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Classi�cation

Consider a class C of objects from some category.

If we to each object X in C associate an object I (X ) of some �xed
category in such a way that X ∼= Y ⇒ I (X ) ∼= I (Y ), then we call I
an invariant.

We call such an I a complete invariant if also
I (X ) ∼= I (Y )⇒ X ∼= Y .

A functor is always an invariant, and if it is a complete invariant, we
call it a classi�cation functor. Not all invariants are functors.

A functor F is called a strong classi�cation functor if for all objects
X and Y every isomorphism from F (X ) to F (Y ) is induced by an
isomorphism from X to Y .
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There are mainly three methods that have been used to classify (purely
in�nite) Cuntz-Krieger algebras � and more recently also graph
C∗-algebras. These are

Techniques from dynamical systems.

(internal classi�cation).

Absorption techniques for extensions.

Kirchberg's isomorphisms theorem for ideal-related KK -theory
together with a Universal Coe�cient Theorem.

(usually external
classi�cation).

Usually, the �rst method does only give internal classi�cation results �
i.e., it only gives information about C∗-algebras that are known to be
Cuntz-Krieger algebras (or graph C∗-algebras). Usually, the second and
third methods will give us external classi�cation results. Historically for
purely in�nite C∗-algebras, results from the �rst method have preceded
the more general results.
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Historical remarks

Cuntz and Krieger introduced the so-called Cuntz-Krieger algebras,
and proved a series of results about them. E.g., that the stabilized
Cuntz-Krieger algebra is a an invariant of �ow equivalence of shifts
of �nite type. (publ. 1980-81)

Using the Bowen-Franks groups, Franks classi�ed irreducible shifts
of �nite type up to �ow equivalence. (publ. 1984)

Cuntz showed that if the Cuntz-Krieger algebras associated with the

matrices
[
1 1
1 1

]
and

[
1 1 0 0
1 1 1 0
0 1 1 1
0 0 1 1

]
are isomorphic, then all simple,

purely in�nite Cuntz-Krieger algebras are classi�ed up to stable
isomorphism by their Bowen-Franks groups (or K0-groups). (publ.
1986)

Rørdam showed that this is indeed the case. (techniques from
dynamical systems, internal classi�cation, publ. 1995)

Kirchberg and Phillips classi�ed the simple, purely in�nite,
separable, nuclear C∗-algebras in the bootstrap class. (external,
strong classi�cation)
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Huang classi�ed Cuntz-Krieger algebras with �nite K -theory.
(techniques from dynamical systems, internal classi�cation, publ.
1995)

Huang classi�ed the Cuntz-Krieger algebras with exactly one
non-trivial ideal. (techniques from dynamical systems, internal
classi�cation, publ. 1996)

Rørdam classi�ed extensions of simple, purely in�nite, separable,
nuclear C∗-algebras in the bootstrap class. (Absorption techniques,
external classi�cation, publ. 1997)

Bonkat showed a UCT for ideal-related KK -theory with exactly one
non-trivial ideal, which together with Kirchberg's results gives
classi�cation (UCT, strong classi�cation, external classi�cation,
publ. 2002)
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Primitive ideal space

De�nition

Let A be a separable C∗-algebra with �nitely many ideals, and let X
denote the primitive ideal space equipped with the usual hull-kernel
topology. Then we have a lattice isomorphism from the open subsets of
X to the lattice of ideals of A. For each element x ∈ X , we let H(x) be
the smallest open subset containing x , and we let H−(x) = H(x) \ {x}.

De�nition

Using x ≤ y ⇔ {x} ⊆ {y} we get a one-to-one correspondence from the
T0-topologies to the partial orders of a �xed �nite set. The graph of this
relation (i.e., x → y i� x ≤ y), is exactly the component graph for a
Cuntz-Krieger algebra, so therefore we will use this to illustrate the
primitive ideal spaces.
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Full �ltered K -theory

De�nition

Let A be a C∗-algebra with �nitely many ideals, and let X = Prim(A)
denote the primitive ideal space. The full �ltered K-theory of A is then
the collection of the K -groups K0(A(V \ U)) and K1(A(V \ U)) for all
open subsets U ⊆ V of X together with the homomorphisms

K0(A(V \ U)) // K0(A(W \ U)) // K0(A(W \ V ))

��
K1(A(W \ V ))

OO

K1(A(W \ U))oo K1(A(V \ U))oo

for all open subsets U ⊆ V ⊆W of X .



Reduced �ltered K -theory

De�nition

Let A be a C∗-algebra with �nitely many ideals, and let X = Prim(A)
denote the primitive ideal space. The reduced �ltered K-theory of A is
then the collection of the K -groups K0(A(U)) where U ranges over all
{x} all H(x) and all non-empty H−(x) and the K -groups K1(A({x}))
whenever H−(x) 6= ∅ together with the homomorphisms

K0(A(H−(x))) // K0(A(H(x))) // K0(A({x}))

K1(A({x}))

OO

for all x satisfying H−(x) 6= ∅ and

K0(A(H(y))) // K0(A(H−(x)))

whenever H(y) is a proper subset of H−(x) and H(y) ⊆ H(z) ⊆ H−(x)
implies that z = y .
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Classi�cation of Cuntz-Krieger algebras

Theorem (R)

Purely in�nite Cuntz-Krieger algebras are classi�ed up to stable
isomorphism by the reduced �ltered K-theory (and consequently also by
the full �ltered K-theory).

Questions

Can we get unital classi�cation?

Can we get strong classi�cation?

Is it possible to get external classi�cation?

Can we describe the range of the invariants?

Do there exist phantom Cuntz-Krieger algebras.

Is it possible to generalize the results to graph C∗-algebras?
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Unital classi�cation

Theorem (Eilers-R-Ruiz)

Essentially, if we have a class of unital, separable, nuclear, purely in�nite
C∗-algebras such that the stabilization is strongly classi�ed by some
invariant that includes K0, then the same invariant together with the class
of the unit in K0 strongly classi�es this class (up to unital isomorphism).

Corollary

If we have a class of unital, separable, nuclear, purely in�nite C∗-algebras
such that the full �ltered K-theory strongly classi�es the algebras in this
class up to stable isomorphism, just throw in the class of the unit in K0

to get strong unital classi�cation.

Corollary

If we have a class of unital, separable, nuclear, purely in�nite C∗-algebras
such that the reduced �ltered K-theory strongly classi�es the algebras in
this class up to stable isomorphism, just throw in the class of the unit in
K0 to get strong unital classi�cation.
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Strong classi�cation (external classi�cation)

Since the (strong) unital classi�cation can be done using strong
classi�cation up to stable isomorphism, we will focus on that. To get
strong (external) classi�cation, the general idea is to prove a Universal
Coe�cient Theorem for full �ltered K -theory. Then we can lift a full
�ltered K -theory isomorphism to an ideal related KK -equivalence using
this UCT, and then lift that to a ∗-isomorphism using Kirchberg's result.
Let A and B be nuclear, separable, purely in�nite, stable C∗-algebras
that are tight over the �nite T0-space X having all its simple quotients
being in the bootstrap class.

Theorem (Bonkat)

If |X | = 2 and X is non-Hausdor�, then every isomorphism from the
�ltered K-theory of A to the �ltered K-theory of B can be lifted to an
isomorphism from A to B.
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Meyer-Nest have made a framework, where we get a UCT for full �ltered
K -theory whenever the projective dimension of the full �ltered K -theory
is at most 1.
Generalizing results of R and Meyer-Nest, Bentmann and Köhler showed:

Theorem (Bentmann-Köhler)

If X is an accordion space, then every isomorphism from the �ltered
K-theory of A to the �ltered K-theory of B can be lifted to an
isomorphism from A to B.
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Consider C∗algebras that are purely in�nite, separable, nuclear with all
simple subquotients in the Bootstrap class and that tight over one of the
following connected T0-spaces:

E : • // • •oo // • F : • // • •oo •oo

A:

•
""
•
��

•
||

39: • •oo // • // • 3F : • // • // • // • •

1F :

•
��

•
|| 3E :

• // •
|| �� 1E :

• //

��
•

3B:

• //

��
•
�� 38:

•
|| �� ""

• // • • • • •oo

OO

• // • • • •

The spaces E ,F , 39, 3F are accordion spaces, so strong classi�cation is
alright.

Theorem (Meyer-Nest, Bentmann-Köhler)

Bentmann-Köhler showed that we have counterexamples to classi�cation
for A, 38, 1F , 3E , 1E , 3B (using the full �ltered K-theory).
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Theorem (Arklint-R-Ruiz)

Restricted to real rank zero, we have strong classi�cation for the cases
A, 38, 1F , 3E and we have counterexamples to classi�cation for 1E (using
the full �ltered K-theory). The case 3B is open in the real rank zero case.

Theorem (Bentmann)

There is a Cuntz-Krieger algebra with projective dimension 2 over the
space 1E, so we cannot even hope to just prove that the full �ltered
K-theory of Cuntz-Krieger algebras (or graph C∗-algebras) have
projective dimension 1.

Theorem (Arklint-Bentmann-Katsura)

In the case of real rank zero and free K1, we have strong classi�cation for
the case 1E.
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Range results

Theorem (Arklint-Bentmann-Katsura)

If we have some �nitely generated reduced �ltered K-theory such that all
the involved K1-groups are free and the rank of the group that
corresponds to K1(A({x})) is less than or equal to the rank of the
cokernel of the map from K0(A(H−(x))) to K0(A(H(x))), for each x,
then there exists a unital, purely in�nite graph C∗-algebra with this
invariant.
If we instead have equality for each x, then the graph algebra can be
chosen to be a Cuntz-Krieger algebra.

Theorem (Arklint-Bentmann-Katsura)

If we have some reduced �ltered K-theory such that all the involved
K1-groups are free, then there exists a purely in�nite graph C∗-algebra
with this invariant.
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Strong classi�cation, II

Theorem (Arklint-R)

There exists a separable, nuclear, purely in�nite graph C∗-algebra C∗(E )
over a graph E with primitive ideal space of the type 3B, such that there
exists an is automorphism of the full �ltered K-theory that cannot be
lifted to an automorphism of the algebra C∗(E )⊗K.

Question

It seems that we can choose the above graph C∗-algebra to be unital and
the corresponding graph to be �nite. Is it possible to get an example with
a Cuntz-Krieger algebra?
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Phantom Cuntz-Krieger algebras

Question

Since the classi�cation of Cuntz-Krieger algebras in general is internal, it
is an open question whether there exist separable, nuclear, purely in�nite
C∗-algebras with all simple subquotiens in the Bootstrap class that has
the �ltered K-theory isomorphic to the K-theory of a Cuntz-Krieger
algebra without being stably isomorphic to a Cuntz-Krieger algebra. Such
an algebra is called a phantom Cuntz-Krieger algebra.
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Graph C ∗-algebras

There has been (and still is) some progress in extending the classi�cation
results to more general graph C∗-algebras, both in the purely in�nite
case, in the mixed case, and for graphs not satisfying condition (K).
[Eilers,R,Ruiz,Sørensen,Tomforde]
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