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1. Introduction

We consider the semi-classical Schrédinger operator

P =—hA+ V(x),
where

. V(x) e G°(R"R)
j=1 "

O0<h<<l1
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Resonances

As operator on L2(R"), P is self-adjoint and o..(P) = R . However, as operator
L%OIIII)(Rn) _> L12OC
C

(R"), the resolvent (z — P)~! has meromorphic extension from
4+ to C_ across R . The poles are called “resonances”.
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Resonances

As operator on L2(R"), P is self-adjoint and o..(P) = R . However, as operator
LZomp(R") — L7 (R"), the resolvent (z — P)~" has meromorphic extension from
C, to C_ across R,. The poles are called “resonances”.

Roughly speaking, resonances are characterized as complex numbers z s.t. there
exists a non-trivial “outgoing” solution u(x, h) (called “resonant state”) to the
equation

Pu = zu.

The imaginary part of resonances means the reciprocal of the exponential decay
rate of the corresponding states for the evolution as time tends to 4o0.




Classical mechanics
Let
p(x,&) =&+ V(x)
be the classical Hamiltonian, and
HPZV5P~VX—VXP~V5

the Hamilton vector field on the phase space R} x R7. The value p(x,{) is

invariant along the integral curve exp tH,(x, &) starting from a point (x, &)
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Classical mechanics
Let
p(x,&) =&+ V(x)
be the classical Hamiltonian, and
HPZV5P~VX—VXP~V5

the Hamilton vector field on the phase space R} x R7. The value p(x,{) is

invariant along the integral curve exp tH,(x, &) starting from a point (x, &)
The “trapped trajectories” are defined as the set

K(z) :=={(x.&) € p~"(20); t — exp tHp(x, &) is bounded}
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Resonance free zone

Let zp be a positive energy and

Qe,0) ={z € C;

Rez —zp| <€, =0 <3z < 0}

(Martinez '03, cf : Sj6strand '86)
Assume K(zp) = (). Then Je > 0 s.t. VC > 0, there is no resonance in
Q(e, Ch| log h|) for sufficiently small h.
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Resonance free zone

Let zp be a positive energy and

Qe,0) ={z € C;

Rez —zp| <€, =0 <3z < 0}
Theorem :

(Martinez '03, cf : Sj6strand '86)

Assume K(zp) = (). Then Je > 0 s.t. VC > 0, there is no resonance in
Q(e, Ch| log h|) for sufficiently small h.

» Given a geometry of non-empty K(z), study the asymptotic (semi-classical)
distribution of resonances in a complex neighborhood of zj.




Some known results and our problem

> In the case where K(z) consists of a hyperbolic fixed point : [Im z| ~ §;
(Briet-Combes-Duclos '87, Sjdstrand '87)

» In the case where K(z) consists of a hyperbolic periodic curve (n > 2) :
[Im z| ~ 02h (Gérard-Sjéstrand '84)

> In the well in an island case : |Im z| ~ exp(—S/h) where S is the Agmon
distance from the well to the sea (Helffer-Sjéstrand '86).

» Our problem : the case where K(zy) consists of a hyperbolic fixed point and

associated homoclinic trajectories

h
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2. Results

We assume that x = 0 is a non-degenerate local maximum of V/(x) i.e.

n )\2
V(x)=2-Y T’xf +0(x%) with 0< A\ <... <\,
j=1
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2. Results

We assume that x = 0 is a non-degenerate local maximum of V/(x) i.e.

n )\2
V(x) =z — Z zjjz +0(3) with 0< M\ <... <\,
j=1
The point (x, &) = (0,0) is a hyperbolic fixed point of H,, and the “outgoing and
incoming stable manifolds” A are defined by

Ay = {p = (x,£);exp tHy(p) — (0,0) as t — Foo}
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2. Results

We assume that x = 0 is a non-degenerate local maximum of V/(x) i.e.
n )\2
V(x) =2z — TJX

@+ O(x*) with 0 < A <
j=1

< A
The point (x, &) = (0,0) is a hyperbolic fixed point of H,, and the “outgoing and
incoming stable manifolds” A are defined by

Ay = {p = (x,£);exp tHy(p) — (0,0) as t — Foo}
It turns out that for p € Ay, 3v(p) an eigenvector corresponding to the smallest
eigenvalue \; of the linearization of H, s.t.

exp tHp(p) ~ eMiy(p) as t — Foo.
We denote by g(p) the x-space projection of v(p).
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We assume

(H1) K(zp) consists of (0,0) U H, where H = AL NA_\(0,0) is the set
of homoclinic trajectories
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We assume

(H1) K(zp) consists of (0,0) U H, where H = AL NA_\(0,0) is the set
of homoclinic trajectories
(H2) g(p) - g(p") # 0 for ¥p,p' € H.
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(H1) K(zo) consists of (0,0) U?H, where H = AL NA_\(0,0) is the set
of homoclinic trajectories

(H2) g(p) - g(p") # 0 for ¥p,p’ € H.
Theorem (BFRZ)

Assume (H1) and (H2). Then 36 > 0 s.t. VC > 0, there is no resonance in
Q(Ch, 6h) for sufficiently small h, if either (a) or (b) holds :
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We assume

(H1) K(zo) consists of (0,0) U?H, where H = AL NA_\(0,0) is the set
of homoclinic trajectories

(H2) g(p) - g(p") # 0 for ¥p,p’ € H.

Theorem (BFRZ)

Assume (H1) and (H2). Then 36 > 0 s.t. VC > 0, there is no resonance in
Q(Ch, 6h) for sufficiently small h, if either (a) or (b) holds :

(a) The maximum at x = 0 is anisotropic, i.e. \1 < A,

(b) The intersection Ay N A_ is of finite order along .

» When n = 1, neither (a) nor (b) holds. In this case, the precise location of
resonances is known (F-Ramond '97) :

log 2 h
2 "loghl

[Imz| ~
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3. Method

Let z be a resonance and u(x, h) a corresponding resonant state.
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3. Method

Let z be a resonance and u(x, h) a corresponding resonant state.

microlocally 0 outside A : i.e. the global FBI transform of u

(T, )= [

)&/ h=0y)*/(2h) (1)) fy
is of O(h™) for (x,&) ¢ ..

» Step 1 : Using the fact that v is outgoing (Bony-Michel '03), we show that v is
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» Step 2 : Continue u microlocally along # and show that, if z € Q(Ch, dh), its
amplitude becomes smaller after a tour :

|uﬁna1| ,S ha|uinitia1|

with o = «(d) > 0,
for small h microlocally at a point on 7, which is a contradiction to the
single-valuedness of u.
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» Step 2 : Continue u microlocally along # and show that, if z € Q(Ch, dh), its
amplitude becomes smaller after a tour :

|Uﬁna1| ,S hal”initial'
single-valuedness of w.

with a = «(d) > 0,
for small h microlocally at a point on 7, which is a contradiction to the

Microlocal continuation of the solution

» along H : Maslov theory on WKB solutions
— no decay in power of h.

» through (0,0) : Following theorem by BFRZ.




Propagation of singularities through a hyperbolic fixed
point

Let p_ :=(x_,&-) € A_ with [x_| = e small, and 5. = {(x,&) € A_; |x] = €}.
Consider a microlocal Cauchy problem

Pu =zu microlocally near (0, 0),
(MCP)

u = u_ microlocally near S,

where the data u_ with [|u_|| <1 satisfies

Pu_ =zu_ microlocally near S,
u- =0 microlocally near S \{p_}




Theorem (BFRZ '07)

There exists ¢’ > 0 such that, for z € Q(Ch,d’h), (MCP) has a unique solution u
with ||u]| = O(h~¢). Moreover, microlocally near a point p, € A, satisfying
g(p-) - &(p+) # 0, u(x; h) is given by

Aj=M .z—z

h= TR iR / el (% (X)*Gﬁf(}/))/hd(X_/y; hYu_(y)dy.

Here ¢ (x) are generating functions of A, and d(x, y; h) is an elliptic symbol of
order 0 (explicitly computed at the principal level).




Sketch the step 2

> Uinitial is of WKB form wiiiia(y, h) = e (y)/’lb(y; h) on HN A, and so is its

continuation to H N A_ along H : u_(y, h) = e'®*0)/"b(y: h), where ¢ (y) is a
generating function of the evolution of A..
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Sketch the step 2

> Uinitial is of WKB form wiiiia(y, h) = e (y)/’lb(y; h) on HN AL, and so is its

continuation to H N A_ along H : u_(y, h) = e'®*0)/"b(y: h), where ¢ (y) is a
generating function of the evolution of A..

» Applying the pervious theorem, we obtain, for —dh < Imz < 0,

Lz—29

Py
_ |
|uﬁna1| - ’h 221 A1

/ei(m(x)f@f(y))/hd(x,y? h)“(y)dy‘

< hG ZA=M)=8)/M

/em(y)—m(y»/hd(x,y; h)b(y, h)dy’ :

By the stationary phase method, the integral in the RHS is of O(h?) for some
£ > 0if Ay and A_ intersects in finite order along H.
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Hence
||Uﬁnal|| 5 ha”“initial”
with
_EX M)+ MB -0
= " 7
and obvoiusly o > 0 if either (a) or (b) holds and § <

Nl—=

2N = AL) + B
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