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Consider a class C of objects from some category.

m If we to each object X in C associate an object /(X) of some fixed
category in such a way that X 2 Y = [(X) =2 /(Y), then we call /
an invariant.

m We call such an | a complete invariant if also
I(X)=2I(Y)=XxY.

m A functor is always an invariant, and if it is a complete invariant, we
call it a classification functor. Not all invariants are functors.

m A functor F is called a strong classification functor if for all objects
X and Y every isomorphism from F(X) to F(Y) is induced by an
isomorphism from X to Y.
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There are mainly three methods that have been used to classify (purely
infinite) Cuntz-Krieger algebras — and more recently also graph
C*-algebras. These are

m Techniques from dynamical systems (internal classification).
m Absorption techniques for extensions (usually external classification).
m Kirchberg's isomorphisms theorem for ideal-related KK-theory
together with a Universal Coefficient Theorem (usually external
classification).
Usually, the first method does only give internal classification results —
i.e., it only gives information about C*-algebras that are known to be
Cuntz-Krieger algebras (or graph C*-algebras). Usually, the second and
third methods will give us external classification results. Historically for
purely infinite C*-algebras, results from the first method have preceded
the more general results.
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m Huang classified Cuntz-Krieger algebras with finite K-theory.
(techniques from dynamical systems, internal classification, publ.
1995)

m Huang classified the Cuntz-Krieger algebras with exactly one
non-trivial ideal. (techniques from dynamical systems, internal
classification, publ. 1996)

m Rgrdam classified extensions of simple, purely infinite, separable,
nuclear C*-algebras in the bootstrap class. (Absorption techniques,
external classification, publ. 1997)

m Bonkat showed a UCT for ideal-related KK-theory with exactly one
non-trivial ideal, which together with Kirchberg's results gives
classification (UCT, strong classification, external classification,
publ. 2002)
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Primitive ideal space

Definition

Let 2( be a separable C*-algebra with finitely many ideals, and let X
denote the primitive ideal space equipped with the usual hull-kernel
topology. Then we have a lattice isomorphism from the open subsets of
X to the lattice of ideals of 2. For each element x € X, we let H(x) be
the smallest open subset containing x, and we let H_(x) = H(x) \ {x}.

Definition

Using x <y < {x} C {y} we get a one-to-one correspondence from the
Ty-topologies to the partial orders of a fixed finite set. The graph of this
relation (i.e., x — y iff x < y), is exactly the component graph for a
Cuntz-Krieger algebra, so therefore we will use this to illustrate the
primitive ideal spaces.
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then the collection of the K-groups Ko(2((U)) where U ranges over all
{x} all H(x) and all non-empty H_(x) and the K-groups Ki(2(({x}))

whenever—H—{)}-4 together with the homomorphisms
Ko(U(H-(x))) — Ko(A(H(x))) — Ko(2A({x}))
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Theorem (R)

Purely infinite Cuntz-Krieger algebras are classified up to stable
isomorphism by the reduced filtered K-theory (and consequently also by
the full filtered K-theory).

Questions

m Can we get unital classification?

m Can we get strong classification?

m /s it possible to get external classification?

m Can we describe the range of the invariants?

m Do there exist phantom Cuntz-Krieger algebras.
]

Is it possible to generalize the results to graph C*-algebras?
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Since the (strong) unital classification can be done using strong
classification up to stable isomorphism, we will focus on that. To get
strong (external) classification, the general idea is to prove a Universal
Coefficient Theorem for full filtered K-theory. Then we can lift a full
filtered K-theory isomorphism to an ideal related KK-equivalence using
this UCT, and then lift that to a *-isomorphism using Kirchberg's result.
Let 2 and 8 be nuclear, separable, purely infinite, stable C*-algebras
that are tight over the finite Ty-space X having all its simple quotients
being in the bootstrap class.

Theorem (Bonkat)

If |X| =2 and X is non-Hausdorff, then every isomorphism from the
filtered K-theory of 2 to the filtered K -theory of B can be lifted to an
isomorphism from 2l to 8.
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Theorem (Bentmann-Kahler)

If X is an accordion space, then every isomorphism from the filtered
K-theory of U to the filtered K-theory of B can be lifted to an
isomorphism from 2l to 8.
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Restricted to real rank zero, we have strong classification for the cases
A,38,1F 3E and we have counterexamples to classification for 1E (using
the full filtered K-theory). The case 3B is open in the real rank zero case.

Theorem (Bentmann)

There is a Cuntz-Krieger algebra with projective dimension 2 over the
space 1E, so we cannot even hope to just prove that the full filtered
K-theory of Cuntz-Krieger algebras (or graph C*-algebras) have
projective dimension 1.

Theorem (Arklint-Bentmann-Katsura)

In the case of real rank zero and free K1, we have strong classification for
the case 1E.
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Theorem (Arklint-Bentmann-Katsura)

If we have some finitely generated reduced filtered K -theory such that all
the involved Ki-groups are free and the rank of the group that
corresponds to K1(({x})) is less than or equal to the rank of the
cokernel of the map from Ko(2A(H_(x))) to Ko(2((H(x))), for each x,
then there exists a unital, purely infinite graph C*-algebra with this
invariant.

If we instead have equality for each x, then the graph algebra can be
chosen to be a Cuntz-Krieger algebra.

Theorem (Arklint-Bentmann-Katsura)

If we have some reduced filtered K-theory such that all the involved
Ki-groups are free, then there exists a purely infinite graph C*-algebra
with this invariant.
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exists an is automorphism of the full filtered K-theory that cannot be
lifted to an automorphism of the algebra C*(E) ® K.
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exists an is automorphism of the full filtered K-theory that cannot be
lifted to an automorphism of the algebra C*(E) ® K.

Question
It seems that we can choose the above graph C*-algebra to be unital and
the corresponding graph to be finite.



Strong classification, |l

Theorem (Arklint-R)

There exists a separable, nuclear, purely infinite graph C*-algebra C*(E)
over a graph E with primitive ideal space of the type 3B, such that there
exists an is automorphism of the full filtered K-theory that cannot be
lifted to an automorphism of the algebra C*(E) ® K.

Question

It seems that we can choose the above graph C*-algebra to be unital and
the corresponding graph to be finite. Is it possible to get an example with
a Cuntz-Krieger algebra?
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Phantom Cuntz-Krieger algebras

Question

Since the classification of Cuntz-Krieger algebras in general is internal, it
is an open question whether there exist separable, nuclear, purely infinite
C*-algebras with all simple subquotiens in the Bootstrap class that has
the filtered K-theory isomorphic to the K-theory of a Cuntz-Krieger
algebra without being stably isomorphic to a Cuntz-Krieger algebra. Such
an algebra is called a phantom Cuntz-Krieger algebra.



Outline

Some answers

m Graph C*-algebras



Graph C*-algebras

There has been (and still is) some progress in extending the classification
results to more general graph C*-algebras, both in the purely infinite
case, in the mixed case, and for graphs not satisfying condition (K).
[Eilers,R,Ruiz,Sgrensen, Tomforde]
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