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Directed graphs

@ A directed graph E is a quadruple (E°, E', r, s) consisting of
two sets E? and E' and two maps r,s: E' — EC.
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Directed graphs

@ A directed graph E is a quadruple (E°, E', r, s) consisting of
two sets E? and E' and two maps r,s: E' — EC.
@ The elements of E? are called vertices.
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Directed graphs

@ A directed graph E is a quadruple (E°, E', r, s) consisting of
two sets E? and E' and two maps r,s: E' — EC.

@ The elements of E? are called vertices.

@ The elements of E' are called edges.

@ If eis an edge, s(e) is called the source of e, and r(e) is called
the range of e.
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Directed graphs

@ A directed graph E is a quadruple (E°, E', r, s) consisting of
two sets E? and E' and two maps r,s: E' — EC.

@ The elements of E? are called vertices.
@ The elements of E' are called edges.

@ If eis an edge, s(e) is called the source of e, and r(e) is called
the range of e.

e If s(e) = v and r(e) = w, then we say that v emits e, and that
w receives e.
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Directed graphs

@ A directed graph E is a quadruple (E°, E', r, s) consisting of
two sets E? and E' and two maps r,s: E' — EC.

@ The elements of E? are called vertices.

@ The elements of E' are called edges.

@ If eis an edge, s(e) is called the source of e, and r(e) is called
the range of e.

e If s(e) = v and r(e) = w, then we say that v emits e, and that
w receives e.

@ Ifve EY thenwe let vE' = {e € E": r(e) = v} and
E'v={ec E":s(e)=v}.
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Paths

@ A path of length nin a directed graph E is a sequence
W= pi2 ... up of edges in E such that s(u;) = r(uiyq) for
ie{1,2,...,n—1}.
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Paths

@ A path of length nin a directed graph E is a sequence
W= pi2 ... up of edges in E such that s(u;) = r(uiyq) for
ie{1,2,...,n—1}.

@ We write |u| for the length n of a path.

NTNU
Norwegian University of
Science and Technology

www.ntnu.no Carlsen, Orbit equivalence and graph C*-algebras, page 3



Paths

@ A path of length nin a directed graph E is a sequence
W= pi2 ... up of edges in E such that s(u;) = r(uiyq) for
ie{1,2,...,n—1}.

@ We write |u| for the length n of a path.

@ We denote by E" the set of paths of length n, and let
E>’< = Ii]“;o En.
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Paths

@ A path of length nin a directed graph E is a sequence
W= pi2 ... up of edges in E such that s(u;) = r(uiyq) for
ie{1,2,...,n—1}.

@ We write |u| for the length n of a path.

@ We denote by E" the set of paths of length n, and let
Ex =y o E"

@ We extend the range and source maps to E* by setting

r(n) = r(pq) and s(p) = s(un) when |u| > 1, and
r(p) = s(u) = p when u € E°.
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Paths

@ A path of length nin a directed graph E is a sequence
W= pi2 ... up of edges in E such that s(u;) = r(uiyq) for
ie{1,2,...,n—1}.

@ We write |u| for the length n of a path.

@ We denote by E" the set of paths of length n, and let
E*=UnZo E".

@ We extend the range and source maps to E* by setting
r(u) = r(u1) and s(u) = s(pn) when [u| > 1, and
r(p) = s(u) = p when u € E°.

@ If u,v € E* and s(p) = r(v), then we write v for the path
e .. ./L‘N‘IA PN Z/|V|.
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Sinks, sources and row-finite graphs

@ Avertex v € E* is called a sink if E'v = (§, and a source if
vE! = 0.
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Sinks, sources and row-finite graphs

@ Avertex v € E* is called a sinkif E'v = (), and a source if
vE! = ().

@ A directed graph is said to be row-finite if vE' is finite for all
v e ES.
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Graph C*-algebras

Let E be a row-finite directed graph with no sources.
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Graph C*-algebras

Let E be a row-finite directed graph with no sources. The

C*-algebra C*(E) of the graph E is defined as the universal

C-algebra generated by a family (Se, py)ecet vego CONsisting of

partial isometries (Se)c£1 With mutually orthogonal range

projections and mutually orthogonal projections (py),cgo satisfying
@ siSe=pse) forallec ET,

Q Py = eyt Sess forall v e EC.
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The C*-subalgebra D(E)

@ Forpue E*,welets, =s, ...s,, when|u| >1,and s, =p,
when . € EO.
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The C*-subalgebra D(E)

@ Forpue E*,welets, =s, ...s,, when|u| >1,and s, =p,
when . € EO.

@ We let D(E) denote the C*-subalgebra of C*(E) generated by
{sus;, | n e E*}.
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The C*-subalgebra D(E)

@ Forpue E*,welets, =s, ...s,, when|u| >1,and s, =p,
when . € EO.

@ We let D(E) denote the C*-subalgebra of C*(E) generated by
{susi | ne E}.

@ Let E and F be two row-finite directed graphs with no sources.

NTNU
Norwegian University of
Science and Technology
\
\

www.ntnu.no

Carlsen, Orbit equivalence and graph C*-algebras, page 6



The C*-subalgebra D(E)

@ Forpue E*,welets, =s, ...s,, when|u| >1,and s, =p,
when . € EO.

@ We let D(E) denote the C*-subalgebra of C*(E) generated by
{susi | ne E}.

@ Let E and F be two row-finite directed graphs with no sources.

We are interested in determining when there is an
isomorphism v : C*(E) — C*(F) such that v/(D(E)) = D(F).
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Infinite paths

@ An infinite path in a directed graph E is an infinite sequence
X = xyX2 ... of edges in E such that s(x;) = r(x;.1) for
ie{1,2,...}.
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Infinite paths

@ An infinite path in a directed graph E is an infinite sequence
X = xyX2 ... of edges in E such that s(x;) = r(x;.1) for
ie{1,2,...}.

@ We denote by E* the set of infinite paths in E.
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Infinite paths

@ An infinite path in a directed graph E is an infinite sequence
X = xyX2 ... of edges in E such that s(x;) = r(x;.1) for
ie{1,2,...}.

@ We denote by E* the set of infinite paths in E.

@ We extend the range map to E> by setting r(x) = r(xq).
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Infinite paths

@ An infinite path in a directed graph E is an infinite sequence
X = xyX2 ... of edges in E such that s(x;) = r(x;.1) for
ie{1,2,...}.

@ We denote by E* the set of infinite paths in E.

@ We extend the range map to E> by setting r(x) = r(xq).

@ If pe E*, x € E* and s(u) = r(x), then we write ux for the
path A ) X1 X2 . e (if u e EO, then ux = x).
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Infinite paths

@ An infinite path in a directed graph E is an infinite sequence
X = xyX2 ... of edges in E such that s(x;) = r(x;.1) for
ie{1,2,...}.

@ We denote by E* the set of infinite paths in E.

@ We extend the range map to E> by setting r(x) = r(xq).

@ If pe E*, x € E* and s(u) = r(x), then we write ux for the
path g ...y XiXe... (ifp € EO, then ux = x).

@ Forpue EX,welet Z(u) = {ux | x € E*=, s(u) = r(x)}.
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The infinite path space

@ We equip E* with the topology generated by {Z(u) | u € E*}.

NTNU
Norwegian University of
Science and Technology
\
\

www.ntnu.no

Carlsen, Orbit equivalence and graph C*-algebras, page 8



The infinite path space

@ We equip E* with the topology generated by {Z(u) | u € E*}.

@ E~ then becomes a totally disconnected locally compact
Hausdorff space.
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The infinite path space

@ We equip E* with the topology generated by {Z(u) | u € E*}.

@ E~ then becomes a totally disconnected locally compact
Hausdorff space.

@ Z(u) is open and compact for all 4 € E*.
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The infinite path space

@ We equip E* with the topology generated by {Z(u) | u € E*}.

@ E~ then becomes a totally disconnected locally compact
Hausdorff space.

@ Z(u) is open and compact for all 4 € E*.
@ E> is compact if and only if E? is finite.
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The infinite path space

@ We equip E* with the topology generated by {Z(u) | u € E*}.

@ E~ then becomes a totally disconnected locally compact
Hausdorff space.

@ Z(u) is open and compact for all 4 € E*.

@ E> is compact if and only if E? is finite.

@ There is a *-isomorphism from D(E) to Cy(E>) which, for
every u € E*, maps s,,s;, to the characteristic function of Z(y).
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The infinite path space

@ We equip E* with the topology generated by {Z(u) | u € E*}.

@ E~ then becomes a totally disconnected locally compact
Hausdorff space.

@ Z(u) is open and compact for all 4 € E*.

@ E> is compact if and only if E? is finite.

@ There is a *-isomorphism from D(E) to Cy(E>) which, for
every u € E*, maps s,,s;, to the characteristic function of Z(y).

@ We let o : E®® — E* denote the map

X1XoX3...— XoX3....
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Continuously orbit equivalence

Let E and F be two row-finite directed graphs with no sources.
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Continuously orbit equivalence

Let E and F be two row-finite directed graphs with no sources. We
say the infinite path spaces E* and F°° are continuously orbit
equivalent
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Continuously orbit equivalence

Let E and F be two row-finite directed graphs with no sources. We
say the infinite path spaces E* and F°° are continuously orbit
equivalent if there exists a homeomorphism h: E> — F> and
continuous functions kq, /i : E*° — N and ko, b : F*° — N such that
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Continuously orbit equivalence

Let E and F be two row-finite directed graphs with no sources. We
say the infinite path spaces E* and F°° are continuously orbit
equivalent if there exists a homeomorphism h: E> — F> and
continuous functions kq, /i : E*° — N and ko, b : F*° — N such that

O',l? ™6 ho oe(x) = O’;I—(X) o h(x) and

0.22(}’) o h—1 OUF(}/) — O./E(,V) ° h‘1(y),

forall x € E>*y € F*.
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Cycles

@ A cycleis a path u € E* for which > 1 and s(u) = r(u).
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Cycles

@ A cycleis a path u € E* for which > 1 and s(u) = r(u).

@ An entryfor a cycle p is an edge e € E' such that r(e) = r(u;)
and e # p;forsome i e {1,2,...,|u|}.
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The main theorem

Suppose E and F are row-finite directed graphs with no sources
and in which every cycle has an entry.
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The main theorem

Suppose E and F are row-finite directed graphs with no sources
and in which every cycle has an entry. Then the following are
equivalent:
@ There is an isomorphism 1) : C*(E) — C*(F) such that
¢(D(E)) = D(F);
@ E* and F* are continuously orbit equivalent.
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Examples

@ Let E be the graph e
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Examples

© Let E be the graph @ and let F be the graph Q
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Examples
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Then E>® = {x} = F*°,
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Examples

© Let E be the graph @ and let F be the graph Q
Then E>® = {x} = F*°, so E> and F* are continuously orbit
equivalent,
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Examples

© Let E be the graph @ and let F be the graph Q
Then E>® = {x} = F*°, so E> and F* are continuously orbit
equivalent, but C*(E) = C 2 C(T) = C*(F).
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Examples

© Let E be the graph @ and let F be the graph Q
Then E* = {x} = F*>°, so E> and F* are continuously orbit
equivalent, but C*(E) = C 2 C(T) = C*(F).

© Let E be the graph e¢—o<¢—0< - --
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Examples

@ Let E be the graph e and let F be the graph Q
Then E* = {x} = F*>°, so E> and F* are continuously orbit
equivalent, but C*(E) = C 2 C(T) = C*(F).
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© Let E be the graph e¢—o<¢—0< - --

and let F be the graph --- <—0<—o<—Q
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Examples

@ Let E be the graph e and let F be the graph Q
Then E* = {x} = F*>°, so E> and F* are continuously orbit
equivalent, but C*(E) = C 2 C(T) = C*(F).

© Let E be the graph e¢—o<¢—0< - --

and let F be the graph --- <—0<—o<—Q

Then E*® =N = F*, so E*> and F*° are continuously orbit
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The full inverse semigroup

Let E be a row-finite directed graph with no sources and in which
every cycle has an entry.
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The full inverse semigroup

Let E be a row-finite directed graph with no sources and in which
every cycle has an entry. We denote by S(E°) the set of all partial
homeomorphisms of E>° whose domain and range are compact
open sets, and such that there exist continuous functions

Kk;, Il : Dom(7) — N satisfying

o (r(x)) = ogM (%),
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The full inverse semigroup

Let E be a row-finite directed graph with no sources and in which
every cycle has an entry. We denote by S(E°) the set of all partial
homeomorphisms of E>° whose domain and range are compact
open sets, and such that there exist continuous functions

Kk;, Il : Dom(7) — N satisfying

o (r(x)) = ogM (%),

If h: E>* — F> is a homeomorphism, we denote by
ho S(E>®) o h~' the set

{h oToO h_1 |h(Dom(T)) T E S(Eoo)}
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The main theorem

Suppose E and F are row-finite directed graphs with no sources
and in which every cycle has an entry.
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The main theorem

Suppose E and F are row-finite directed graphs with no sources
and in which every cycle has an entry. Then the following are
equivalent:
@ There is an isomorphism 1) : C*(E) — C*(F) such that
¢(D(E)) = D(F);
@ E* and F*° are continuously orbit equivalent;
© there is a homeomorphism h: E* — F* such that
hoS(E®)o h™! = S(F>).
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The groupoid of the full inverse
semigroup

@ When E is a row-finite directed graph with no sinks in which
every cycle has an entry, then we let Gs(g~) be the groupoid

{(x,7) | 7 € S(E®), x € Dom(1)}/ ~

where (x1, ) ~ (X2, 72) if Xy = X2 and there is a a compact
open neighbourhood U C Dom(71) N Dom(7z) of x4 such that
74 and m» are equal on U.
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The groupoid of the full inverse
semigroup

@ When E is a row-finite directed graph with no sinks in which
every cycle has an entry, then we let Gs(g~) be the groupoid

{(x,7) | 7 € S(E®), x € Dom(1)}/ ~

where (x1, ) ~ (X2, 72) if Xy = X2 and there is a a compact
open neighbourhood U C Dom(71) N Dom(7z) of x4 such that
74 and m» are equal on U.

® [x, T]_1 = [T(X),T_1].
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The groupoid of the full inverse
semigroup

@ When E is a row-finite directed graph with no sinks in which
every cycle has an entry, then we let Gs(g~) be the groupoid

{(x,7) | 7 € S(E®), x € Dom(1)}/ ~

where (x1, ) ~ (X2, 72) if Xy = X2 and there is a a compact
open neighbourhood U C Dom(71) N Dom(7z) of x4 such that
74 and m» are equal on U.

o [x, 7] = [r(x), 7.

@ [xq, 7] and [xo, 2] are composable if x; = 72(x2) in which case
[x1, 71][Xe, 2] = [X2, 71 0 72].
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The groupoid of the full inverse
semigroup

@ When 7 € S(E*) and U is an open subset of Dom(7), then we
let Z(U, ) = {[x,7] | x € U}.
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The groupoid of the full inverse
semigroup

@ When 7 € S(E*) and U is an open subset of Dom(7), then we
let Z(U,7) = {[x,7] | x € U}.

@ We equip Gs(e~) With the topology generated by
{Z(U,7)| 7 € S(E*), Uis an open subset of Dom(7)}.
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The groupoid of the full inverse
semigroup

@ When 7 € S(E*) and U is an open subset of Dom(7), then we
let Z(U,7) = {[x,7] | x € U}.

@ We equip Gs(e~) With the topology generated by
{Z(U,7)| 7 € S(E*), Uis an open subset of Dom(7)}.

@ Then G~ becomes a locally compact, Hausdorff, étale
topological groupoid and gg(Eoo) is homeomorphic to E*°.
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The Cuntz-Krieger uniqueness theorem

Let E be a row-finite directed graph with no sources and in which
every cycle has an entry.

NTNU
Norwegian University of
Science and Technology

Carlsen, Orbit equivalence and graph C*-algebras, page 17

\
\

www.ntnu.no



The Cuntz-Krieger uniqueness theorem

Let E be a row-finite directed graph with no sources and in which
every cycle has an entry. Let ¢ be a x-homomorphism defined on
C*(E).
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The Cuntz-Krieger uniqueness theorem

Let E be a row-finite directed graph with no sources and in which
every cycle has an entry. Let ¢ be a x-homomorphism defined on
C*(E). Then ¢ is injective if and only if ¢(p,) # 0 for all v € EC.
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C*(FsE~)) = C*(E)

Let E be a row-finite directed graph with no sources and in which
every cycle has an entry. Then there exists a x-isomorphism
¢ C*(E) — C*(Gg) such that

Q 4(p) = XZ(Z(v),ldz) for v e EO,
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C*(FsE~)) = C*(E)

Let E be a row-finite directed graph with no sources and in which
every cycle has an entry. Then there exists a x-isomorphism
¢ C*(E) — C*(Gg) such that

Q 4(pv) = Xz(z(v)ldy,) for v € E°,

Q (Se) = Xz(2(e),(0e) 2e)) TOT € € ET,
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C*(FsE~)) = C*(E)

Let E be a row-finite directed graph with no sources and in which
every cycle has an entry. Then there exists a x-isomorphism
qZ)' C*(E) — C*(Gg) such that

$(Pv) = X2(2(v) 1z, for v € EP,
(Se) Z(Z(e),(9E) 1 2(e)) for e € E1,
o(D(E )) ColG ).
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Proof:
For v € EO let g, denote the characteristic function of
Z(Z(v),1dz(,)), and for e € E' let t, denote the characteristic
function of Z(Z(e), (oE)|z(e))-
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Proof:

For v € EO let g, denote the characteristic function of
Z(Z(v),ldz), and for e € E' let t, denote the characteristic
function of Z(Z(e), (o£)z(e))- It is not difficult to check that
(e, Qv)ecket vepo is @ family consisting of partial isometries (fe)ec g
with mutually orthogonal range projections and mutually orthogonal
projections (qv),cgo satisfying

@ tite = Qg forallec ET,

Q qv=> . ety forall v e EC.
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Proof:

For v € EO let g, denote the characteristic function of
Z(Z(v),ldz), and for e € E' let t, denote the characteristic
function of Z(Z(e), (o£)z(e))- It is not difficult to check that
(e, Qv)ecket vepo is @ family consisting of partial isometries (fe)ec g
with mutually orthogonal range projections and mutually orthogonal
projections (qv),cgo satisfying

@ tite = Qg forallec ET,

Q qv=> . ety forall v e EC.
It then follows from the universal property of C*(E) that there exists
a x-homomorphism ¢ : C*(E) — C*(Gs(e~)) such that ¢(py) = qv
and ¢(Se) = le.
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Proof:

For v € EO let g, denote the characteristic function of
Z(Z(v),ldz), and for e € E' let t, denote the characteristic
function of Z(Z(e), (o£)z(e))- It is not difficult to check that
(e, Qv)ecket vepo is @ family consisting of partial isometries (fe)ec g
with mutually orthogonal range projections and mutually orthogonal
projections (qv),cgo satisfying

@ tite = Qg forallec ET,

Q qv=> . ety forall v e EC.
It then follows from the universal property of C*(E) that there exists
a x-homomorphism ¢ : C*(E) — C*(Gs(e~)) such that ¢(py) = qv
and ¢(Se) = lte. ¢ is surjective since C*(Gse~)) is generated by

(te, qV)eeE‘,veEO'
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Proof:

For v € EO let g, denote the characteristic function of
Z(Z(v),ldz), and for e € E' let t, denote the characteristic
function of Z(Z(e), (o£)z(e))- It is not difficult to check that
(e, Qv)ecket vepo is @ family consisting of partial isometries (fe)ec g
with mutually orthogonal range projections and mutually orthogonal
projections (qv),cgo satisfying

@ tite = Qg forallec ET,

Q qv=> . ety forall v e EC.
It then follows from the universal property of C*(E) that there exists
a x-homomorphism ¢ : C*(E) — C*(Gs(e~)) such that ¢(py) = qv
and ¢(Se) = lte. ¢ is surjective since C*(Gse~)) is generated by
(te Qv)ece? vero- Itis easy to check that ¢(D(E)) = Co(G(g~)) and
that ¢ restricted to D(E) is injective.
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Proof:

For v € EO let g, denote the characteristic function of
Z(Z(v),ldz), and for e € E' let t, denote the characteristic
function of Z(Z(e), (o£)z(e))- It is not difficult to check that
(e, Qv)ecket vepo is @ family consisting of partial isometries (fe)ec g
with mutually orthogonal range projections and mutually orthogonal
projections (qv),cgo satisfying

@ tite = Qg forallec ET,

Q qv=> . ety forall v e EC.

It then follows from the universal property of C*(E) that there exists
a x-homomorphism ¢ : C*(E) — C*(Gs(e~)) such that ¢(py) = qv
and ¢(Se) = lte. ¢ is surjective since C*(Gse~)) is generated by
(te Qv)ece? vero- Itis easy to check that ¢(D(E)) = Co(G(g~)) and
that ¢ restricted to D(E) is injective. It then follows from the
Cuntz-Krieger uniqueness theorem that ¢ is injective.
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The main theorem

Suppose E and F are row-finite directed graphs with no sources
and in which every cycle has an entry.
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The main theorem

Suppose E and F are row-finite directed graphs with no sources
and in which every cycle has an entry. Then the following are
equivalent:
@ There is an isomorphism 1) : C*(E) — C*(F) such that
¢(D(E)) = D(F);
@ E* and F*° are continuously orbit equivalent;
© there is a homeomorphism h: E* — F°° such that
hoS(E®)o h™! = S(F>);
© the groupoids G~ and Gs(r- are isomorphic (as
topological groupoids with Haar systems).
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Remark

The main theorem, and its proof, is inspired by the results in Kengo
Matsumoto’s two papers

@ Orbit equivalence of topological Markov shifts and
Cuntz-Krieger algebras,

@ Orbit equivalence of one-sided subshifts and the associated
C*-algebras.
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The main theorem

Suppose E and F are row-finite directed graphs with no sources
and in which every cycle has an entry. Then the following are
equivalent:
@ There is an isomorphism 1) : C*(E) — C*(F) such that
¢(D(E)) = D(F);
@ E* and F*° are continuously orbit equivalent;
© there is a homeomorphism h: E* — F°° such that
hoS(E®)o h™! = S(F>);
© the groupoids Gg (e and Gs(r- are isomorphic (as
topological groupoids with Haar systems).
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On the proof of the main theorem

Q= O:

NTNU
Norwegian University of
Science and Technology

www.ntnu.no Carlsen, Orbit equivalence and graph C*-algebras, page 23



On the proof of the main theorem

Q — @: Let h: E* — F*> be a homeomorphism.
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On the proof of the main theorem

Q — O: Let h: E* — F*> be a homeomorphism. It is straight
forward to check that there exist continuous functions
ki,l{ : E*° — N and kp, b : F*° — N such that

0,’? ™ oho oe(x) = aﬁ-(x) o h(x) and

JZ_Z(}’) oh 1o or(y) = UE(,V) o h_1(y),

forall x € E>*,y € F*,
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On the proof of the main theorem

Q — O: Let h: E* — F*> be a homeomorphism. It is straight
forward to check that there exist continuous functions
ki,l{ : E*° — N and kp, b : F*° — N such that

0,’? ™ oho oe(x) = aﬁ-(x) o h(x) and

JZ_Z(}’) oh 1o or(y) = UE(,V) o h_1(y),

forall x € E®,y € F>~,ifand only if ho S(E>®) o h=1 = S(F>).
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On the proof of the main theorem

Q= 0:
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On the proof of the main theorem

© — O: ltis also easy to check thatif h: E~ — F>*is a
homeomorphism such that ho S(E®) o h™' = S(F™),
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On the proof of the main theorem

© — O: ltis also easy to check thatif h: E~ — F>*is a
homeomorphism such that ho S(E*) o h™' = S(F>), then
[x,7] = [h(x), ho 7o h~'] is an isomorphism between G5y and

Gs(Fee)-
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On the proof of the main theorem

QO — O: If Gs(e~) and Gs(r- are isomorphic,
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On the proof of the main theorem

QO — O: If Gs(e~) and Gs(r- are isomorphic, then there is an
isomorphism between C*(Gs(g~)) and C*(Gs(r=)) which maps
Co(G8(e)) Onto Co(Gg(r=)):
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On the proof of the main theorem

QO — O: If Gs(e~) and Gs(r- are isomorphic, then there is an
isomorphism between C*(Gs(g~)) and C*(Gs(r=)) which maps
Co(gg(Eoo)) onto Co(gg(Foo)), and since there is an isomorphism
between C*(E) and C*(Gs(e~)) which maps D(E) onto
Co(gg(Eoo)), and an isomorphism between C*(F) and C*(Gs(F))
which maps D(F) onto Co(gg(Foo)),
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On the proof of the main theorem

QO — O: If Gs(e~) and Gs(r- are isomorphic, then there is an
isomorphism between C*(Gs(g~)) and C*(Gs(r=)) which maps
Co(gg(Eoo)) onto Co(gg(Foo)), and since there is an isomorphism
between C*(E) and C*(Gs(g~)) which maps D(E) onto
Co(gg(Eoo)), and an isomorphism between C*(F) and C*(Gs(F))
which maps D(F) onto Co(gg(Foo)), it follows that there is an
isomorphism between C*(E) and C*(F) which maps D(E) onto
D(F).
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On the proof of the main theorem

Q— O: Let

Ne = {u € C*(E) : uis a partial isometry,
uD(E)u* C D(E),u*D(E)u C D(E)}.
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On the proof of the main theorem

Q — O: Let
Ne = {u € C*(E) : uis a partial isometry,
uD(E)u* C D(E),u*D(E)u C D(E)}.

If u e Ng, then uu* and u*u belong to D(E) which we will identify
with Co(E>).
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On the proof of the main theorem

Q — O: Let
Ne = {u € C*(E) : uis a partial isometry,
UD(E)u* C D(E),u"D(E)u C D(E)}.
If u e Ng, then uu* and u*u belong to D(E) which we will identify

with Co(E>°). There is for each u € Ng a unique 7, € S(E*)
satisfying ufu* = for, and u*fu = for; ' forall f € Co(E™).
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Ne = {u € C*(E) : uis a partial isometry,
uD(E)u* C D(E),u*D(E)u C D(E)}.

If u e Ng, then uu* and u*u belong to D(E) which we will identify
with Co(E>°). There is for each u € Ng a unique 7, € S(E*)
satisfying ufu* = for, and u*fu = for; ' forall f € Co(E™).
The map u — 7, is a surjective map from Ng to S(E),
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On the proof of the main theorem

Q— O: Let

Ne = {u € C*(E) : uis a partial isometry,
uD(E)u* C D(E),u*D(E)u C D(E)}.

If u e Ng, then uu* and u*u belong to D(E) which we will identify
with Co(E>°). There is for each u € Ng a unique 7, € S(E*)
satisfying ufu* = for, and u*fu = for; ' forall f € Co(E™).
The map u — 7, is a surjective map from Ng to S(E*°), and

Ty, = Ty, Iff U1U] = U3, UT Uy = Uz U, and uy Uz and ujup both
belong to D(E).
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On the proof of the main theorem

Q— O: Let

Ne = {u € C*(E) : uis a partial isometry,
uD(E)u* C D(E),u*D(E)u C D(E)}.

If u e Ng, then uu* and u*u belong to D(E) which we will identify
with Co(E>°). There is for each u € Ng a unique 7, € S(E*)
satisfying ufu* = for, and u*fu = for; ' forall f € Co(E™).
The map u — 7, is a surjective map from Ng to S(E*°), and

Ty, = Ty, Iff U1U] = U3, UT Uy = Uz U, and uy Uz and ujup both
belong to D(E). It follows that if there is an isomorphism between
C*(E) and C*(F) which maps D(E) onto D(F), then there is a
homeomorphism h: E>* — F°° such that
hoS(E®)o h™! = S(F>). B NTNU
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Some remarks about the main theorem

@ We believe that the assumptions that E and F are row-finite
with no sources can be dropped without too much problems.
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Some remarks about the main theorem

@ We believe that the assumptions that E and F are row-finite
with no sources can be dropped without too much problems.

@ We also believe that the theorem (and the proof) holds if E
and F are replaced by higher rank graphs.
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Examples

Q If (E>~,0f) and (F*°, oF) are conjugate, then E> and F> are
continuously orbit equivalent.
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Examples

Q If (E>~,0f) and (F*°, oF) are conjugate, then E> and F> are
continuously orbit equivalent. It follows that if F is an in-split
of E, then there is an isomorphism between C*(E) and C*(F)
which maps D(E) onto D(F) (this is a small improvement of a
result by Bates and Pask).
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Examples

e

© Let E be the graph
oA

&1
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Examples

© Let E be the graph
oA

&1
and let F be the graph  f,
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Examples

© Let E be the graph
oA

&1
and let F be the graph  f,

f
Then ejepx — fi(ffi)"x, edx — (ff)"x, x — x give raise to a
continuously orbit equivalence between E* and F°°.
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Examples

© Let E be the graph
oA

&
and let F be the graph  f,

fi
Then ejepx — fi(ffi)"x, edx — (ff)"x, x — x give raise to a
continuously orbit equivalence between E> and F°. So there
is an isomorphism between C*(E) and C*(F) which maps
D(E) onto D(F).

NTNU
Norwegian University of
Science and Technology

www.ntnu.no ‘\ Carlsen, Orbit equivalence and graph C*-algebras, page 29



Examples

© Let E be the graph
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Examples
© Let E be the graph

and let F be the graph

NTNU
Norwegian University of
Science and Technology

Carlsen, Orbit equivalence and graph C*-algebras, page 30



Examples
© Let E be the graph

and let F be the graph

Then E>~ and F*° are both homeomorphic to the Cantor set,
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Examples

© Let E be the graph &
and let F be the graph %

Then E>~ and F*° are both homeomorphic to the Cantor set,
but C*(E) = O, % O3 = C*(F),
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Examples

© Let E be the graph &
and let F be the graph %

Then E>~ and F*° are both homeomorphic to the Cantor set,
but C*(E) = O, % O3 = C*(F), so E* and F* are not
continuously orbit equivalent.
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Questions

@ Can any of you find graphs E and F such that C*(E) = C*(F),
and E* is not homeomorphic to F>°?
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Questions

@ Can any of you find graphs E and F such that C*(E) = C*(F),
and E®° is not homeomorphic to F>?

@ Can any of you find graphs E and F such that C*(E) = C*(F),
E> is homeomorphic to F°°, but E>° and F*° are not
continuously orbit equivalent?
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Questions

@ Can any of you find graphs E and F such that C*(E) = C*(F),
and E®° is not homeomorphic to F>?

@ Can any of you find graphs E and F such that C*(E) = C*(F),
E> is homeomorphic to F°°, but E>° and F*° are not
continuously orbit equivalent?

© Can any of you find graphs E and F such that C*(E) = C*(F),
E~ is homeomorphic to F°°, the diagram

Ko(D(E)) —— Ko(C*(E))

~| E

Ko(D(F)) —— Ko(C*(F))

commutes, but E°° and F°° are not continuously orbit
i ? NTNU
eqUIvalent' B Norwegian University of
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Questions

©Q Let E be the graph
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Questions

©Q Let E be the graph

and let F be the graph
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Questions

©Q Let E be the graph

and let F be the graph

Are E* and F*°° continuously orbit equivalent?
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