + d?(&€, V).
Consider the maps

Edn(&) =d(E,Vh),
E = dnin(€) = mgndh(éf) .

The map € — dnin(€) gives the orbit distance.
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Singularities of d, and dyn

4 4 4

3 3 3
Q @ (o}
g d 2 g
IS S S
g 2 min £ 2 d2 d1 g 2
=] © =}

1 1 \/\ 1 d1

d d,
0 ol—1t 0
0 2 4 0 2 4 0 2 4
orbital elements orbital elements orbital elements

() dn and dmin, are not differentiable where they vanish;
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Singularities of d, and dyn

4 4 4
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g 2 min £ 2 d2 d1 g 2
=] © =}

1 1 \/\ 1 d1

d d,
0 ol—1t 0
0 2 4 0 2 4 0 2 4
orbital elements orbital elements orbital elements

() dn and dmin, are not differentiable where they vanish;

(i) two local minima can exchange their role as absolute
minimum thus dqin loses its regularity without vanishing;
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Singularities of d, and dyn

4 4 4

3 3 3
Q @ (o}
g d 2 g
IS S S
g 2 min £ 2 d2 d1 g 2
=] © =}

1 1 \/\ 1 d1

d d,
0 ol—1t 0
0 2 4 0 2 4 0 2 4
orbital elements orbital elements orbital elements

() dn and dmin, are not differentiable where they vanish;

(i) two local minima can exchange their role as absolute
minimum thus dqin loses its regularity without vanishing;

(iif) when a bifurcation occurs the definition of the maps d, may
become ambiguous after the bifurcation point.
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Smoothing through change of sign
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Smoothing through change of sign
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Model problem:

f(x,y) = V3@ +y2 fixy) = —f(x,y) forx>0

f(x,y) forx<O

Can we smooth the maps dn (&), dmin(&)
through a change of sign?




Local smoothing of d;, at a crossing singularity

Smoothing dy, the procedure for dqin is the same.
@ Consider the points on the two orbits

A vE); A - e )

corresponding to the local minimum point
Vi = (W, W) of d2;
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Local smoothing of d;, at a crossing singularity

@ introduce the tangent vectors to the trajectories E;, E; at
these points:

00X,

v
OV (E27 )7

T = —l(Elvvj(Lh)) 3 T =

and their cross product 73 = 71 X 12;
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Local smoothing of d;, at a crossing singularity

@ define also
A=X— Xy, Ap=x" - xV

The vector Ay, joins the points attaining a local minimum of
d? and |An| = dh.

Note that Ap x 3 =0
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Smoothing the crossing singularity

i

smoothing rule:

dn = sign(73 - Ap)dy |

73
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Smoothing the crossing singularity

i

smoothing rule:

dn = sign(73 - Ap)dy |

73

£ — dn(€) is an analytic map in a neighborhood of most
crossing configurations
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The averaging method

The averaging principle is used to study the qualitative behavior
of solutions of ODEs in perturbation theory, see Arnold, Kozlov,
Neishtadt (1997).

unperturbed { ib OW( ) T 1 e¢R"
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The averaging method

The averaging principle is used to study the qualitative behavior
of solutions of ODEs in perturbation theory, see Arnold, Kozlov,

Neishtadt (1997).

unperturbed { ib SJ( ) T 1 e¢R"
¢ =w(l) +ef(,1,¢)

perturbed { [ (61, €)
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The averaging method

The averaging principle is used to study the qualitative behavior
of solutions of ODEs in perturbation theory, see Arnold, Kozlov,

Neishtadt (1997).

unperturbed { ib SJ( ) T 1 e¢R"

perturbed { I?b: wi(b) I*‘S(cb,"e)

averaged J=eG(J), G(J) = ! / 9(¢,J,0) doy ... den
(2m)" Jpn
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Averaging over 2 angular variables

Using the averaged equations corresponds to substituting the
time average with the space average.

Case of 2 angles: a problem occurs if there are
resonant relations of low order between the motions ¢1(t), ¢2(t),
i.e. if kg1 + koo = 0, with ki, ko small integers.

®,

®

Giovanni F. Gronchi Dynamics, Topology and Computations



Averaged equations

Averaged Hamilton’s equations:
Y= -1, VR, (1)

with Y = (G, Z, g,2). We averaged over the fast angles ¢, ¢'.
If no orbit crossing occurs, (1) are equal to

Y = ~J>VyR (2)

with

5 1 r_ pk? 1 '
R= @) /Tszﬁdf = (2n /EZ ]/‘C’—X’]dede

The average of the indirect term of Ris zero.
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Crossing singularities

If there is an orbit crossing, then averaging on the fast angles
¢, ¢ produces a singularity in the averaged equations:

we take into account every possible position on the orbits, thus
also the collision configurations.

. ukz/ 1 )
R_(27r)2 T2 \Xfm\dgdg

and A A
|2 (E;, W) — X'(Ez,vy")| = 0.

Giovanni F. Gronchi Dynamics, Topology and Computations



Near-Earth asteroids and crossing orbits

(433) Eros: the first near-Earth asteroid
(NEA, with g = a(1 —e) < 1.3 AU),
discovered in 1898; it crosses the
trajectory of Mars.

from NEAR mission (NASA)

Today (January 15, 2013) we know about 9500 NEAs: several
of them cross the orbit of the Earth during their evolution.
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Main result

Let & be a non—degenerate crossing configuration for dy, with
only one crossing point.
Given a neighborhood W of &, we set

Wt =wn{d, > 0},

W~ =WwWn{d, <0} .

The averaged vector field VyRis not defined on ¥ = {dy = 0}.
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Main result

Theorem: The averaged vector field
VyR can be extended to two
Lipschitz—continuous vector fields
(VyR)iE on a neighborhood W of &.
These extended vector fields,
restricted to W, W™ respectively,
correspond to VyR.
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Main result

Moreover the following relations hold:

OR\ def /OR\-— OR\ +

lefh<8yk> = (a—yk)h‘(a—yk>h—

- u_kz[i< 1 ) 1 9o
7 [ Ok \ \/det(Ap) /det(An) (An) Ayk

where yi is a component of Delaunay’s elements Y, and

242
An€) = 225 (W)

Dynamics, Topology and Computations
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Extraction of the singularity

We write
d(E,V) = dR(E) + (V — Vi) - An(E)(V — Vi) + RV (E, V),

where
) 2An(&) is the Hessian matrix of V — d?(£,V) in Vy;
ii) Rgh) is Taylor's remainder in the integral form.

Introduce the approximated distance

5h:\/dﬁ+(V—Vh)-Ah(V—Vh).
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Extraction of the singularity

Consider the following decomposition:

01
= /
WA\ESEw 2 Oy dede

0 /1 1 ‘ 0 1
= — (= — =) ded? — — ded?’
./TZ f’)yk (d (5h> + ./]I‘2 ayk 5h
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Extraction of the singularity

Consider the following decomposition:

01
= /
WA\ESEw 2 Oy dede

0 /1 1 ‘ 0 1
= — (= — =) ded? — — ded?’
./TZ f’)yk (d (5h> + ./]I‘2 ayk 5h

We prove that:

. 1 .
) the two maps W* > & — [ ——— d¢d¢’ admits two
_ _ _ J12 Yk On
different analytic extensions to W,
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Extraction of the singularity

Consider the following decomposition:

01
= /
WA\ESEw 2 Oy dede

0 /1 0 1
= Z_— =) dede + — = dede’
./TZ OYk (d Oh> /]I‘Z OYk Oh

We prove that:

. 1
) the two maps W* > & — [ ——— d¢d¢’ admits two
_ _ Jr2 0¥k On
different analytic extensmns to W,

i) the mapW\ZaSH/ ———) drd/” admits a
dyk on

Lipschitz—continuous extension to W .
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idea of the proof of i)

0 1 0 1
WANYX3E— ——dldl = — —dede
\ 12 OYk Oh Yk J12 on
Set
D={VeT?: (V-Vy) - An(V —Vp) <r?}.
We have

1 2T
—dedd = \/d2 2_dy).
/D5h \/dEtAh( h h)

Giovanni F. Gronchi Dynamics, Topology and Computations



We obtain

01 0 2
——dede = — \a+r2—d
/H~28yk5h ayk(\/detAh)( h T h) +

Lz Gh 9% __ 2r a_dh_i_i/ L aear
\/det Ap, \/dﬁ 20 Vdet Ay Oy Ok Jra\p dn

so that the formula

0 1 + ) o -
——ddl) = (=) (/R +r2Fd
</H~28yk5h > 8yk(\/det,4h)( h T+ h) +

h

4 2m ch a_ah:F 2 G_Eif‘+i/ idgdg’
Vdet A, \/dﬁ 20V Vdet Ay Oy OYk Jra\p dh

defines analytic extensions of W+ 5 &£ — sz 8%5—1'1 dede to w.
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Generalized solutions

Figure: Runge-Kutta-Gauss method and continuation of the solutions
of equations (1) beyond the singularity.

The averaged solutions are piecewise—smooth
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Comparison of solutions for (1620) Geographos
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Secular evolution of the orbit distance

Define the secular evolution of the minimal distances

dn(t) = h(E(1)) , drin(t) = dmin(E(1))

in an open interval containing a crossing time tc.
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Secular evolution of the orbit distance

Define the secular evolution of the minimal distances

dn(t) = h(E(1)) , drin(t) = dmin(E(1))

in an open interval containing a crossing time tc.

Proposition: Assume t; is a crossing time and & = £(t¢) is a
non-degenerate crossing configuration with only one crossing
point, i.e. dy(&) = 0. Then there exists an interval (ta, ty),

ta < tc < tp such that di, € CY((ta, tp); R).

Giovanni F. Gronchi Dynamics, Topology and Computations



Secular evolution of the orbit distance

Proof:

lim dn(t) — lim dn(t) = Diffy(VvR) 'szyah‘

t—td t—ts E=¢&
ke

m/—detAh{ m “}Y‘g:gc ’

The secular evolution of dgn, is more regular than that of the
orbital elements in a neighborhood of a planet crossing time.
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Evolution of the orbit distance for 1979 XB
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Conclusions and future work

@ We can compute the secular evolution of planet crossing
asteroids, by averaging over the fast angles: the solutions
are piecewise—smooth;

@ the orbit distance along the averaged evolution is more
regular than the orbital elements.

Giovanni F. Gronchi Dynamics, Topology and Computations



Conclusions and future work

@ We can compute the secular evolution of planet crossing
asteroids, by averaging over the fast angles: the solutions
are piecewise—smooth;

@ the orbit distance along the averaged evolution is more
regular than the orbital elements.
Open questions

@ Can we prove that the averaged solutions are good
approximation of the solutions of the full equations?

@ What can we do in case of mean motion resonances?
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