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Directed graphs

A directed graph E is a quadruple (E0,E1, r , s) consisting of
two sets E0 and E1 and two maps r , s : E1 → E0.
The elements of E0 are called vertices.
The elements of E1 are called edges.
If e is an edge, s(e) is called the source of e, and r(e) is called
the range of e.
If s(e) = v and r(e) = w , then we say that v emits e, and that
w receives e.
If v ∈ E0, then we let vE1 = {e ∈ En : r(e) = v} and
E1v = {e ∈ En : s(e) = v}.
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Paths

A path of length n in a directed graph E is a sequence
µ = µ1µ2 . . . µn of edges in E such that s(µi) = r(µi+1) for
i ∈ {1,2, . . . ,n − 1}.
We write |µ| for the length n of a path.
We denote by En the set of paths of length n, and let
E∗ =

⋃∞
n=0 En.

We extend the range and source maps to E∗ by setting
r(µ) = r(µ1) and s(µ) = s(µn) when |µ| ≥ 1, and
r(µ) = s(µ) = µ when µ ∈ E0.
If µ, ν ∈ E∗ and s(µ) = r(ν), then we write µν for the path
µ1 . . . µ|µ|ν1 . . . ν|ν|.
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Sinks, sources and row-finite graphs

A vertex v ∈ E∗ is called a sink if E1v = ∅, and a source if
vE1 = ∅.
A directed graph is said to be row-finite if vE1 is finite for all
v ∈ E0.

www.ntnu.no Carlsen, Orbit equivalence and graph C∗-algebras, page 4



Sinks, sources and row-finite graphs

A vertex v ∈ E∗ is called a sink if E1v = ∅, and a source if
vE1 = ∅.

A directed graph is said to be row-finite if vE1 is finite for all
v ∈ E0.

www.ntnu.no Carlsen, Orbit equivalence and graph C∗-algebras, page 4



Sinks, sources and row-finite graphs

A vertex v ∈ E∗ is called a sink if E1v = ∅, and a source if
vE1 = ∅.
A directed graph is said to be row-finite if vE1 is finite for all
v ∈ E0.

www.ntnu.no Carlsen, Orbit equivalence and graph C∗-algebras, page 4



Graph C∗-algebras

Let E be a row-finite directed graph with no sources. The
C∗-algebra C∗(E) of the graph E is defined as the universal
C∗-algebra generated by a family (se,pv )e∈E1,v∈E0 consisting of
partial isometries (se)e∈E1 with mutually orthogonal range
projections and mutually orthogonal projections (pv )v∈E0 satisfying

1 s∗ese = ps(e) for all e ∈ E1,
2 pv =

∑
e∈vE1 ses∗e for all v ∈ E0.
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The C∗-subalgebra D(E)

For µ ∈ E∗, we let sµ = sµ1 . . . sµ|µ| when |µ| ≥ 1, and sµ = pµ
when µ ∈ E0.
We let D(E) denote the C∗-subalgebra of C∗(E) generated by
{sµs∗µ | µ ∈ E∗}.
Let E and F be two row-finite directed graphs with no sources.

We are interested in determining when there is an
isomorphism ψ : C∗(E)→ C∗(F ) such that ψ(D(E)) = D(F ).

www.ntnu.no Carlsen, Orbit equivalence and graph C∗-algebras, page 6



The C∗-subalgebra D(E)

For µ ∈ E∗, we let sµ = sµ1 . . . sµ|µ| when |µ| ≥ 1, and sµ = pµ
when µ ∈ E0.

We let D(E) denote the C∗-subalgebra of C∗(E) generated by
{sµs∗µ | µ ∈ E∗}.
Let E and F be two row-finite directed graphs with no sources.

We are interested in determining when there is an
isomorphism ψ : C∗(E)→ C∗(F ) such that ψ(D(E)) = D(F ).

www.ntnu.no Carlsen, Orbit equivalence and graph C∗-algebras, page 6



The C∗-subalgebra D(E)

For µ ∈ E∗, we let sµ = sµ1 . . . sµ|µ| when |µ| ≥ 1, and sµ = pµ
when µ ∈ E0.
We let D(E) denote the C∗-subalgebra of C∗(E) generated by
{sµs∗µ | µ ∈ E∗}.

Let E and F be two row-finite directed graphs with no sources.

We are interested in determining when there is an
isomorphism ψ : C∗(E)→ C∗(F ) such that ψ(D(E)) = D(F ).

www.ntnu.no Carlsen, Orbit equivalence and graph C∗-algebras, page 6



The C∗-subalgebra D(E)

For µ ∈ E∗, we let sµ = sµ1 . . . sµ|µ| when |µ| ≥ 1, and sµ = pµ
when µ ∈ E0.
We let D(E) denote the C∗-subalgebra of C∗(E) generated by
{sµs∗µ | µ ∈ E∗}.
Let E and F be two row-finite directed graphs with no sources.

We are interested in determining when there is an
isomorphism ψ : C∗(E)→ C∗(F ) such that ψ(D(E)) = D(F ).

www.ntnu.no Carlsen, Orbit equivalence and graph C∗-algebras, page 6



The C∗-subalgebra D(E)

For µ ∈ E∗, we let sµ = sµ1 . . . sµ|µ| when |µ| ≥ 1, and sµ = pµ
when µ ∈ E0.
We let D(E) denote the C∗-subalgebra of C∗(E) generated by
{sµs∗µ | µ ∈ E∗}.
Let E and F be two row-finite directed graphs with no sources.
We are interested in determining when there is an
isomorphism ψ : C∗(E)→ C∗(F ) such that ψ(D(E)) = D(F ).

www.ntnu.no Carlsen, Orbit equivalence and graph C∗-algebras, page 6



Infinite paths

An infinite path in a directed graph E is an infinite sequence
x = x1x2 . . . of edges in E such that s(xi) = r(xi+1) for
i ∈ {1,2, . . . }.
We denote by E∞ the set of infinite paths in E .
We extend the range map to E∞ by setting r(x) = r(x1).
If µ ∈ E∗, x ∈ E∞ and s(µ) = r(x), then we write µx for the
path µ1 . . . µ|µ|x1x2 . . . (if µ ∈ E0, then µx = x).
For µ ∈ E∗, we let Z (µ) = {µx | x ∈ E∞, s(µ) = r(x)}.
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The infinite path space

We equip E∞ with the topology generated by {Z (u) | u ∈ E∗}.

E∞ then becomes a totally disconnected locally compact
Hausdorff space.
Z (µ) is open and compact for all µ ∈ E∗.
E∞ is compact if and only if E0 is finite.
There is a ∗-isomorphism from D(E) to C0(E∞) which, for
every µ ∈ E∗, maps sµs∗µ to the characteristic function of Z (µ).
We let σE : E∞ → E∞ denote the map

x1x2x3 . . . 7→ x2x3 . . . .
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Continuously orbit equivalence

Let E and F be two row-finite directed graphs with no sources. We
say the infinite path spaces E∞ and F∞ are continuously orbit
equivalent if there exists a homeomorphism h : E∞ → F∞ and
continuous functions k1, l1 : E∞ → N and k2, l2 : F∞ → N such that

σ
k1(x)
F ◦ h ◦ σE(x) = σ

l1(x)
F ◦ h(x) and

σ
k2(y)
E ◦ h−1 ◦ σF (y) = σ

l2(y)
E ◦ h−1(y),

for all x ∈ E∞, y ∈ F∞.
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continuous functions k1, l1 : E∞ → N and k2, l2 : F∞ → N such that

σ
k1(x)
F ◦ h ◦ σE(x) = σ

l1(x)
F ◦ h(x) and

σ
k2(y)
E ◦ h−1 ◦ σF (y) = σ

l2(y)
E ◦ h−1(y),

for all x ∈ E∞, y ∈ F∞.
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Cycles

A cycle is a path µ ∈ E∗ for which µ ≥ 1 and s(µ) = r(µ).
An entry for a cycle µ is an edge e ∈ E1 such that r(e) = r(µi)
and e 6= µi for some i ∈ {1,2, . . . , |µ|}.
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The main theorem

Suppose E and F are row-finite directed graphs with no sources
and in which every cycle has an entry. Then the following are
equivalent:

1 There is an isomorphism ψ : C∗(E)→ C∗(F ) such that
ψ(D(E)) = D(F );

2 E∞ and F∞ are continuously orbit equivalent.
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Examples

1 Let E be the graph

and let F be the graph
Then E∞ = {?} = F∞, so E∞ and F∞ are continuously orbit
equivalent, but C∗(E) ∼= C 6∼= C(T) ∼= C∗(F ).

2 Let E be the graph . . .

and let F be the graph . . .

Then E∞ = N = F∞, so E∞ and F∞ are continuously orbit
equivalent, but C∗(E) ∼= K 6∼= K ⊗ C(T) ∼= C∗(F ).

www.ntnu.no Carlsen, Orbit equivalence and graph C∗-algebras, page 12



Examples

1 Let E be the graph

and let F be the graph
Then E∞ = {?} = F∞, so E∞ and F∞ are continuously orbit
equivalent, but C∗(E) ∼= C 6∼= C(T) ∼= C∗(F ).

2 Let E be the graph . . .

and let F be the graph . . .

Then E∞ = N = F∞, so E∞ and F∞ are continuously orbit
equivalent, but C∗(E) ∼= K 6∼= K ⊗ C(T) ∼= C∗(F ).

www.ntnu.no Carlsen, Orbit equivalence and graph C∗-algebras, page 12



Examples

1 Let E be the graph and let F be the graph

Then E∞ = {?} = F∞, so E∞ and F∞ are continuously orbit
equivalent, but C∗(E) ∼= C 6∼= C(T) ∼= C∗(F ).

2 Let E be the graph . . .

and let F be the graph . . .

Then E∞ = N = F∞, so E∞ and F∞ are continuously orbit
equivalent, but C∗(E) ∼= K 6∼= K ⊗ C(T) ∼= C∗(F ).

www.ntnu.no Carlsen, Orbit equivalence and graph C∗-algebras, page 12



Examples

1 Let E be the graph and let F be the graph
Then E∞ = {?} = F∞,

so E∞ and F∞ are continuously orbit
equivalent, but C∗(E) ∼= C 6∼= C(T) ∼= C∗(F ).

2 Let E be the graph . . .

and let F be the graph . . .

Then E∞ = N = F∞, so E∞ and F∞ are continuously orbit
equivalent, but C∗(E) ∼= K 6∼= K ⊗ C(T) ∼= C∗(F ).

www.ntnu.no Carlsen, Orbit equivalence and graph C∗-algebras, page 12



Examples

1 Let E be the graph and let F be the graph
Then E∞ = {?} = F∞, so E∞ and F∞ are continuously orbit
equivalent,

but C∗(E) ∼= C 6∼= C(T) ∼= C∗(F ).

2 Let E be the graph . . .

and let F be the graph . . .

Then E∞ = N = F∞, so E∞ and F∞ are continuously orbit
equivalent, but C∗(E) ∼= K 6∼= K ⊗ C(T) ∼= C∗(F ).

www.ntnu.no Carlsen, Orbit equivalence and graph C∗-algebras, page 12



Examples

1 Let E be the graph and let F be the graph
Then E∞ = {?} = F∞, so E∞ and F∞ are continuously orbit
equivalent, but C∗(E) ∼= C 6∼= C(T) ∼= C∗(F ).

2 Let E be the graph . . .

and let F be the graph . . .

Then E∞ = N = F∞, so E∞ and F∞ are continuously orbit
equivalent, but C∗(E) ∼= K 6∼= K ⊗ C(T) ∼= C∗(F ).

www.ntnu.no Carlsen, Orbit equivalence and graph C∗-algebras, page 12



Examples

1 Let E be the graph and let F be the graph
Then E∞ = {?} = F∞, so E∞ and F∞ are continuously orbit
equivalent, but C∗(E) ∼= C 6∼= C(T) ∼= C∗(F ).

2 Let E be the graph . . .

and let F be the graph . . .

Then E∞ = N = F∞, so E∞ and F∞ are continuously orbit
equivalent, but C∗(E) ∼= K 6∼= K ⊗ C(T) ∼= C∗(F ).

www.ntnu.no Carlsen, Orbit equivalence and graph C∗-algebras, page 12



Examples

1 Let E be the graph and let F be the graph
Then E∞ = {?} = F∞, so E∞ and F∞ are continuously orbit
equivalent, but C∗(E) ∼= C 6∼= C(T) ∼= C∗(F ).

2 Let E be the graph . . .

and let F be the graph . . .

Then E∞ = N = F∞, so E∞ and F∞ are continuously orbit
equivalent, but C∗(E) ∼= K 6∼= K ⊗ C(T) ∼= C∗(F ).

www.ntnu.no Carlsen, Orbit equivalence and graph C∗-algebras, page 12



Examples

1 Let E be the graph and let F be the graph
Then E∞ = {?} = F∞, so E∞ and F∞ are continuously orbit
equivalent, but C∗(E) ∼= C 6∼= C(T) ∼= C∗(F ).

2 Let E be the graph . . .

and let F be the graph . . .

Then E∞ = N = F∞,

so E∞ and F∞ are continuously orbit
equivalent, but C∗(E) ∼= K 6∼= K ⊗ C(T) ∼= C∗(F ).

www.ntnu.no Carlsen, Orbit equivalence and graph C∗-algebras, page 12



Examples

1 Let E be the graph and let F be the graph
Then E∞ = {?} = F∞, so E∞ and F∞ are continuously orbit
equivalent, but C∗(E) ∼= C 6∼= C(T) ∼= C∗(F ).

2 Let E be the graph . . .

and let F be the graph . . .

Then E∞ = N = F∞, so E∞ and F∞ are continuously orbit
equivalent,

but C∗(E) ∼= K 6∼= K ⊗ C(T) ∼= C∗(F ).

www.ntnu.no Carlsen, Orbit equivalence and graph C∗-algebras, page 12



Examples

1 Let E be the graph and let F be the graph
Then E∞ = {?} = F∞, so E∞ and F∞ are continuously orbit
equivalent, but C∗(E) ∼= C 6∼= C(T) ∼= C∗(F ).

2 Let E be the graph . . .

and let F be the graph . . .

Then E∞ = N = F∞, so E∞ and F∞ are continuously orbit
equivalent, but C∗(E) ∼= K 6∼= K ⊗ C(T) ∼= C∗(F ).

www.ntnu.no Carlsen, Orbit equivalence and graph C∗-algebras, page 12



The full inverse semigroup

Let E be a row-finite directed graph with no sources and in which
every cycle has an entry. We denote by S(E∞) the set of all partial
homeomorphisms of E∞ whose domain and range are compact
open sets, and such that there exist continuous functions
kτ , lτ : Dom(τ)→ N satisfying

σ
kτ (x)
E (τ(x)) = σ

lτ (x)
E (x).

If h : E∞ → F∞ is a homeomorphism, we denote by
h ◦ S(E∞) ◦ h−1 the set

{h ◦ τ ◦ h−1|h(Dom(τ)) : τ ∈ S(E∞)}.
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The main theorem

Suppose E and F are row-finite directed graphs with no sources
and in which every cycle has an entry.

Then the following are
equivalent:

1 There is an isomorphism ψ : C∗(E)→ C∗(F ) such that
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The groupoid of the full inverse
semigroup

When E is a row-finite directed graph with no sinks in which
every cycle has an entry, then we let GS(E∞) be the groupoid

{(x , τ) | τ ∈ S(E∞), x ∈ Dom(τ)}/ ∼

where (x1, τ1) ∼ (x2, τ2) if x1 = x2 and there is a a compact
open neighbourhood U ⊆ Dom(τ1) ∩ Dom(τ2) of x1 such that
τ1 and τ2 are equal on U.
[x , τ ]−1 = [τ(x), τ−1].
[x1, τ1] and [x2, τ2] are composable if x1 = τ2(x2) in which case
[x1, τ1][x2, τ2] = [x2, τ1 ◦ τ2].
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The groupoid of the full inverse
semigroup

When τ ∈ S(E∞) and U is an open subset of Dom(τ), then we
let Z (U, τ) = {[x , τ ] | x ∈ U}.

We equip GS(E∞) with the topology generated by
{Z (U, τ) | τ ∈ S(E∞), U is an open subset of Dom(τ)}.
Then GS(E∞) becomes a locally compact, Hausdorff, étale
topological groupoid and G0

S(E∞) is homeomorphic to E∞.
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The Cuntz-Krieger uniqueness theorem

Let E be a row-finite directed graph with no sources and in which
every cycle has an entry.

Let φ be a ∗-homomorphism defined on
C∗(E). Then φ is injective if and only if φ(pv ) 6= 0 for all v ∈ E0.
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C∗(GS(E∞)) ∼= C∗(E)

Let E be a row-finite directed graph with no sources and in which
every cycle has an entry. Then there exists a ∗-isomorphism
φ : C∗(E)→ C∗(GE) such that

1 φ(pv ) = χZ (Z (v),IdZ (v)) for v ∈ E0,

2 φ(se) = χZ (Z (e),(σE )|Z (e)) for e ∈ E1,

3 φ(D(E)) = C0(G0
S(E∞)).
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Proof:

For v ∈ E0 let qv denote the characteristic function of
Z (Z (v), IdZ (v)), and for e ∈ E1 let te denote the characteristic
function of Z (Z (e), (σE)|Z (e)). It is not difficult to check that
(te,qv )e∈E1,v∈E0 is a family consisting of partial isometries (te)e∈E1

with mutually orthogonal range projections and mutually orthogonal
projections (qv )v∈E0 satisfying

1 t∗e te = qs(e) for all e ∈ E1,
2 qv =

∑
e∈vE1 tet∗e for all v ∈ E0.

It then follows from the universal property of C∗(E) that there exists
a ∗-homomorphism φ : C∗(E)→ C∗(GS(E∞)) such that φ(pv ) = qv
and φ(se) = te. φ is surjective since C∗(GS(E∞)) is generated by
(te,qv )e∈E1,v∈E0 . It is easy to check that φ(D(E)) = C0(G0

S(E∞)) and
that φ restricted to D(E) is injective. It then follows from the
Cuntz-Krieger uniqueness theorem that φ is injective.
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The main theorem

Suppose E and F are row-finite directed graphs with no sources
and in which every cycle has an entry.

Then the following are
equivalent:

1 There is an isomorphism ψ : C∗(E)→ C∗(F ) such that
ψ(D(E)) = D(F );

2 E∞ and F∞ are continuously orbit equivalent;
3 there is a homeomorphism h : E∞ → F∞ such that

h ◦ S(E∞) ◦ h−1 = S(F∞);
4 the groupoids GS(E∞) and GS(F∞) are isomorphic (as

topological groupoids with Haar systems).
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Remark

The main theorem, and its proof, is inspired by the results in Kengo
Matsumoto’s two papers

1 Orbit equivalence of topological Markov shifts and
Cuntz-Krieger algebras,

2 Orbit equivalence of one-sided subshifts and the associated
C∗-algebras.
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On the proof of the main theorem

2 ⇐⇒ 3 : Let h : E∞ → F∞ be a homeomorphism. It is straight
forward to check that there exist continuous functions
k1, l1 : E∞ → N and k2, l2 : F∞ → N such that

σ
k1(x)
F ◦ h ◦ σE(x) = σ

l1(x)
F ◦ h(x) and

σ
k2(y)
E ◦ h−1 ◦ σF (y) = σ

l2(y)
E ◦ h−1(y),

for all x ∈ E∞, y ∈ F∞, if and only if h ◦ S(E∞) ◦ h−1 = S(F∞).
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On the proof of the main theorem

3 =⇒ 4 :

It is also easy to check that if h : E∞ → F∞ is a
homeomorphism such that h ◦ S(E∞) ◦ h−1 = S(F∞), then
[x , τ ] 7→ [h(x),h ◦ τ ◦ h−1] is an isomorphism between GS(E∞) and
GS(F∞).
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On the proof of the main theorem

4 =⇒ 1 :

If GS(E∞) and GS(F∞) are isomorphic, then there is an
isomorphism between C∗(GS(E∞)) and C∗(GS(F∞)) which maps
C0(G0

S(E∞)) onto C0(G0
S(F∞)), and since there is an isomorphism

between C∗(E) and C∗(GS(E∞)) which maps D(E) onto
C0(G0

S(E∞)), and an isomorphism between C∗(F ) and C∗(GS(F∞))

which maps D(F ) onto C0(G0
S(F∞)), it follows that there is an

isomorphism between C∗(E) and C∗(F ) which maps D(E) onto
D(F ).
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On the proof of the main theorem

1 =⇒ 3 :

Let

NE = {u ∈ C∗(E) : u is a partial isometry,
uD(E)u∗ ⊆ D(E),u∗D(E)u ⊆ D(E)}.

If u ∈ NE , then uu∗ and u∗u belong to D(E) which we will identify
with C0(E∞). There is for each u ∈ NE a unique τu ∈ S(E∞)
satisfying ufu∗ = f ◦ τu and u∗fu = f ◦ τ−1

u for all f ∈ C0(E∞).
The map u 7→ τu is a surjective map from NE to S(E∞), and
τu1 = τu2 iff u1u∗1 = u2u∗2, u∗1u1 = u∗2u2, and u1u∗2 and u∗1u2 both
belong to D(E). It follows that if there is an isomorphism between
C∗(E) and C∗(F ) which maps D(E) onto D(F ), then there is a
homeomorphism h : E∞ → F∞ such that
h ◦ S(E∞) ◦ h−1 = S(F∞).
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Some remarks about the main theorem

1 We believe that the assumptions that E and F are row-finite
with no sources can be dropped without too much problems.

2 We also believe that the theorem (and the proof) holds if E
and F are replaced by higher rank graphs.
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Examples

1 If (E∞, σE) and (F∞, σF ) are conjugate, then E∞ and F∞ are
continuously orbit equivalent.

It follows that if F is an in-split
of E , then there is an isomorphism between C∗(E) and C∗(F )
which maps D(E) onto D(F ) (this is a small improvement of a
result by Bates and Pask).
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Examples

2 Let E be the graph
. . .

e2

e1

and let F be the graph
. . .

f1

f2

Then e1en
2x 7→ f1(f2f1)nx , en

2x 7→ (f2f1)nx , x 7→ x give raise to a
continuously orbit equivalence between E∞ and F∞. So there
is an isomorphism between C∗(E) and C∗(F ) which maps
D(E) onto D(F ).
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Examples

3 Let E be the graph

and let F be the graph
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Questions

1 Can any of you find graphs E and F such that C∗(E) ∼= C∗(F ),
and E∞ is not homeomorphic to F∞?

2 Can any of you find graphs E and F such that C∗(E) ∼= C∗(F ),
E∞ is homeomorphic to F∞, but E∞ and F∞ are not
continuously orbit equivalent?

3 Can any of you find graphs E and F such that C∗(E) ∼= C∗(F ),
E∞ is homeomorphic to F∞, the diagram
K0(D(E)) K0(C∗(E))

K0(D(F )) K0(C∗(F ))

∼= ∼=

commutes, but E∞ and F∞ are not continuously orbit
equivalent?
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Questions

4 Let E be the graph

and let F be the graph

Are E∞ and F∞ continuously orbit equivalent?
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