Negative energy modes in some models
for plasma physics

E. Tassi!, in collaboration with P.J. Morrison?

! Centre de Physique Théorique, CNRS, Marseille, France

2 Department of Physics and Institute for Fusion Studies, University of Texas, Austin, USA



e Negative energy modes (NEMs) refer to spectrally stable modes of

oscillations possessing negative energy (more precise definition later)

e NEMs important because can be destabilized by dissipation

e Intuitively, dissipation makes total energy decay — result of amplitude
of NEMs increasing

e Also nonlinearity can destabilize equilibria with NEMs



NEMs in low-dimensional dynamical systems but also in models
for continuous media

In astrophysical and laboratory plasmas NEMs occur in several cases, e.g.
e Streaming instabilities (Sturrock, 1958)

e Resistive instabilities in magnetically confined plasmas (Greene and Coppi,
1965)

e Vlasov-Maxwell (Morrison and Pfirsch, 1989/90/92 Correa-Restrepo and
Pfirsch 1992/93/97)

e Drift-kinetic equations (Throumoulopoulos and Pfirsch, 1996)

e Two-stream instabilities (Kueny and Morrison, 1995 (a,b), Lashmore-Davies,
2007)

e Ideal magnetohydrodynamics (Hirota and Fukumoto, 2008 (a,b))

e Magnetorotational instability (Ilgisonis et al., 2007, 2009, Khalzov et al.,
2008)

e Magnetosonic waves in the solar atmosphere (Joarder et al., 1997)



e Hamiltonian framework for NEMs : general and unambiguous definition of
energy (Morrison and Kotschenreuther, 1989)

e Based on Hamiltonian normal form

N degree-of-freedom, linear, real Hamiltonian system

¢=JAz,  withz=(q1,--+ . qv,p1, -+, pN)

A constant 2N x 2N matrix
1. . .
H; = §Aijz 2, quadratic Hamiltonian

Oy [ . : .
J. = NN ) canonical symplectic matrix
—In Oy



e Consider z = Ze™! + z*¢~™! (and then drop the tilde)

® iWyzy = J. Az, a=1,---,N assume N distinct real eigenvalues w,

e —w, are also eigenvalues, associated with 2}

e Define h(a, ) := iwazﬁTQza = ngza with Q = J 1

e One can show that h(a, 8) = 0, if 5# —«

o h(—a,a) = z;TAza = iwazZTQza is the energy of the mode (2, wa; 25, —wq)



e Can choose normalization constant for the eigenvectors so that

20z, = +2i.

e Consider z, eigenvector associated with w,> 0

o If z;TQza = —2i then (z,,wq; 25, —Ww,) is a positive energy mode (PEM)

(o2
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o If z;TQza = 2i then (z,,wa; 2}, —w,) is a negative energy mode

e Indeed, for a PEM the energy is h(—a, a) = iw, 2" Qzq = 2wa> 0



e For stable modes canonical transformation T : (Qq,- - ,Qn, P1, -+, Py) —
(g1, qn,p1,- - - pN) leading to normal form of the Hamiltonian:

N
1 2 2

with o; € {—1,1} and w, positive eigenvalues of the system

e In the normal form stable modes of H; — sum of harmonic oscillators with
different frequencies

e Modes with 0 = —1 give negative contribution: these are NEMs

e If eigenvalues w, and eigenvectors z, are known, the procedure for

determining the transformation 7' is algorithmic



e Turbulence and formation of structures (”streamers”) observed in tokamak
fusion devices can be due to instabilities driven by gradients in electron
temperature (ETG)

—41—V%¢=:wmﬁ¢+ﬂ+¢§%w@4, 1)

= = l%,cb} +[Vre, 4], (2)

e Slab model (Giircan and Diamond, 2004) for evolution of pressure fluctua-
tions p(z,y) and electrostatic potential ¢(z,y)

e Coupling of advection equation for p and Charney-Hasegawa-Mima type
equation for ¢

e r x V1, provides instability

of 0 of 0
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e ETG model possesses Hamiltonian structure (Giircan and Diamond, 2005)

e Thus it can be cast in the form

%ﬁ :{XZJH}a izla"'an
with n = 2 field variables and H[x!, -, x"] Hamiltonian functional

e {, } Poisson bracket: antisymmetric bilinear operator satisfying Leibniz and
Jacobi identity

e Field variables y! = A := ¢ — V2¢ and \*> = P := \% +/rz

e Hamiltonian functional and Poisson bracket:

HAP) = %/d% (ALT'A —P? +2¢/rPx) |

{F, G} = /dQZC(SC — A)[FA, GA] - P([FA, Gp] + [FP,GA]).

with £f = f — V2f



e Poisson bracket for the ETG model possesses Casimirs
C) = / FaH(P), Cp= / d*z(A — 2)F(P)

with arbitrary H and F
e Casimir C: {C,F} =0, VF = Casimirs are invariants for the dynamics

e Linearize the model around equilibria (no flow - linear pressure gradient)

Neg =LAy =0, Pey = apx (3)
with constant ap, yields
- 0 ~ 0 ~
AN = ——L7A—r—
75 = 04732[,71[\.
dy

e Equilibria (3) are critical points of free energy functional F' := H + Cy + Cy
for F(P) =0 and H(P) = (1 — /r/ap)P?/2



e Linearized system still Hamiltonian

¢ A Zk——oo A ( ) 7ik.x7 7) Zk——oo D ( ) —ikex y1€1dS

Hamiltonian system for Fourier amplitudes:

B k,
Ay = 1+k2Ak+sz:7>k, where k =k, and ki =k + Kk’
75 = —lx ky A

k — ’P1+ki k,

with HL_ZHL—%Z(Ak fIP |2>

+oo .
and bracket {F, G} = Z ;—k [(g}; 8?\61 — 8(?\Fk g/i)

L (aF oG +8F 0G ~ OF 9G  OF 8G>]
ON,OP_,  OPLOA_ . OP_.ON. OA LOP.)]|’




e Change of variables:

e ~ ~ ~ ~
q,ﬁ = k—z(Pk + OépAk; + P_k; + OépA_k) ,
V kap

. m ~ X ~ X
p,lg = —1 k—Q(Pk + OépAk — ’Pfk - OdpA,k) ,
ap

T~ - o m -
qz = \/%(Ak + A—k)a p% =1 %(Ak - A—k) )

e In the real variables 2* = (¢}, ¢5, p¥, p§) the system becomes canonical:

k= J AR

a c 0 O
cb 0 0 k
AF = 00 a —c ca = —/rapk, b:1+k2—k\/77047>,c:\/?|047>|k.
1
00 —c b

e = Framework of the general theory previously described



k
wh = 20 + T+ R {1 — \/1 —4(1+ k2 )ozp\/_] slow mode
wlj k2 [1 + \/1 41+ k%) Ozp\/_] fast mode
e The system possesses also the eigenvalues w® s f = —wi f

e Equilibria spectrally stable iff ap < m
L

e If r — 0 or ap — 0 then stable drift wave

e Figenvectors
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where By =



e Consider slow modes:

F 1k = 2i(1 - B2l db

S S

e For stable modes one finds 1 — B? > 0

1
1-B?

. . *
e Choose normalization constant ¢}, = ¢f,” =

e Energy of the kth slow mode: h¥(—s,s) = iwfzﬁSTsz = 2wt

S

o If w* > 0 the slow mode is a stable but negative energy mode

e This occurs for 0 < ap < m
1
e If pressure gradient is negative (ap < 0) = spectral stability without NEM

e Fast modes : hF(—f, f) = zwfz sz = 2wf >0 Vki, krap
= Fast modes always PEMs



o T : (gF, qb,ph, pk) — (QF, Q%, PF, P}) with

=~ = 0 0
_ B _B 0 0
" é? (1)3+ 00| D, =,/B2 -1
pon
0 0 7 —p*

puts the Hamiltonian (for stable modes) into its normal form

1 /
i, = 3w (8 + A7) — ok (0 + ).
k

e Slow modes give negative contribution to the energy when w* > 0
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Figure 1: ap = —0.3, /r = 0.2 Figure 2: ap = 0.5, /r = 0.2

e Instability occurs at k; = 1.22 (Fig. 2)

e Collision of eigenvalues of a PEM with a NEM (Krein bifurcation)

e Presence of NEMs reflects in undefiniteness of 62F (A, Pey), where
F=H+C+0C

e Energy-Casimir method predicts formal stability for F(P,,) = 0,
H'(Poy) > 1 = ap < 0ie no NEMs

k.



e Magnetic reconnection: modification of the way infinitesimal plasma vol-
umes are connected by means of magnetic field lines

e Involved in e.g., solar flares, magnetic substorms, sawtooth oscillations in
tokamaks
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Figure 4: Image taken by TRACE.
Figure 3: From M. Lockwood, Nature, 409, 677 (2001).

e Electron inertia can cause reconnection in high-temperature

tokamak plasmas



0 — d;V*))

5 o — VY] — dsly), 2] = 0 (4)
%—f+ e, Z) — cslv, 9] — ds[VPe, 9] = 0 (5)
N2 o V2] + [F200] =0 ©

% + [, 0] — ¢s]Z, 9] = 0. (7)

e Slab model with § dependence (§ = fAcila pressue )

e B=VyYxz+ (By+ csZ)z, v=2zxVp+uz
dg = d;cg, d. electron skin depth (dg X M, causes reconnection)

e (4) from electron momentum equation, (5) from electron vorticity equation

e (6) from vorticity equation, (7) from momentum equation



e Noncanonical Hamiltonian structure of the FP model (Tassi et al. (2008))

e Field variables and Hamiltonian:

X'=te=0 -V, X*'=2Z,  X=U=V%, x'=v (8

1
H= §/ P2 (V) + |Vl + 0* + |V + 77, (9)
D
e kinetic energy magnetic+internal energy

e Poisson bracket of Lie-Poisson type:

(F.G} = / 2 (U[Fy, Gul + to([Fy, Go]

+Fu, Gy, ] — ds([Fz, Gy ] + [Fy.. G2]) + c([Fo, Gz] + [Pz, Go)))
+Z([Fz, Gu] + [Fu, Gz] — dd *[Fy,, Gy,) + code”([Fy, Gy ] + [Fy,, G))
—alFz, Gz| — cgv|Fy, Gy)) + v([Fy, Gu] + [Fu, Gy

+epd ([Fz, Gy ) + [Fy,, Gz)) — eay([F, G2) + [Fz,Gl)))) -

d.?
d;

where a = dg + c/jdd%Q, v =



e The FP model has four independent infinite families of Casimirs:

O /dQ:U?-[(D) with D = 1. 4+ d;v and arbitrary H

o di
ca(d? + d?)

_ _ d? d2
O34 = /d2$gi(Ti) with Ty =, — jv Fdey 1+ d—;Z and arbitrary g+

Cy = /deC]:(D) with ( = U + Z and arbitrary F



e 'P model can be reformulated as

oD
D
5 = L. Dl;
¢ _
T | a2
W: QO:':CB 1+d_g¢,T:|: s

e 3 out 4 Casimir families associated to Lagrangian invariants (D, T.) ad-
vected with appropriate “stream functions” (¢, ¢+ = @+ cpy/1+ j—iw)

e Poloidal magnetic flux ¢ is not a Lagrangian invariant (frozen-in condition
violated by electron inertial)



e Linearization around homogeneous equilibria (no poloidal flow - constant
poloidal magnetic field)

Yeq = T,  Peq =0, Zeg = Qzx, Ve = Q.

e Linearized model still admits a canonical Hamiltonian formulation

(1) T - > 1 . 7r - _

G = 4/ Dy + D_y) P =1 Dy — D),
K klap| ( ) " klap] ( )
2) s (2) _ s .

q = ”_kozg (Ck + (k) P =4/ —kag (Ck — (k)

3 T 3 . (s
C]/(f ) = \/—k&+ (T, + T4 _4) 29/(@) =14/ —k&+ (T, — T4 1)

4 Q0 4 . T
a = Vi Tkt 1) P =i o Tk = T-)

for k=Fk,=1,---,400 and where Dy = —a¢ Dy + apig.




(W= N2)(N-N)(N-N)

: : : 2 _

e Dispersion relation x| = N2(NZ_N2)

 wd, _ vEn/12+46(0+s) _d. _ d?

N=gug Ne=—"———» N=g, No=yltg
avde V= _O[Zde, (5 = (Cil_l

S ==,
VA

UA:&¢7 KL:kJ_deo va
e 4th degree dispersion relation but nevertheless derived a spectral stability

criterion for FP model:
Given Cs := {N : [N| < N5} and N := {N,,N_,N,, —N,} and a, > 0
e Case 1) : 6 +s >0 — absent or positive parallel velocity gradient:
If at least two elements of A/ belong to Cs then the equilibrium is stable

e Case 2) : 0 + s < 0 — negative parallel velocity gradient.
o If 2 4+46(6+s) > 0 (moderate parallel velocity gradient) equilibrium

unstable for large enough 2
o If 12 +45(5 + s) < 0 (strong parallel velocity gradient) then
equilibrium unstable for all x; but always two stable branches



e NEMs and PEMs can be identified even without solving the 4th degree
dispersion relation

e NEMs do not change signature unless: instability occurs or eigenvalue
CTOSSES Zero

e mode signature independent on coordinates

= sufficient to look at the limits &£, — 0 and &, — 400

o by — 0: w2 = £kvy, Alfvén waves

Wyg = ko‘gdﬂ <1 + \/1 + djdi%z% (fl—: + O‘U—dE>>, modified drift wave

) ’UA

ok — 00 wyo =0, w34 — kg if dg >~ ps (waves at the electron
thermal speed)

e Inserting eigenvalues and eigenvectors for £, — 0 and k£, — 400 gives
energy signature in those limits



Figure 5: Examples of solutions
of the dispersion relation for
Case 1 (left) and Case 2 (right).

e In Case 1 Alfvén waves are PEMs but one drift-shear mode is a NEM
e Krein bifurcation between Alfvén and drift shear mode
e In case 2 Alfvén waves still PEMs but two drift-shear modes are NEMs

e A drift shear mode involved in a second Krein bifurcation at larger k|



e Reviewed NEMs and PEMs unambiguously defined using Hamiltonian

structure for general equilibria
e ETG model:
e Formal stability (no NEMs) when pressure gradient negative

e For positive pressure gradient spectral stability with NEM (slow mode) for
long wavelength

e Instability due to collision between eigenvalues of NEM and PEM
e Magnetic reconnection model:

e Spectral stability criterion and mode signature (even without explicitly
solving dispersion relation)

o At small £, Alfvén waves are PEMs whereas drift-shear waves are NEMs
or PEMs depending on parallel velocity gradient

e Instability due to collision between Alfvén (PEM) and drift-shear (NEM)
waves with positive frequencies
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