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Review: Linearize Vlasov-Poisson around f0(v)

I The Vlasov-Poisson equation has a rich family of equilibria,
simplest are f0 = f0(v).

I Linearize, put in k space:

∂ f̂k
∂t

+ ikv f̂k −
i

k
f ′0

∫
R
dv f̂k = 0

I Continuous spectrum of time evolution operator T is iR, has
a signature given by sgn(−uf ′0(u)), u = ω/k iω ∈ σT .

Potential frequency spectrum with 
Krein signature for linear infinite-
Dimensional Hamiltonian system. 
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Overview

I Study bifurcations to instability of the linearized Vlasov
equation through changes in f0.

I We show that all f0 are infinitesimally close to instability
in the W1,1 norm.

I If perturbations to f0 are restricted to be dynamically
accessible, then f0 is only close to instability if it has a
signature change.

I These results and more in arxiv.org/abs/1002.1039



Perturbations to the time evolution operator

I Time evolution operator T = ikv f̂k − i
k f
′
0

∫
R dv f̂k .

I How does the spectrum change when we change f0?

I Perturbation of T is − i
k δf

′
0

∫
R dv f̂k .

I Place ourselves in the Banach space W1,1(R) and use
operator norm.

I Then ‖δT‖ is proportional to ‖δf ′0‖.



Stablility

I For eigenvalues there is a dispersion relation:

ε(k , u) ≡ 1− 1

k2

∫
R
dv

f ′0
v − u

= 0

I Analytic function in upper half plane, use the Nyquist Method.

ε(k , u) = 1− 1

k2
PV

∫
R
dv

f ′0
v − u

− πif ′0(u)

I The number of unstable eigenvalues is the winding number of
image of the real line under this map.



Stable and Unstable Penrose Plots
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Determining the Winding Number

I The winding number is the oriented intersection number of
the curve of interest with any line segment from the origin to
the point at infinity.

+ Intersection

Computation of winding number
Using oriented intersection number.



Increase the Winding Number With a Small Perturbation

I The Hilbert transform of a W1,1 function is not necessarily
continuous (thus results depend on choice of norm).

I Construct infinitesimal perturbation that ’shifts’ the crossing
in the Penrose plot by a unit amount.

χ =
hv

ε
|v | < ε

= hsgn(v) ε < |v | < d + ε

= h + d + ε− v h + d + ε > v > d + ε

= −h − d − ε− v h + d + ε > −v > d + ε

= 0 |v | > h + d + ε

I ‖χ(v , h, d , ε)‖ = h2 + 2hd + hε and if ε = O(e−1/h) then
Hχ(0) = O(1).



The Perturbation f ′p
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Destabilization of a Maxwellian Distribution
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Role of Signature?
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I Maxwellian distribution function has entirely positive
signature, thus no role for signature.

I Did something go wrong?



Dynamical Accessibility

I Reason: Bracket {, } depended on f ′0 , thus perturbations
change the bracket as well as the Hamiltonian. Non-canonical
system require more care.

I Dynamics of the full nonlinear Vlasov-Poisson equation is an
area preserving rearrangement, even under outside forcing.

I New question what if we restrict to a single symplectic leaf?



Perturbation by Rearrangement

I Consider (x , v)→ (X ,V )

I Symplectic maps satisfy [X ,V ] = ∂X
∂x

∂V
∂v − ∂X

∂v
∂V
∂x = 1

I Need f0 ◦ (X ,V ) to be homogeneous.

I V (v) monotonic, X (x , v) = x/V ′(v)



Positive Signature Implies Structural Stability

I Composition with V (v) preserves critical points of f0 by chain
rule.

I Unstable Penrose plots all have more than one critical point.

I When the signature is only positive, there is one critical point.

I No rearrangement can cause a bifurcation to instability
in the positive signature case.



Topology of Critical Points

I If there is negative signature, perturbation χ may not increase
the number of critical points.
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Dynamically Accessible Perturbation of a Bi-Maxwellian Distribution

f′0 is blue
f′p is red

f′0+ f ′
p has the same number of zeros as f′0
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Destabilizing Rearrangement

I Find a V (v) such that V (v)′f ′0 ◦ V is approximately f ′0 + χ.

I If there is negative signature, construct such a rearrangement
directly using Morse’s Lemma.

I If the family f0 is restricted to a single leaf, then there are
only bifurcations if f0 has negative signature.

I The bifurcation point occurs only at the ’valleys’ of the
distribution function, i.e. where f ′′0 > 0. Bifurcations do not
come from every signature change in our distribution function.



Conclusions

I Under nondynamically accessible perturbations, every
distribution function is structurally unstable.

I Under dynamically accessible perturbations, we recover an
analogue of the Krein-Moser theorem.

I What does this say about the properties of the full
Vlasov-Poisson Equation, and can we draw any conclusions
from the linear theory?

I Remaining open problems: More general perturbations, other
noncanonical systems. 2D Euler may be particularly easy as it
is closely related.


