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● The Navier-Stokes’ and second grade fluid equations play a role in many
fluids applications.

● The zero-viscosity limits are Euler’s and averaged Euler’s equations.
Both have a Hamiltonian structure with a Poisson structure map. An
important associated Casimir is the (potential) enstrophy.

● Constrained critical points of the energy on level sets of the Casimir
form families of stationary solutions for (averaged) Euler’s equations. If
they are minima, the stationary solutions are Lyapunov stable.
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● The Navier-Stokes’ and second grade fluid equations play a role in many
fluids applications.

● The zero-viscosity limits are Euler’s and averaged Euler’s equations.
Both have a Hamiltonian structure with a Poisson structure map. An
important associated Casimir is the (potential) enstrophy.

● Constrained critical points of the energy on level sets of the Casimir
form families of stationary solutions for (averaged) Euler’s equations. If
they are minima, the stationary solutions are Lyapunov stable.

Question: Do viscous solutions stay close to the minimal families for small
viscosity?

Answer: It depends on the boundary conditions!
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2D Navier-Stokes’ (NS) and Euler’s equations:

● Boundaryless manifold: solutions of NS equation converge to the
solutions of Euler’s equations with the same initial condition [Ebin &

Marsden (70)].

● Free boundary condition: the Euler families are invariant under NS
equations and they shadow solutions of the NS equations starting nearby
[van Groesen (88); Derks & Ratiu (98)].

● For a fixed time interval [0, T ], solutions of the NS equation converge to
solutions of Euler’s equation with the same initial condition for various
boundary conditions: free boundary condition [Lions (69); Temam

(77)]; no-slip in disk [Bona & Wu (02)]; Navier-slip [Clopeau,

Mikelić & Robert (98)].

● General belief: the no-slip boundary condition causes a turbulent
boundary layer in the zero viscosity limit.
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In vorticity (ω) formulation, Navier-Stokes equation for divergence free vector
fields in a bounded domain D ⊂ R

2 is

ωt = u · ∇ω + ν∆ω, with u = ∇⊥ψ, ω = −∆ψ.

We will discuss two boundary conditions:

● Free: ψ = 0 = ω on ∂D; or

● No-slip: ∇ψ = 0 (u = 0) on ∂D;
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In vorticity (ω) formulation, Navier-Stokes equation for divergence free vector
fields in a bounded domain D ⊂ R

2 is

ωt = u · ∇ω + ν∆ω, with u = ∇⊥ψ, ω = −∆ψ.

We will discuss two boundary conditions:

● Free: ψ = 0 = ω on ∂D; or

● No-slip: ∇ψ = 0 (u = 0) on ∂D;

The viscosity is ν and Euler’s equation follows from setting ν = 0 and
reducing the boundary condition to ψ = 0 (free) or u · n = 0 (no-slip).

The energy is H(ω) =
1

2

∫

D

|u|2 =
1

2

∫

D

ψω

and the enstrophy C(ω) =
1

2

∫

D

ω2 is a Casimir.
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The critical points of the enstrophy on level sets of the energy give a family of
stationary solutions of the Euler’s equation. These solutions are
eigenfunctions of the spectral problem

(ω =) −∆ψ = γψ, plus reduced free or no-slip BC.

● For any bounded, simply connected domain D, this has spectral problem
has eigenvalues 0 < γ0 < γ1 ≤ . . . and the eigenfunctions span L2(D).

● The smallest eigenvalue is simple; its normalised eigenfunction is
denoted by χ0.
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stationary solutions of the Euler’s equation. These solutions are
eigenfunctions of the spectral problem

(ω =) −∆ψ = γψ, plus reduced free or no-slip BC.

● For any bounded, simply connected domain D, this has spectral problem
has eigenvalues 0 < γ0 < γ1 ≤ . . . and the eigenfunctions span L2(D).

● The smallest eigenvalue is simple; its normalised eigenfunction is
denoted by χ0.

Lemma Define ω0 = −∆χ0; the family E = {cω0 | c ∈ R} and the distance

d(ω, E) = infc∈R ‖ω − cω0‖L2 .

Energy-Casimir method: The family is orbitally Lyapunov stable for solutions

ω(t) of Euler’s equations, i.e., for all ε > 0, there is some δ > 0 such that for

all t ≥ 0
d(ω(0), E) < δ ⇒ d(ω(t), E) < ε.



NS with free boundary condition
Introduction NS 2nd grade Conclusion

BIRS, 7 November 2012

Consider the Navier-Stokes (NS) equation with the free boundary condition.

● The family E is invariant under the evolution of NS. For any c ∈ R: a
solution in E decays like ω(t) = c e−νγ0tω0.
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Consider the Navier-Stokes (NS) equation with the free boundary condition.

● The family E is invariant under the evolution of NS. For any c ∈ R: a
solution in E decays like ω(t) = c e−νγ0tω0.

● Solutions starting nearby E can be shadowed by a curve on E : Let
Ω(t; ω̂, ν) be a solution of the NS equation with viscosity ν, starting at
ω̂. Define the shadowing curve Ω0(t; ω̂, ν) =

√
2γ0H(Ω(t; ω̂, ν))ω0.

Then for all ω̂ with d(ω̂, E) < 2(γ1 − γ0), there exists an M > 0 such
that

∀ν≥0∀t≥0

[
d(Ω(t; ω̂, ν), E) ≤M ‖Ω0(t; ω̂, ν)‖L2 e−2ν(γ1−γ0)t

]
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● The family E is invariant under the evolution of NS. For any c ∈ R: a
solution in E decays like ω(t) = c e−νγ0tω0.

● Solutions starting nearby E can be shadowed by a curve on E : Let
Ω(t; ω̂, ν) be a solution of the NS equation with viscosity ν, starting at
ω̂. Define the shadowing curve Ω0(t; ω̂, ν) =

√
2γ0H(Ω(t; ω̂, ν))ω0.

Then for all ω̂ with d(ω̂, E) < 2(γ1 − γ0), there exists an M > 0 such
that

∀ν≥0∀t≥0

[
d(Ω(t; ω̂, ν), E) ≤M ‖Ω0(t; ω̂, ν)‖L2 e−2ν(γ1−γ0)t

]

● The family E is stable under the NS evolution: There is some ε0 > 0
and K > 0 such that

∀c∈R∀0≤ε<ε0∀ν>0∀t≥0 [‖ω̂ − cω0‖L2 < ε⇒ d(Ω(t; ω̂, ν), E) < Kε]
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Consider the Navier-Stokes (NS) equation with the no-slip boundary condition
in a circular disk. Denote the solution of the NS equation with viscosity ν and
starting vorticity ω̂ by Ω(t; ω̂, ν).

● The family E is not invariant under the evolution of NS.
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Consider the Navier-Stokes (NS) equation with the no-slip boundary condition
in a circular disk. Denote the solution of the NS equation with viscosity ν and
starting vorticity ω̂ by Ω(t; ω̂, ν).

● The family E is not invariant under the evolution of NS.

● If ν > 0, then solutions starting in E have a ν-independent deviation
away from E before returning to the zero state:

∀c∈R∃M>0∀ν > 0∃t>0 [ d( Ω(t; cω0, ν) , E) > M ] .

Viscosity induced instability: Without viscosity (ν = 0, Euler), the family E is
Lyapunov stable. But with viscosity (ν > 0, NS), the solutions move away
from E in a viscosity-independent way.

Note: this doesn’t contradict [Bona & Wu (02)] as it takes O(1/ν) time to
get order 1 away from the manifold.
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The second grade fluid equation in a bounded domain D ⊂ R
2 is

∂tq = −u · ∇q + ν∆ω, with u = ∇⊥ψ, ω = −∆ψ,

and potential vorticity q = Lψ = −∆(1− α∆)ψ (not atmospheric PV ).

● We consider the Navier-slip boundary condition: tangential component
of viscous stress is proportial to the tangential velocity: ψ = 0 and
−∆ψ = 2κ∇ψ · n on ∂D with κ curvature and n the normal of ∂D.
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The second grade fluid equation in a bounded domain D ⊂ R
2 is

∂tq = −u · ∇q + ν∆ω, with u = ∇⊥ψ, ω = −∆ψ,

and potential vorticity q = Lψ = −∆(1− α∆)ψ (not atmospheric PV ).

● We consider the Navier-slip boundary condition: tangential component
of viscous stress is proportial to the tangential velocity: ψ = 0 and
−∆ψ = 2κ∇ψ · n on ∂D with κ curvature and n the normal of ∂D.

● Averaged Euler is the zero viscosity equation, i.e. ν = 0. The energy is

HAE(q) =

∫

D

qψ and the potential enstrophy CAE(q) =

∫

D

q2 is a

Casimir.

● Note: the 2nd grade fluid equation is a regular perturbation of averaged
Euler.
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The critical points of the potential enstrophy on level sets of the energy give a
family of stationary solutions of the averaged Euler’s equation. These
solutions are eigenfunctions of the spectral problem

(q =)Lψ = γψ, plus Navier-slip BC.

● For any bounded, simply connected domain D, this has spectral problem
has eigenvalues 0 < γ0 < γ1 ≤ . . . and the eigenfunctions span L2(D).

● The smallest eigenvalue is simple; its normalised eigenfunction is
denoted by χ0.
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The critical points of the potential enstrophy on level sets of the energy give a
family of stationary solutions of the averaged Euler’s equation. These
solutions are eigenfunctions of the spectral problem

(q =)Lψ = γψ, plus Navier-slip BC.

● For any bounded, simply connected domain D, this has spectral problem
has eigenvalues 0 < γ0 < γ1 ≤ . . . and the eigenfunctions span L2(D).

● The smallest eigenvalue is simple; its normalised eigenfunction is
denoted by χ0.

Lemma Define q0 = −∆χ0; the family EAE = {cq0 | c ∈ R} and the

distance d(q, EAE) = infc∈R ‖q − cq0‖L2 .

Energy-Casimir method: The family is orbitally Lyapunov stable for solutions

q(t) of Euler’s equations, i.e., for all ε > 0, there is some δ > 0 such that for

all t ≥ 0
d(q(0), EAE) < δ ⇒ d(q(t), EAE) < ε.
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Consider the second grade fluid equation with the Navier-slip boundary
condition in a circular disk. Denote the stream function of the solution of the
second grade equation with viscosity ν and starting stream function ψ̂ by
Ψ(t; ψ̂, ν).

● The family EAE is not invariant under the evolution of the second grade
fluid equation.

● If ν > 0, then solutions starting in EAE have a ν-independent deviation
away from EAE before returning to the zero state:

∀ψ0∈EAE
∃M>0∀ν > 0∃t>0[dH1

0

(Ψ(t;ψ0, ν) , EAE) > M ].
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Consider the second grade fluid equation with the Navier-slip boundary
condition in a circular disk. Denote the stream function of the solution of the
second grade equation with viscosity ν and starting stream function ψ̂ by
Ψ(t; ψ̂, ν).

● The family EAE is not invariant under the evolution of the second grade
fluid equation.

● If ν > 0, then solutions starting in EAE have a ν-independent deviation
away from EAE before returning to the zero state:

∀ψ0∈EAE
∃M>0∀ν > 0∃t>0[dH1

0

(Ψ(t;ψ0, ν) , EAE) > M ].

Viscosity induced instability: Without viscosity (ν = 0, averaged Euler), the
family EAE is Lyapunov stable. But with viscosity (ν > 0, second grade fluid),
the solutions move away from EAE in a viscosity-independent way.
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Some observations for radially symmetric stream functions

● Both the Navier-Stokes equation and second grade fluid equation are
radially equivariant in a disk, as well as all boundary conditions
considered. So the set of all radially symmetric stream functions is
invariant.

● In a disk, the sets E and EAE consist of radially symmetric functions.

● In polar coordinates (r, φ), the nonlinear term u · ∇ becomes

u · ∇ ≡
1

r

[
ψφ

∂

∂r
− ψr

∂

∂φ

]
.

This vanishes for a radially symmetric stream function. Thus on a disk,
the Navier-Stokes equation and second grade fluid equation are linear for
radially symmetric stream functions.
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The second grade fluid equation with Navier-slip boundary condition for
radially symmetric stream functions is

∂tLψ = −ν∆2ψ, 0 ≤ r < R, t > 0 and ψ(R, t) = 0 = ψrr(R, t), t ≥ 0.
(1)

The eigenvalue problem

Lψ = λ∆2ψ, 0 ≤ r < R and ψ(R) = 0 = ψrr(R) (2)

will provide a basis for the solutions of (1).
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The second grade fluid equation with Navier-slip boundary condition for
radially symmetric stream functions is

∂tLψ = −ν∆2ψ, 0 ≤ r < R, t > 0 and ψ(R, t) = 0 = ψrr(R, t), t ≥ 0.
(1)

The eigenvalue problem

Lψ = λ∆2ψ, 0 ≤ r < R and ψ(R) = 0 = ψrr(R) (2)

will provide a basis for the solutions of (1).

● Eigenvalues are 0 < λ0 ≤ λ1 ≤ . . . and the eigenfuntions ψn form an
orthonormal basis in H1,rad

0 .

● Define βn = λn
1+αλn

, then ψ(t) = e−βnνtψn solves (1).

● The average Euler function χ0 is not an eigenfunction of (2)
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● Write χ0 =
∑∞

n=0 anψn, then Ψ(t;χ0, ν) =
∑∞

n=0 ane
−βnνtψn and

dH1

0

(Ψ(t;χ0, ν), EAE)
2 =

∞∑

m=0

a2m

(
e−βmνt −

∞∑

n=0

a2ne
−βnνt

)2

, t ≥ 0.

● Maximal deviation of the solution curve {Ψ(t;χ0, ν) | t ≥ 0} and the
family EAE is independent of ν and given by

max
τ≥0

∞∑

m=0

a2m

(
e−βmτ −

∞∑

n=0

a2ne
−βnτ

)2

> 0

as χ0 is not an eigenfunction of (2).
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● Write χ0 =
∑∞

n=0 anψn, then Ψ(t;χ0, ν) =
∑∞

n=0 ane
−βnνtψn and

dH1

0

(Ψ(t;χ0, ν), EAE)
2 =

∞∑

m=0

a2m

(
e−βmνt −

∞∑

n=0

a2ne
−βnνt

)2

, t ≥ 0.

● Maximal deviation of the solution curve {Ψ(t;χ0, ν) | t ≥ 0} and the
family EAE is independent of ν and given by

max
τ≥0

∞∑

m=0

a2m

(
e−βmτ −

∞∑

n=0

a2ne
−βnτ

)2

> 0

as χ0 is not an eigenfunction of (2).

Note: For the free boundary condition, χ0 would be the solution of the
eigenvalue problem.
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● With the free boundary condition, the energy-Casimir set E (related to
Euler’s equation) is invariant under the Navier-Stokes equation and
approximates its nearby solutions.

● For the no-slip boundary condition, the energy-Casimir set E (related to
Euler’s equation) is not invariant under the Navier-Stokes equation.
However small the viscosity (ν), solutions starting in E move far away
from it.

● For the Navier-slip boundary condition, the energy-Casimir set EAE
(related to averaged Euler’s equation) is not invariant under the second
grade fluid equation. However small the viscosity (ν), solutions starting
in EAE move far away from it.

● This is in a disk, how about other domains?

Thank you!



Conclusions
Introduction NS 2nd grade Conclusion

BIRS, 7 November 2012

● With the free boundary condition, the energy-Casimir set E (related to
Euler’s equation) is invariant under the Navier-Stokes equation and
approximates its nearby solutions.

● For the no-slip boundary condition, the energy-Casimir set E (related to
Euler’s equation) is not invariant under the Navier-Stokes equation.
However small the viscosity (ν), solutions starting in E move far away
from it.

● For the Navier-slip boundary condition, the energy-Casimir set EAE
(related to averaged Euler’s equation) is not invariant under the second
grade fluid equation. However small the viscosity (ν), solutions starting
in EAE move far away from it.

● This is in a disk, how about other domains?

Questions or suggestions?
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